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Abstract

Vicia ramuliflora L. is a widely distributed species in Eurasia with high economic value. For

past 200 years, it has evolved a tetraploid cytotype and new subspecies at the diploid level.

Based on taxonomy, cytogeography and other lines of evidence, previous studies have pro-

vided valuable information about the evolution of V. ramuliflora ploidy level, but due to the

limited resolution of traditional methods, important questions remain. In this study, fluores-

cence in situ hybridization (FISH) and random amplified polymorphic DNA (RAPD) were

used to analyze the evolution of V. ramuliflora at the diploid and tetraploid levels. Our aim

was to reveal the genomic constitution and parents of the tetraploid V. ramuliflora and the

relationships among diploid V. ramuliflora populations. Our study showed that the tetraploid

cytotype of V. ramuliflora at Changbai Mountains (M) has identical 18S and 5S rDNA

distribution patterns with the diploid Hengdaohezi population (B) and the diploid Dailing pop-

ulation (H). However, UPGMA clustering, Neighbor-Joining clustering and principal coordi-

nates analysis based on RAPD showed that the tetraploid cytotype (M) has more close

relationships with Qianshan diploid population T. Based on our results and the fact that inter-

specific hybridization among Vicia species is very difficult, we think that the tetraploid V.

ramuliflora is an autotetraploid and its genomic origin still needs further study. In addition,

our study also found that Qianshan diploid population (T) had evolved distinct new traits

compared with other diploid populations, which hints that V. ramuliflora evolved further at

diploid level. We suggest that diploid population T be re-classified as a new subspecies.

Introduction

Vicia ramuliflora (Maxim.) Ohwi belongs to the family Fabaceae, tribe Fabeae Rchb. ex Kitt.,

syn. Vicieae Bronn., genus Vicia L. and sect. Vicilla (Schur) Aschers. et Graebn. ex Kupicha. It

is a perennial herbaceous species that is widely distributed in Eurasia, especially in East Asia,

including Japan, Siberia, Mongolia, China, and Korea. The species of the genus Vicia are con-

sidered important economically, because they provide energy and protein for livestock [1,2].
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They can either be grazed as fresh forage [3] or can be cut and preserved as hay or silage [1,2].

Moreover, they also can be used for green manure [4]. Many Vicia species including V. ramuli-
flora also are important as herbaceous medicinals [5]. Cytotaxonomic studies [6,7,8] showed

that V. ramuliflora and its closely related Vicia species only included diploid (2n = 2x = 12)

cytotype in Japan, Russia and Korean Peninsula, but evolved diploid (2n = 2x = 12) and tetra-

ploid (2n = 2x = 24) cytotypes in China. The tetraploid cytotypes are discontinuously distrib-

uted in the Changbai Mountains (Northeast China) and Huangshan Mountains, Tianmu

Mountains and Lu Mountains (Easten China). In Northeast China, the diploid form of V.

ramuliflora is widespread. However, its conspecific tetraploid counterpart is only endemic to

the margins of forests and subalpine meadows of Changbai Mountains at altitudes above

1500–2000 m. Previous fieldwork [7] indicated that the population of the tetraploid form was

well-developed, consisting of thousands of individuals. However, when tetraploid individuals

of V. ramuliflora were transplanted to lower altitude regions, their sexual reproduction became

abnormal (i.e. the flower buds fall earlier than usual and therefore do not set fruit). Li et al. [7]

found that diploid and tetraploid V. ramuliflora populations showed similar karyotypes and

had no distinct cytological genetic markers. Hence, the genome components, evolutionary

relationships and likely diploid parents of these tetraploid populations could not be drawn out

through classical karyotype data and conventional crossing experiments.

Interestingly, it appears that V. ramuliflora not only evolved and formed the tetraploid

genotype to adapt to harsher environmental conditions, but also further evolved at the level of

diploid as well. Various authors have reported different opinions on the taxonomic designa-

tions of various populations within V. ramuliflora (Table 1). Their different opinions are

mainly focused on the taxonomic status of the diploid Qianshan population (T) and the tetra-

ploid Changbaishan population (M). Geographically, population T occupies a limited geo-

graphical area, the Liaotung Peninsula, which is surrounded by sea (to the northeast is the

neighboring Changbai Mountains with the Qianshan Mountains running through the mid-

dle). Fu & Chen (1976) thought that population T and population M should be treated as two

forms: V. ramuliflora f. abbreviata and V. ramuliflora f. chianschanensis [9]. Xia (1996) sug-

gested that the population T should be partitioned as an independent species and population

M should be treated as one form of V. ramuliflora [10]. By contrast, Li et al. (1996) divided

population T and population M into two subspecies (V. ramuliflora ssp. Abbreviate and V.

ramuliflora ssp. Changbaiensis (Kitag) and other diploid V. ramuliflora populations into

another subspecies (V. ramuliflora ssp. ramuliflora Maxim Ohwi) based on morphological

characters, geographical distribution, chromosome numbers, karyotypes and isoenzyme analy-

ses [7]. Specifically, V. ramuliflora ssp. ramuliflora (Maxim) Ohwi (diploid V. ramuliflora
populations except for population T), with 12 chromosomes, is widely distributed in the Dax-

inganling, Xiaoxinganling, Wandashan, Zhangguangcailing, Chaibai and Wutai Mountains;

by contrast, V. ramuliflora ssp. Changbaiensis (Kitag) (population M), with 24 chromosomes,

is endemic to 1500–2000 m of Changbai Mountains; and V. ramuliflora ssp. Abbreviate (popu-

lation T), with 12 chromosomes, occupies the Liaotung Peninsula. In addition, Li et al. (1996)

also found that both the Fenghuang and Qian mountain populations of V. ramuliflora ssp.

abbreviata on the Liaotung peninsula had similar flower character variations, such as larger

flowers (as long as 15 mm), significantly longer back calyx lobes (approximated to the length

of calyx tube), condensed anthotaxy (branched or not), and persistent involucres (bigger than

stipules). These flower character variations are obviously different from other diploid popula-

tions [7].

