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Abstract

There is an increased interest in potential zoonotic malarias. To date, Plasmodium malariae

that infects humans remains indistinguishable from Plasmodium brasilianum, which is wide-

spread among New World primates. Distributed throughout tropical Central and South

America, the Callitrichidae are small arboreal primates in which detection of natural Plasmo-

dium infection has been extremely rare. Most prior screening efforts have been limited to

small samples, the use of low-probability detection methods, or both. Rarely have screening

efforts implemented a longitudinal sampling design. Through an annual mark-recapture pro-

gram of two sympatric callitrichids, the emperor (Saguinus imperator) and saddleback

(Saguinus fuscicollis) tamarins, whole blood samples were screened for Plasmodium by

microscopy and nested PCR of the cytochrome b gene across four consecutive years

(2012–2015). Following the first field season, approximately 50% of the samples collected

each subsequent year were from recaptured individuals. In particular, out of 245 samples

from 129 individuals, 11 samples from 6 individuals were positive for Plasmodium, and all

but one of these infections was found in S. imperator. Importantly, the cytochrome b

sequences were 100% identical to former isolates of P. malariae from humans and P. brasi-

lianum from Saimiri sp. Chronic infections were detected as evidenced by repeated infec-

tions (7) from two individuals across the 4-year study period. Furthermore, 4 of the 5

infected emperor tamarins were part of a single group spanning the entire study period.

Overall, the low prevalence reported here is consistent with previous findings. This study

identifies two new natural hosts for P. brasilianum and provides evidence in support of

chronic infections in wildlife populations. Given that callitrichids are often found in mixed-

species associations with other primates and can be resilient to human-disturbed environ-

ments, they could contribute to the maintenance of P. malariae populations if future work

provides entomological and epidemiological evidence indicating human zoonotic infections.
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Introduction

In 2015 malaria was diagnosed in approximately 212 million people, and resulted in the loss of

438,000 lives worldwide [1]. In malaria-endemic regions, infections are unevenly distributed

among human populations, with the highest prevalence among children and adolescents.

Today, malaria control programs remain among the largest public health efforts, costing an

estimated $4.75 billion annually [2], despite the fact that the causative agents of malaria (proto-

zoan parasites of the genus Plasmodium) were first discovered as early as 1880 [3]. A potential

challenge faced by ongoing efforts to eliminate malaria in human communities is the possibil-

ity of zoonotic infections [4]. In particular, there is compelling evidence that some Plasmodium
species infecting humans are also circulating in nearby simian and ape communities. Whether

such non-human primate host can act as a reservoir of human malarias is a matter of great

interest.

According to the Global Mammal Parasite Database, 27 species of Plasmodium have been

documented in nonhuman primates [5], three of which (Plasmodium falciparum, Plasmodium
vivax, Plasmodium knowlesi, and Plasmodium malariae) frequently occur in humans. Along

with Plasmodium ovale, Plasmodium species that infect humans do not form a monophyletic

group [6]. The two parasites that cause the greatest morbidity (P. falciparum and P. vivax) are

part of larger clades of species that include many that parasitize nonhuman primates [4,7,8].

In South America, Plasmodium brasilianum was first described in monkeys in the beginning

of the 20th century and has now been documented in approximately 31 species of New World

monkeys [9,10]. This broad host range is unusual among other non-human primate malarias

and may indicate a very resilient parasite species. To date, numerous studies have looked for,

but not found, any reliable morphological, serological, or genetic differences between P. brasi-
lianum and Plasmodium malariae that infect humans [7,11–14]. Lalremruata et al. [13] collected

blood samples from several remote populations of the Yanomami people in Venezuela, and iso-

lated 33 infections by nested-PCR screening for the small subunit ribosomal RNA gene (18S

SSU rRNA) of P. malariae. Of these, 12 sequences were 100% identical to P. brasilianum strains

recovered from howler monkeys in French Guiana, and the remainder were 99–100% identical

to P. malariae strains from Myanmar and Papua New Guinea. Although the 18S gene does not

allow us to accurately discern recent host switches due to its rate and semi-concerted mode of

evolution [15], the genetic distances between all 33 strains seems consistent with intraspecific

variation observed within other single species of Plasmodium. The only factor that has ever been

used to differentiate these two parasites is host-identity (human or not), and yet experimental

studies have demonstrated that nonhuman primates are susceptible to P. malariae [16]. These

findings suggest that P. brasilianum and P. malariae could very well be the same organism.

P. malariae/brasilianum causes quartan malaria, so termed for having 72-hour erythrocytic

cycles, unlike P. falciparum or P. vivax that cycle every 48 hours [17]. P. malariae has led to

nephrotic syndromes in humans and experimentally infected monkeys [17,18], and has been

shown to persist in humans for years, suggesting that a similar pattern may occur in non-

human primates like chimpanzees [19,20]. Recrudescent infections of P. malariae/brasilianum
can occur when hosts are subjected to stressful conditions or become immunocompromised

[17,21]. In malaria-endemic regions, co-infections of P. malariae/brasilianum with other Plas-
modium spp. are common [13,22,23]. Since host parasitemia for P. malariae/brasilianum is rel-

atively low, co-infections are probably under-detected when screenings are performed only by

microscopy [17,18], and yet microscopy remains the most broadly utilized diagnostic tech-

nique around the world today.