It is well known that in eukaryotes, the ribosomal genes comprise two distinct multigene

classes that are composed of tandemly arrayed repeated sequences. The major rDNA (45S)

corresponds to the nucleolus organizer region (NOR) and includes the 18S, 5.8S, 28S rRNA

Evolution of Vicia ramuliflora at Tetraploid and Diploid Levels

PLOS ONE | DOI:10.1371/journal.pone.0170695 January 30, 2017 2 / 20

(31300511): this funder had a role in preparation of

the manuscript and decision to publish; and China

Scholarship Council (201408510074): this funder

had a role in preparation of the manuscript and

decision to publish.

Competing Interests: The authors have declared

that no competing interests exist.



gene as well as an intergenic non-transcribed spacer; the minor rDNA is comprised of 5S

rRNA gene [11]. Due to the apparent molecular conservation of ribosomal sites among closely

related groups of organisms, such sequences can be useful tools for cytotaxonomic and evolu-

tionary studies [12]. During the past few years there has been extensive use and development

of fluorescence in situ hybridization (FISH) as a tool for both cytotaxonomic and evolutionary

research. The hybridization of specific DNA or RNA sequences in situ to cellular targets

attached to microscope slides has allowed for the localization of all major and minor rDNA

sites. In addition, random amplified polymorphic DNA (RAPD) has also been used to measure

genetic variation for establishing genetic and evolutionary relationships and to generate phylo-

genetic trees for species, subspecies, and populations [13]. RAPD is generated by applying the

polymerase chain reaction (PCR) to genomic DNA samples, using randomly constructed oli-

gonucleotides as primers [14,15].

In the present study, we used FISH to examine the distribution of 5S and 18S rDNA sites in

the tetraploid population of V. ramuliflora and its conspecific diploid counterparts. We also

examined differences between the diploid and tetraploid populations at the whole genome

level based on RAPD. The combination of RAPD and FISH with 5S and 18S rDNA probes

offers a powerful approach to further explore the evolution of V. ramuliflora at diploid and tet-

raploid levels. Our specific study aims include: (1) determining the number and location of

18S and 5S rDNA loci in diploids and tetraploids of V. ramuliflora (2) comparing the distribu-

tion of RAPD bands in diploids and tetraploids of V. ramuliflora (3) identifying the genomic

origin of V. ramuliflora tetraploids, and (4) determining the taxonomic status of the Qian

Mountains diploid V. ramuliflora population.

Materials and Methods

Ethics statement

No specific permits were required for the sample collection. The field studies did not involved

endangered or protected species.

Plant materials

Two species and five populations of Northeast China Vicia were analyzed. Vicia unijuga was

sampled as outgroup. V. unijuga is closely related species with V. ramuliflora. Previous studies

showed that these two species probably have a common ancestor [7,16]. Diploids of V. unijuga
are distributed closely at Daxinganling in northeast of China. Hence we only selected one V.

unijuga population as outgroup. The identification of V. ramuliflora and V. unijuga were

based on morphological characters (e.g. their compound leaf structures are dissimilar, with V.

unijuga having only a pair of leaflets and V. ramuliflora has 2–6 pairs). Detailed information

Table 1. Various taxonomic designations of V. ramuliflora by different author.

Population Taxonomic designations

Fu & Chen (1976) Xia (1996) Li et al. (1996)

T V. ramuliflora f. abbreviate (new form) V. chianshanensis (new species) V. ramuliflora ssp. Abbreviate (subspecies)

B V. ramuliflora V. ramuliflora V. ramuliflora

H V. ramuliflora V. ramuliflora V. ramuliflora

M V. ramuliflora f. chianschanensis (new form) Form of Vicia ramuliflora (new form) V. ramuliflora ssp. Changbaiensis (Kitag) (subspecies)

T, Qianshan (Liaoning province) population (V. ramuliflora, 2x); B, Hengdaohezi (Heilongjiang province) population (V. ramuliflora, 2x); H, Dailing

(Heilongjiang province) population (V. ramuliflora, 2x); M, Changpai Mountains (Jilin province) population (V. ramuliflora, 4x)

doi:10.1371/journal.pone.0170695.t001
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about the materials analyzed is given in Table 2. The mature seeds and young leaves from 13

individuals per population were collected from five native populations in northeast China

(Table 2). The distance between populations ranged from 273 km up to 1045 km with specific

distances as follows: H and B (273 km) < B and M (298 km) < M and T (437 km) < Q and H

(521 km) < H and M (587 km) < B and T (652 km) < Q and B (758 km) <H and T (822 km)

< Q and M (974 km) < Q and T (1045 km) (Fig 1). The distance between individuals was kept

at least 15 m to increase the possibility of detecting variation among individuals. To determine

ploidy, we marked the individuals that we have collected. We collected the leaves and seeds

from each marked individual. The ploidy was determined by counting chromosomes at meta-

phase in root-tip meristem cells taken from germinating seeds.

Table 2. Sample sites for 5 populations from V. ramuliflora and V. Unijuga.

Population Locality No. of plants Genomic constitution

V. ramuliflora

T Qianshan (Liaoning province) 13 2n = 2x = 12

B Hengdaohezi (Heilongjiang province) 13 2n = 2x = 12

H Dailing (Heilongjiang province) 13 2n = 2x = 12

M Changpai Mountains (Jilin province) 13 2n = 4x = 24

V. unijuga

Q Jiabei (Heilongjiang province) 13 2n = 2x = 12

doi:10.1371/journal.pone.0170695.t002

Fig 1. Distribution of Vicia ramuliflora and Vicia unijuga in China. A white circle represents tetraploid of

V. ramuliflora; A white triangle represents dipoloid of V. ramuliflora; A black circle represents tetraploid of V.

unijuga; A black triangle represents dipoloid of V. unijuga; B, Hengdaohezi (Heilongjiang province) population

(V. ramuliflora, 2x); H, Dailing (Heilongjiang province) population (V. ramuliflora, 2x); T, Qianshan (Liaoning

province) population (V. ramuliflora, 2x); M, Changpai Mountains (Jilin province) population (V. ramuliflora,

4x); Q, Jiabei (Heilongjiang province) population (V. unijuga, 2x). Jiabei is located at Neimenggu province, but

it belongs to the jurisdiction of Heilongjiang province in administration.

doi:10.1371/journal.pone.0170695.g001

Evolution of Vicia ramuliflora at Tetraploid and Diploid Levels

PLOS ONE | DOI:10.1371/journal.pone.0170695 January 30, 2017 4 / 20



Fluorescence in situ hybridization (FISH)

We randomly selected five good metaphases per individual and five individuals per population

for constructing an idiogram. We selected three good metaphases from different individual

per population for FISH. Root tips were obtained from seeds germinating in Petri dishes. The

root tips were pretreated with 0.05% colchicine for 3 h at room temperature. The meristems

were fixed in 3:1 ethanol: acetic acid for 24 h at room temperature and stored at -20˚C until

used for FISH. The FISH procedure was based on Zhang & Sang [17] with minor modifica-

tions. Probes used for FISH were 18S rDNA and 5S rDNA from PCR amplification, labeled

using a DIG DNA Labeling and Detection Kit (Boehringer, Mannheim, Germany) with bio-

tin-11-dUTP (Sigma) and digoxigenin-11-dUTP (Roche Diagnostics GmbH, Mannheim,

Germany), respectively. The biotinylated-probes were detected by avidin-FIFC (Roche Diag-

nostics GmbH, Mannheim, Germany) and the digoxigenin-labelled probes by anti-digoxi-

genin rhodamine conjugate (Roche Diagnostics GmbH, Mannheim, Germany). All

preparations were counterstained with DAPI (20 μg mL-1), mounted in FluoroGuard™ antifade

reagent and observed with a Leica DMRBE microscope (Leica, Wetzlar, Germany). Fluores-

cent signals were captured by a SPOT cooled color digital camera system (Diagnostic instru-

ments Inc., MI, USA).

Random amplified polymorphic DNA (RAPD)

Total DNA was extracted from frozen (-80˚C) leaf tissue using the standard CTAB method for

small-scale extraction of DNA [15]. Thirteen plants, chosen to represent the entire study mate-

rial, were initially screened with 80 10-mer RAPD primers from SBS Inc (Beijing China).

Seven RAPD primers (Table 3) were selected for further analysis since they yielded polymor-

phic, clear and reproducible bands. RAPDs were performed in volumes of 10 μl, containing 10

ng of DNA, 1X reaction buffer (TaKaRa, Dalian, China), 1.5 mM MgCl2 (TaKaRa Dalian,

China), 0.2 μM primer (SBS Beijing, China), 0.2 mM mixture of dNTPs (TaKaRa Dalian,

China), and 1.0 U Taq DNA Polymerase (Promega Shanghai, China). The thermocycler

(HYBAID) was programmed for 1 cycle of 3 min at 92˚C followed by 45 cycles of 1 min at

92˚C, 1 min at 40˚C, and 2 min at 72˚C, and finally by 1 cycle of 10 min at 72˚C. The amplified

products were separated by electrophoresis in 1.2% agarose gels with a Tris-Boric acid-EDTA

(TBE) buffer system. Gels were stained with ethidium bromide and photographed on Amp-

Gene imaging devices for further analyses. Molecular Weight Marker DL2000 (TaKaRa

Dalian, China) was used to determine the size of the DNA fragments. To prevent other DNA

contamination, negative controls (i.e. the reaction mixture without genomic DNA) were run

in each PCR run. To ensure reproducibility between runs, DNA from the same three plants

was included in every PCR run. DNA from three additional plants was amplified twice in each

PCR run as a control of reproducibility within runs.

Table 3. List of RAPD primers used and their nucleotide sequences.

No. of primers Sequence (5’—3’)

Used for RAPDs

SBSA10 GTGATCGCAG

SBSP10 TCCCGCCTAC

SBSP17 TGACCCGCCT

SBSQ18 AGGCTGGGTG

SBSQ4 AGTGCGCTGA

SBSQ5 CCGCGTCTTG

SBSQ15 GGGTAACGTG

doi:10.1371/journal.pone.0170695.t003

Evolution of Vicia ramuliflora at Tetraploid and Diploid Levels
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Data analysis

RAPD data analysis. Electrophoretic data were scored manually, and each band in the

RAPD profile was treated as an independent character (locus) with two states (alleles), pres-

ence (1) or absence (0). Finally, a binary data matrix (S1 Table) was constructed to be used for

statistical analysis. All RAPD data analyses (Dice’s coefficient for constructing UPGMA and

PCO of individual level, percentage of polymorphic bands, pairwise PHiST coefficients for

constructing UPGMA of population level) were based on this binary data matrix. Among the

various similarity indices, those of Jaccard and Dice were chosen as most appropriate for dom-

inant markers since they do not attribute any genetic meaning to the coincidence of band

absence. Dice’s coefficient of similarity was calculated using the NTsys-pc (NTsys-pc software

version 2.10) [18]. These matrices of Dice’s coefficient were then used to perform a UPGMA

cluster analysis and principal coordinates (PCO) analysis of individual level (NTsys-pc soft-

ware version 2.10) [18]. The percentage of polymorphic bands (PPB) was calculated by the

PopGene program [19]. Pairwise PhiST coefficients, which are interpreted as analogous to Fst

values, were computed at the population level (WinAmova version 1.55) [20]. Bootstrapping

was carried out using the bootstrap function in PowerMarker [21] and consensus trees were

created using the consense program in the PHYLIP software package v3.695 [22]. Two meth-

ods, UPGMA and Neighbor-Joining, were used to create the dendrograms.