The ability to reside in non-human primates, induce renal pathology, persist as a chronic

infection in humans, and interact with other species of Plasmodium qualifies P. malariae as an
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important health concern at the human-wildlife interface given that present research suggests

it is the same as P. brasilianum. Fundamental to assessing health risks are the development of a

clear understanding of host breadth and associated prevalence for these (or this) species. The

majority of infections found in wild New World monkeys are confined to the Atelidae, Pithe-

ciidae, and Cebidae, while detection in the Callitrichidae, perhaps the most speciose and wide-

spread Neotropical primate family, remains rare [9,10,14,22]. Callitrichids are always found in

sympatry with other New World primate species, frequently in the context of mixed-species,

or polyspecific associations [24,25]. Unlike the majority of other New World primates they

can also persist in disturbed and human occupied areas [26–28]. Moreover, continuing

removal of large Neotropical primates due to poaching and hunting may be leading to a popu-

lation expansion of the callitrichids [29]. If proven to be reservoirs of Plasmodium infections,

these characteristics of the callitrichids might implicate them as an important sylvatic compo-

nent for malaria control efforts.

When considering accessible survey data on Plasmodium infections from wild populations

of callitrichids to date, several biases stand out. First, although five of the seven callitrichid gen-

era have been tested for P. brasilianum (Saguinus, Cebuella, Callithrix, Leontopithecus, and
Mico), the majority of species have not been sampled [5,10]. Of the ~24 species investigated so

far, nine have shown an infection, including Saguinus midas, Saguinus niger, Saguinus geof-
froyi, Saguinus martinsi, Mico humeralifer, Leontopithicus chrysomelas, Leontopithecus chryso-
pygus, Leontopithecus. rosalia, and Callithrix geoffroyi. However, only the first three of these

species (S. midas, S. niger, and S. geoffroyi) are clear cases of infection in natural environments;

the other infections were recently detected from captive animals at primate research or rescue

centers [10,30]. Of the cases representing natural infections, the number of infected individuals

and corresponding sample sizes consist of 1/1000 for S. geoffroyi [31], 4/109 for S. niger [32], 4/

178 in another study of S. niger [32,33], and 3 in 54 for S. midas [14]. This is relevant since P.

brasilianum tends to exhibit low prevalence, averaging 0.045±0.043 for the Callitrichidae and

0.023±0.024 for the Primate Order[5]. Third, no studies to date report chronic natural infec-

tions by sampling the same individuals across years. If true, this would provide evidence that

the Callitrichidae could be suitable hosts for P. malariae/brasilianum and may act as a reservoir

for human malaria.

Here we screen for natural Plasmodium infections longitudinally across four years in two

sympatric species of callitrichids, the saddleback tamarin, Saguinus fuscicollis weddelli (but see

ongoing taxonomic revisions [34,35]), and the emperor tamarin, Saguinus imperator. Given

the observed host breadth of P. brasilianum/malariae and the small sample sizes of prior

efforts, we predict that callitrichine species could be competent reservoirs for this parasite, in

which Plasmodium is permanently maintained and infections are vectored between conspecif-

ics [36]. Second, since P. malariae infection can be chronic in humans, we predict that the

same will be true for these callitrichine hosts. In addition to testing these predictions, our goal

is to establish the prevalence of Plasmodium, and incidence of new infections, in both species,

and to explore any patterns in how infections are distributed across host characteristics such as

sex, age class, and group membership.

Materials and methods

Study subjects and sampling

Samples were collected from a free-ranging population of saddleback (Saguinus fuscicollis)
and emperor (Saguinus imperator) tamarins at the Estación Biológica Rio Los Amigos (EBLA)

in the Madre de Dios Department of southeastern Perú (12˚34’07”S, 70˚05’57”W) (Fig 1).

This privately owned field station is managed and protected by the Amazon Conservation
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Fig 1. Field site and surrounding area. Spatial data layers on intact forest coverage were obtained from the Intact Forest

Landscapes project [38].

https://doi.org/10.1371/journal.pone.0184504.g001

Plasmodium brasilianum infections in wild tamarins

PLOS ONE | https://doi.org/10.1371/journal.pone.0184504 September 13, 2017 4 / 14

https://doi.org/10.1371/journal.pone.0184504.g001
https://doi.org/10.1371/journal.pone.0184504


Association (ACA) and receives more than 150 visitors each year. The field station is located at

the confluence of the Los Amigos and Madre de Dios Rivers, approximately 99 kilometers east

of Puerto Maldonado, the state capital. All of the Madre de Dios Department is identified as a

human malaria transmission zone [37]. The 900-ha field station is contiguous with the much

larger Los Amigos Conservation Concession that lies within the buffer zone of Manu National

Park. The site exhibits lower densities of large-bodied primates than has been recorded from

nearby forest in the government protected Tambopata National Reserve, which is attributed to

hunting that took place prior to purchase by the ACA [29]; however densities of medium- and

small-bodied primates are higher. The study groups of both species inhabit both terra firme
and várzea habitat.