Results

FISH with 18S and 5S ribosomal DNA probes

18S rDNA in-situ hybridizations revealed similar signals among five diploid V. ramuliflora
populations (Figs 2 and 3). In the five diploids examined, the number and location of 18S

rDNA was identical: One pair of 18S rDNA signals was located at the secondary constriction

of the short arm of chromosome 2; another pair of 18S rDNA signals was distributed at the

centromere zone of chromosome 3. By contrast, in the tetraploid population (M), two pairs of

18S rDNA signals were located at the secondary constriction of the short arm of chromosomes

3 and 4, and another two pairs of 18S rDNA signals were located at the centromere zone of

chromosomes 5 and 6. The number of 18S rDNA signals in the tetraploid population was

twice that in each diploid population. However, the position of 18S rDNA signals was identical

in tetraploid and diploid populations.

The number and location of 5S rDNA in population B and H was identical: Only one pair

of 5S rDNA signals was located at the centromere zone of chromosome 3. However, the num-

ber and location of 5S rDNA in population T and Q was different from population B and H:

Besides one pair of 5S rDNA signals was located at the centromere zone of chromosome 3, a

single 5S rDNA signal in population T and one pair of 5S rDNA signals in population Q were

also been found at the centromere zone of chromosome 1. By contrast, in the tetraploid popu-

lation (M), two pairs of 5S rDNA signals were located at the centromere zone of chromosomes

5 and 6. The number of 5S rDNA signals in the tetraploid population was twice that in diploid

population B or diploid population H. However, the position of 5S rDNA signals was identical

in the tetraploid population and diploid populations B and H. For all populations, the linkage

pattern of these two types of rDNAs is: 5S rDNA is adjacent with 18S rDNA on the same arm

of the same chromosome. 18S rDNA is near outside.

RAPD analysis with seven primers

The patterns of amplification bands. The total number of reproducible bands amplified

with seven primers was 109, with a size range from 100 to 2000 bp and quantity range from 8

Evolution of Vicia ramuliflora at Tetraploid and Diploid Levels
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Fig 2. FISH of 18S rDNA (red) and 5S rDNA (green) to somatic C-metaphase chromosomes of 5

populations. B, Hengdaohezi (Heilongjiang province) population (V. ramuliflora, 2x); T, Qianshan (Liaoning

province) population (V. ramuliflora, 2x); H, Dailing (Heilongjiang province) population (V. ramuliflora, 2x); M,

Changpai Mountains (Jilin province) population (V. ramuliflora, 4x); Q, Jiabei (Heilongjiang province)

population (V. unijuga, 2x). Scale bar = 10 μm.

doi:10.1371/journal.pone.0170695.g002
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PLOS ONE | DOI:10.1371/journal.pone.0170695 January 30, 2017 7 / 20



to 21 per primer. The number of polymorphic loci and the percentage of polymorphic loci of

each population are presented in Table 4.

The occurrence ratio of amplification band at per locus in 13 individuals of each population

is presented in Table 5. Diploid population H owned 16 specific bands, with the ratio of the

individuals with specific bands at per specific locus ranging from 46% to 8%. In population H,

the occurrence ratio of amplification band at three loci (A10-2, A10-8 and Q5-11) was 0%,

indicating that population H has evolved distinct DNA sequences compared to other popula-

tions examined. Diploid population B owned seven specific bands, with the ratio of the indi-

viduals with specific bands at per specific locus ranging from 23% to 8%. Comparing across

populations, only in population B was the occurrence ratio of amplification bands at three loci

(A10-4, P17-2 and P17-6) 0%. Diploid population T owned four specific bands, with the ratio

of the individuals with specific bands at per specific locus ranging from 54% to 8%. Compared

to other populations, only in population T was the occurrence ratio of amplification band at

four loci (P10-14, Q18-3, Q5-5 and Q15-11) 0%. Diploid population Q owned 10 specific

Fig 3. Idiograms of 5 Vicia populations. H, Dailing (Heilongjiang province) population (V. ramuliflora, 2x); B,

Hengdaohezi (Heilongjiang province) population (V. ramuliflora, 2x); T, Qianshan (Liaoning province) population

(V. ramuliflora, 2x); M, Changpai Mountains (Jilin province) population (V. ramuliflora, 4x); Q, Jiabei (Heilongjiang

province) population (V. unijuga, 2x). A black rectangle represents 18s rDNA present in two of homologous

chromosomes; A black circle represents 5s rDNA present in two of homologous chromosomes; A black oval

represents 5s rDNA present in one of homologous chromosomes;

doi:10.1371/journal.pone.0170695.g003
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bands, with the ratio of the individuals with specific bands at per specific locus ranging from

92% to 8%. The occurrence ratio of amplification bands at four loci (Q4-9, Q5-8, Q5-16 and

Q15-8) was 0% in population Q. The tetraploid population M owned only one specific band,

with the ratio of the individuals with a specific band at this specific locus being 46%. Interest-

ingly, the occurrence ratio of amplification bands at two loci (P17-7 and Q15-12) was 0% only

in tetraploid population M, indicating that tetraploid population M has evolved distinct DNA

sequences compared to other diploid populations. While both the tetraploid population (M)

and four diploid populations (B, H, T and Q) have evolved distinct DNA sequences, the five

populations all owned bands at A10-1, A10-6, A10-9, P10-2, P10-8, P10-17, P17-9, P17-14,

Q18-2 and Q18-8 loci, although the occurrence ratio of amplification bands at these loci in

each individual of each population was different. These patterns indicated that the DNA

sequences were high conserved at these loci and showed common genus characters.

Genetic distances and principal coordinates analysis. The genetic distance of each two

diploid populations was: B and H< B and T< T and H< H and Q < B and Q < T and Q

(Table 6). The genetic distances between the tetraploid population and each of the diploid pop-

ulations was: M and H< M and B< M and T < M and Q. A dendrogram constructed by

UPGMA method, based on genetic distances (PhiST), indicated that population B and H

showed the closest relationships, tetraploid population M grouped with population B, H, and

T and population Q was most distantly related to other populations (Fig 4). By contrast, a den-

drogram constructed by Neighbor-Joining indicated that population B and H group together

and population M and T group together (S1 Fig). In addition, a dendrogram constructed for

65 individuals, using Dice’s coefficient of similarity and UPGMA clustering, showed individu-

als dividing into two main groups: namely all 52 individuals from V. ramuliflora formed one

major group, while thirteen individuals from V. unijuga formed another distinct group (Fig 5).

Furthermore, the V. ramuliflora group was further subdivided into four clusters: Cluster I con-

tained eleven individuals from population T (T12 and T13 were beyond of Cluster I); Cluster

II contained all thirteen individuals from population B, T12, and H7; Cluster III contained

eleven individuals from population H (H7 and H13 were beyond of Cluster III) and T13;

Cluster IV contained all thirteen individuals from tetraploid population M. By contrast, a den-

drogram constructed for 65 individuals (S2 Fig), using Neighbor-Joining, showed that all indi-

viduals formed four clusters: Cluster A contained all thirteen individuals from population M;

Cluster B contained all thirteen individuals from population T; Cluster C contained twenty

three individuals from population B and H (H13, H4 and B3 were beyond of Cluster C); Clus-

ter D contained all thirteen individuals from population Q.

The PCO scatter plot (Fig 6) assigned all 65 individuals to four major clusters: Cluster 1

included most individuals from population B and H; Cluster 2 was composed of all 13

Table 4. The number of polymorphic loci and the percentage of polymorphic loci of each population.

Population The number of polymorphic loci The percentage of polymorphic loci

T 33 30.28%

B 57 52.29%

H 72 66.06%

M 33 30.28%

Q 53 48.62%

T, Qianshan (Liaoning province) population (V. ramuliflora, 2x); B, Hengdaohezi (Heilongjiang province) population (V. ramuliflora, 2x); H, Dailing

(Heilongjiang province) population (V. ramuliflora, 2x); M, Changpai Mountains (Jilin province) population (V. ramuliflora, 4x); Q, Jiabei (Heilongjiang

province) population (V. unijuga, 2x)

doi:10.1371/journal.pone.0170695.t004
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Table 5. The occurrence ratio of amplification band at per locus in 13 individuals of each population.

RAPD Locus Population

M H B T Q

A10-1 8% 23% 31% 8% 8%

A10-2 23% 0% 8% 31% 31%

A10-3 8% 8% 8% 0% 0%

A10-4 15% 31% 0% 38% 31%

A10-5 0% 0% 15% 0% 0%

A10-6 92% 85% 100% 92% 85%

A10-7 0% 15% 0% 0% 23%

A10-8 15% 0% 8% 8% 46%

A10-9 23% 77% 54% 54% 15%

A10-10 0% 31% 23% 0% 0%

A10-11 0% 0% 0% 23% 0%

A10-12 8% 8% 0% 0% 15%

A10-13 0% 15% 8% 15% 0%

A10-14 0% 0% 8% 0% 15%

A10-15 0% 8% 0% 0% 0%

A10-16 0% 0% 0% 8% 0%

A10-17 0% 0% 0% 0% 15%

A10-18 0% 8% 0% 0% 0%

P10-1 8% 23% 15% 0% 0%

P10-2 31% 62% 77% 15% 100%

P10-3 0% 0% 8% 0% 0%

P10-4 0% 15% 0% 0% 0%

P10-5 15% 15% 0% 0% 8%

P10-6 0% 0% 31% 0% 8%

P10-7 0% 8% 0% 0% 0%

P10-8 54% 8% 31% 15% 15%

P10-9 0% 31% 8% 0% 0%

P10-10 0% 8% 31% 0% 0%

P10-11 0% 31% 0% 8% 15%

P10-12 0% 38% 0% 0% 85%

P10-13 0% 15% 0% 46% 31%

P10-14 15% 46% 62% 0% 100%

P10-15 38% 0% 0% 0% 8%

P10-16 0% 0% 8% 0% 0%

P10-17 100% 100% 92% 100% 8%

P17-1 23% 23% 0% 0% 15%

P17-2 31% 31% 0% 8% 69%

P17-3 0% 15% 0% 0% 77%

P17-4 23% 0% 0% 62% 15%

P17-5 0% 8% 8% 0% 0%

P17-6 100% 46% 0% 62% 85%

P17-7 0% 77% 100% 92% 31%

P17-8 0% 8% 8% 0% 46%

P17-9 100% 69% 38% 8% 8%

P17-10 0% 15% 0% 0% 0%

P17-11 0% 15% 0% 0% 0%

(Continued )
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Table 5. (Continued)

RAPD Locus Population

M H B T Q

P17-12 46% 0% 0% 0% 0%

P17-13 0% 8% 0% 0% 0%

P17-14 54% 92% 31% 77% 46%

Q18-1 0% 0% 38% 0% 85%

Q18-2 92% 69% 77% 100% 100%

Q18-3 15% 54% 8% 0% 15%

Q18-4 0% 0% 0% 0% 31%

Q18-5 0% 0% 15% 0% 54%

Q18-6 0% 69% 38% 0% 85%

Q18-7 0% 0% 0% 0% 23%

Q18-8 8% 46% 54% 92% 8%

Q4-1 0% 0% 0% 0% 8%

Q4-2 38% 38% 15% 0% 0%

Q4-3 0% 0% 0% 8% 69%

Q4-4 0% 0% 0% 0% 8%

Q4-5 0% 23% 23% 0% 0%

Q4-6 0% 0% 0% 0% 8%

Q4-7 0% 69% 8% 0% 0%

Q4-8 0% 0% 0% 0% 15%

Q4-9 38% 23% 15% 38% 0%

Q4-10 0% 31% 8% 0% 0%

Q4-11 0% 46% 0% 0% 0%

Q4-12 0% 54% 15% 15% 0%

Q4-13 0% 0% 15% 0% 0%

Q4-14 15% 62% 15% 0% 0%

Q4-15 0% 0% 15% 0% 0%

Q4-16 0% 0% 0% 31% 0%

Q4-17 0% 8% 0% 0% 0%

Q4-18 8% 8% 0% 0% 8%

Q4-19 0% 0% 0% 0% 92%

Q4-20 0% 8% 0% 0% 0%

Q4-21 0% 8% 0% 0% 0%

Q5-1 0% 0% 8% 0% 0%

Q5-2 0% 0% 23% 38% 0%

Q5-3 0% 15% 0% 0% 0%

Q5-4 0% 38% 0% 0% 0%

Q5-5 8% 77% 85% 0% 31%

Q5-6 0% 0% 0% 54% 0%

Q5-7 0% 0% 0% 0% 8%

Q5-8 92% 31% 46% 23% 0%

Q5-9 0% 8% 0% 0% 0%

Q5-10 0% 31% 15% 0% 0%

Q5-11 8% 0% 8% 46% 77%

Q5-12 15% 15% 8% 0% 0%

Q5-13 0% 23% 8% 0% 0%

Q5-14 0% 0% 23% 0% 0%

(Continued )
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individuals from population T, 3 individuals from population B, and one individual from pop-

ulation H; Cluster 3 consisted of all 13 individuals from tetraploid population M; Cluster 4

comprised all 13 individuals from population Q. Like the UPGMA clustering, the first princi-

pal coordinate axis (X axis) of the PCO plot showed key variation between individuals into V.

ramuliflora group and V. unijuga group. The second principal coordinate axis (Y axis) further

separated all individuals into diploid and tetraploid groups.

Discussion

The evolution of V. ramuliflora at tetraploid level

Revealing the origins of polyploidy is quite difficult because the genome often rapidly changed by

chromosomal rearrangements, diploidization, and inter-genomic invasion after polyploidization

Table 5. (Continued)

RAPD Locus Population

M H B T Q

Q5-15 0% 8% 8% 15% 0%

Q5-16 8% 92% 85% 85% 0%

Q5-17 0% 38% 38% 46% 0%

Q15-1 0% 15% 8% 0% 0%

Q15-2 8% 0% 0% 0% 8%

Q15-3 0% 15% 23% 0% 77%

Q15-4 0% 0% 0% 0% 62%

Q15-5 0% 0% 23% 0% 8%

Q15-6 0% 15% 0% 0% 0%

Q15-7 0% 8% 0% 0% 8%

Q15-8 100% 62% 85% 92% 0%

Q15-9 0% 8% 0% 0% 0%

Q15-10 0% 15% 0% 0% 62%

Q15-11 8% 38% 8% 0% 38%

Q15-12 0% 8% 15% 8% 8%

Q15-13 0% 0% 8% 0% 85%

Q15-14 0% 15% 0% 0% 0%

T, Qianshan (Liaoning province) population (V. ramuliflora, 2x); B, Hengdaohezi (Heilongjiang province) population (V. ramuliflora, 2x); H, Dailing

(Heilongjiang province) population (V. ramuliflora, 2x); M, Changpai Mountains (Jilin province) population (V. ramuliflora, 4x); Q, Jiabei (Heilongjiang

province) population (V. unijuga, 2x

doi:10.1371/journal.pone.0170695.t005

Table 6. PhiST genetic distances of five populations.

Population T B H M Q

T 0.0000

B 0.2230 0.0000

H 0.2470 0.1136 0.0000

M 0.3446 0.2991 0.2739 0.0000

Q 0.4993 0.3993 0.3701 0.4925 0.0000

T, Qianshan (Liaoning province) population (V. ramuliflora, 2x); B, Hengdaohezi (Heilongjiang province) population (V. ramuliflora, 2x); H, Dailing

(Heilongjiang province) population (V. ramuliflora, 2x); M, Changpai Mountains (Jilin province) population (V. ramuliflora, 4x); Q, Jiabei (Heilongjiang

province) population (V. unijuga, 2x)

doi:10.1371/journal.pone.0170695.t006
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Fig 4. Dendrogram of five populations from V. ramuliflora and V. unijuga based on RAPD markers

with UPGMA analysis. B, Hengdaohezi (Heilongjiang province) population (V. ramuliflora, 2x); H, Dailing

(Heilongjiang province) population (V. ramuliflora, 2x); T, Qianshan (Liaoning province) population (V.

ramuliflora, 2x); M, Changpai Mountains (Jilin province) population (V. ramuliflora, 4x); Q, Jiabei (Heilongjiang

province) population (V. unijuga, 2x). The branches with bootstrap values of greater than 50% are marked.

The numbers at the nodes indicate the percentage number of 1000 bootstrap replications.

doi:10.1371/journal.pone.0170695.g004
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Fig 5. Dendrogram showing the relationships among all plants from five populations of V. ramuliflora and

V. unijuga based on RAPD markers with UPGMA method. B, Hengdaohezi (Heilongjiang province) population

(V. ramuliflora, 2x); H, Dailing (Heilongjiang province) population (V. ramuliflora, 2x); T, Qianshan (Liaoning

province) population (V. ramuliflora, 2x); M, Changpai Mountains (Jilin province) population (V. ramuliflora, 4x); Q,

Jiabei (Heilongjiang province) population (V. unijuga, 2x). The branches with bootstrap values of greater than 50%

are marked. The numbers at the nodes indicate the percentage number of 1000 bootstrap replications.

doi:10.1371/journal.pone.0170695.g005
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[23–27]. Our FISH-based study showed that the number of 18S and 5S rDNA hybridization sig-

nal in the tetraploid population (M) of V. ramuliflora was double that in the diploid populations

B or H. However, the hybridization patterns of the18S and 5S rDNA probes in diploid population

B, diploid population H, and tetraploid population M were identical: all hybridization signals

were all located at the same regions of corresponding chromosomes (Figs 2 and 3). By contrast,

diploid population T had an additional single 5S rDNA signal at the centromere zone of chromo-

some 1. Thus, our FISH results imply that population B and H are more likely the parents of tet-

raploid M. However, our cluster analysis (Figs 4 and 5, S1 and S2 Figs) and PCO analysis based

on RAPD (Fig 6) showed that the tetraploid population M had more close relationships with dip-

loid population T. This difference between FISH and RAPD probably was caused by chromo-

somal rearrangements, diploidization, and inter-genomic invasion after polyploidization [23–

27]. Thus, genomic origin of tetraploid population M is still ambiguous and in need of further

study. Previous flower biology and breeding system research [28, 29] has indicated that Vicia spe-

cies in Sect Vicilla are self-pollinated plants. Taken together, we think that the tetraploid V. ramu-
liflora is an autotetraploid probably derived by the union of unreduced gametes. What may have

Fig 6. Two-dimensional plot from a PCO based on DICE cofficients among plants of V. ramuliflora and V. unijuga by RAPD markers. B,

Hengdaohezi (Heilongjiang province) population (V. ramuliflora, 2x); H, Dailing (Heilongjiang province) population (V. ramuliflora, 2x); T, Qianshan

(Liaoning province) population (V. ramuliflora, 2x); M, Changpai Mountains (Jilin province) population (V. ramuliflora, 4x); Q, Jiabei (Heilongjiang province)

population (V. unijuga, 2x)

doi:10.1371/journal.pone.0170695.g006
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driven the tetraploid status in V. ramuliflora? Studies showed that the frequency of 2n gametes is

subject to biological characteristics of the plant and genetic factors, but also external environmen-

tal factors, such as temperature, water and nutrients [30,31,32]. For example, Belling (1925)

found the frequency of 2n gametes sharply increased in plants of Datura strastramonium, Uvu-
laria grandiflora, and strizolobium during cold spells [30]. Similarly, Grant (1952) discovered that

the frequency of 2n gametes of the plants of Gilia in arid soils was as much as nine hundred

times of that in fertile soils [32]. Collectively, these studies indicate that environmental selection

pressure is an important factor for the formation of 2n gametes, which may be why many poly-

ploid species are distributed at high latitude and high altitude zones or other harsh environments.

In China, tetraploid of V. ramuliflora are limited only being present above 2000 m mountains,

which have extreme climatic conditions. In addition, mountain glaciers occurred many times at

some high mountains in Asia in the Quaternary Period, which together with extreme climatic

conditions may have promoted the formation of 2n gametes. Previous many studies found that

polyploids are often better adapted to harsher environmental conditions [33–36]. For example,

Kay (1969) found that polyploids are often better adapted to dry conditions [33] and Liu et al.

(2011) found that polyploids show increased cold tolerance [35]. Thus, we suspect that the tetra-

ploid M population is better adapted to the harsher, high mountain environmental conditions

compared with diploid populations which occur at lower elevations.

The evolution of V. ramuliflora at diploid level

Previous researchers have had different opinions on the taxonomic status of diploid V. ramuli-
flora populations [9,10,7]. Fu & Chen (1976) thought that the Qianshan diploid population (T)

and the Changbaishan tetraploid population (M) should be divided as different forms of V.

ramuliflora [9]. Xia (1996) thought that the diploid T population should be treated as an inde-

pendent species, while the tetraploid M population should be treated as a form of V. ramuli-
flora [10]. Li (1996) suggested that the diploid T population and the tetraploid M population

should be divided as two diffferent subspecies of V. ramuliflora [7]. Our FISH study showed

that 18S rDNA had same hybridization pattern and hybridization numbers for all diploid pop-

ulations. However, 5s rDNA showed variety among diploid populations: population B and

population H only have a pair of 5s rDNA signals at centromere of the third pair of chromo-

somes. By contrast, population T and population Q have additional 5s rDNA signals at centro-

mere of the first pair of chromosomes besides 5s rDNA signals at centromere of the third pair

of chromosomes (Figs 2 and 3). Cluster analysis and PCO analysis based on RAPD also

showed that population T are different from population B and population H (Figs 4, 5 and 6),

although T12 and T13 clustered with population B and population H based on UPGMA

method (Fig 5). To further our inference, we also used Neighbor-Joining method to cluster at

the population and individual level. Neighbor-Joining based clustering showed that all individ-

uals from population T grouped together and formed an independent cluster (cluster B) (most

bootstrap values are very low for clustering at individual level, reflecting high genetic diversity

among individuals) (S1 and S2 Figs). This indicated that the diploid population T was different

from other diploid populations (B and H). These molecular-based results are also consistent

with previous studies based on morphological traits [10,7]. On the other hand, although popu-

lation T was different with other diploid populations, it still clustered within V. ramuliflora
species. Thus, we do not support its elevation as a new species. Instead, we support the taxon

treatment of Li (1996) and suggest that the Qianshan population (T) be considered as a new

subspecies. It is important to note that the location of the 5S rDNA in population T (V. ramuli-
flora) is similar to that of population Q (V. unijuga). Previous studies have also found that pop-

ulation T of V. ramuliflora and V. unijuga have similar morphological characters. Usually, V.
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ramuliflora and V. unijuga have different compound leaf structures: V. unijuga has only a sin-

gle pair of leaflets and V. ramuliflora has two to six pairs. However, Li et al. (1996) found that

some exceptional individuals of V. unijuga posess three leaflets and co-occur with normal V.

unijuga individuals in both the Tayuan and Maorshan populations. They also observed a

change in the compound leaf structure during the growth of seedlings and found that the com-

pound leaf consists of a pair of leaflets for 1-year-old seedlings in both V. unijuga and V. ramu-
liflora. Based on 5S rDNA locations and compound leaf structure, we presume that these two

species likely have a common ancestor.

Conclusions

Our FISH-based study showed that the tetraploid cytotype of V. ramuliflora at Changbai

Mountains (M) had identical 18S and 5S rDNA distribution pattern with the diploid Hengdao-

hezi population (B) and the diploid Dailing population (H). However, UPGMA clustering,

Neighbor-Joining clustering, principal coordinates analysis based on RAPD showed that the

tetraploid cytotype (M) had close relationships with diploid population T. Based on our study

results and the fact that interspecific hybridization among Vicia species is known to be limited,

we think that the tetraploid V. ramuliflora is autotetraploid, but its likely parents still need to

be studied further. In addition, our study also found that Qianshan diploid population (T) had

evolved distinct 5s rDNA sites compared with other diploid populations. Specific band pattern,

genetic distances, UPGMA clustering, principal coordinates analysis based on RAPD also sep-

arated Qianshan diploid population (T) from other diploid populations (B and H). We, there-

fore, suggest that diploid population T be re-classified as a distinct subspecies.

Supporting Information

S1 Table. Binary data matrix based on RAPD. Electrophoretic data were scored manually,

and each band in the RAPD profile was treated as an independent character (locus) with two

states (alleles), presence (1) or absence (0). B, Hengdaohezi (Heilongjiang province) popula-

tion (V. ramuliflora, 2x); H, Dailing (Heilongjiang province) population (V. ramuliflora, 2x);

T, Qianshan (Liaoning province) population (V. ramuliflora, 2x); M, Changpai Mountains

(Jilin province) population (V. ramuliflora, 4x); Q, Jiabei (Heilongjiang province) population

(V. unijuga, 2x). SBSA10, SBSP10, SBSP17, SBSQ18, SBSQ4, SBSQ5, SBSQ15 are the primers

used for RAPDs. Their sequences were listed in Table 3.

(XLS)

S2 Table. Structural and morphological characters of chromosomes of five populations

from V. ramuliflora and V. unijuga. B, Hengdaohezi (Heilongjiang province) population (V.

ramuliflora, 2x); H, Dailing (Heilongjiang province) population (V. ramuliflora, 2x); T, Qian-

shan (Liaoning province) population (V. ramuliflora, 2x); M, Changpai Mountains (Jilin

province) population (V. ramuliflora, 4x); Q, Jiabei (Heilongjiang province) population (V.

unijuga, 2x). RL, Relative length; RLA, Relative long arm; RSA, Relative short arm; AR, Arm

ratio; CP, Centromeric position; m, metacentrics; st, subtelocentrics; sm, submetacentrics.

(DOC)

S1 Fig. Dendrogram of five populations from V. ramuliflora and V. unijuga based on

RAPD markers with Neighbor-Joining analysis. B, Hengdaohezi (Heilongjiang province)

population (V. ramuliflora, 2x); H, Dailing (Heilongjiang province) population (V. ramuliflora,

2x); T, Qianshan (Liaoning province) population (V. ramuliflora, 2x); M, Changpai Mountains

(Jilin province) population (V. ramuliflora, 4x); Q, Jiabei (Heilongjiang province) population

(V. unijuga, 2x). The branches with bootstrap values of greater than 50% are marked. The
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numbers at the nodes indicate the percentage number of 1000 bootstrap replications.

(JPG)

S2 Fig. Dendrogram showing the relationships among all plants from five populations of

V. ramuliflora and V. unijuga based on RAPD markers with Neighbor-Joining method. B,

Hengdaohezi (Heilongjiang province) population (V. ramuliflora, 2x); H, Dailing (Heilong-

jiang province) population (V. ramuliflora, 2x); T, Qianshan (Liaoning province) population

(V. ramuliflora, 2x); M, Changpai Mountains (Jilin province) population (V. ramuliflora, 4x);

Q, Jiabei (Heilongjiang province) population (V. unijuga, 2x). The branches with bootstrap

values of greater than 50% are marked. The numbers at the nodes indicate the percentage

number of 1000 bootstrap replications.

(JPG)
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