Since 2009, we have encountered approximately 70 unique individuals each year, across

both species. Our program is optimized to ensure habituation of primates to subsequent

human observation [39]. Animals are given permanent identification tags via subcutaneous

microchips (Avid, Home Again©) so samples could be collected from the same individual

across years. Samples for this study were collected across four years (2012–2015) in June and

July (the dry season). During capture, blood samples of< 300 uL were drawn from the femoral

vein of each animal while it was anesthetized with ketamine hydrochloride (Ketalar, Pfizer

Inc., New York, USA). Each sample was stored dry on Whatman FTA Micro Elute Cards for

subsequent DNA extraction and at least two blood smears were prepared with fresh blood. All

sampling protocols adhere to guidelines outlined by the American Society of Mammalogists

[40] and were approved by the Institutional Animal Care and Use Committee at the University

of Missouri-St. Louis (317006–2, 733363–2) and the Directorate of Forest and Wildlife Man-

agement (DGFFS) of Perú annually.

Blood parasite microscopy

Immediately after blood draw, blood smears were made on standard microscope slides and

air-dried. All smears were fixed for five minutes in 100% methanol within six hours and

stained in Giemsa’s solution following Valkiunas et al. [41] within three weeks of fixation.

Smears were observed at 400x magnification using light microscopy (Olympus CX31) for the

presence of parasites. Blood parasites were recorded while conducting a total leukocyte count

estimation (enumeration of leukocytes in 10 non-overlapping fields of view in the smears’

monolayer at 400x magnification) and differential (classification of 200 leukocytes in the

monolayer at 1000x magnification); each slide examination took approximately 25 minutes.

Examinations were carried out in a systematic direction to avoid overlapping fields of view,

excluding damaged sections, where leukocytes and parasites were too distorted to identify.

Molecular detection and sequencing

DNA was isolated from a 3 mm diameter hole punch from the blood stored on Whatman FTA

Micro Elute Cards into 30ul of ddH20 using standardized protocols recommended by the

manufacturer (GE Health Care Life Sciences, Pittsburgh USA). DNA samples from the first

three years (2012–2014) were screened for haemosporidian parasites by a nested polymerase

chain reaction (nPCR) protocol that targets part of the parasite cytochrome b (cytb) gene, 709

base pairs (bp), following Duval et al. [42]. To confirm infection status and to obtain the near

complete mitochondrial cytb gene (1,131bp) for infected individuals across the entire study

period (2012–2015), we employed a separate nPCR protocol that amplifies a 1,038 bp fragment

with specific forward-TGTAATGCCTAGACGTATTCC and reverse-GTCAAWCAAACATGAATA
TAGAC primers for the outer PCR and forward-TCTATTAATTTAGYWAAAGCACand reverse-

GCTTGGGAGCTGTAATCATAATprimers for the inner PCR, following Pacheco et al. [43]. PCR
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amplifications were carried out in a 50 μl volume with 8ul of total genomic DNA, 2.5 mM

MgCl2, 1X PCR buffer, 1.25 mM of each deoxynucleoside triphosphate, 0.4 mM of each

primer, and 0.03 U/μl AmpliTaq polymerase (Applied Biosystems, Roche-USA). The PCR

conditions were: a partial denaturation at 94˚C for 4 min, 36 cycles of 1 min at 94˚C, 1 min at

53˚C and 2 min extension at 72˚C, and a final extension of 10 min added to the last cycle.

Then, a nested PCR using 1 μl of the first amplification as the template was performed under

identical PCR conditions. After electrophoresis, all amplified products were excised from the

gels, purified by the QIAmp Gel Extraction Kit (Qiagen), and both strands were sequenced

using an Applied Biosystems 3730 capillary sequencer.

Phylogenetic analysis

Complete cytb gene sequence identity for samples positive for Plasmodium was confirmed using

BLAST against NCBI. Electropherograms were visually examined to rule out mixed infections. In

addition to the sequences obtained in this study, we included a total of 26 sequences available in

GenBank for Plasmodium parasites isolated from mammals in the subsequent phylogenetic analysis.

The phylogenetic relationships between sequences were inferred on the cytb gene using MrBayes

v3.2.6 with the default priors [44]. Alignments were made using ClustalX v2.0.12 and Muscle as

implemented in SeaView v4.3.5 [45] with manual editing. The data were fit with a General Time-

Reversible model (GTR + I + Γ) that had the lowest Bayesian Information Criterion (BIC) score

[46]. Bayesian support for the nodes was inferred in MrBayes using 4 × 106 Markov Chain Monte

Carlo (MCMC) steps, and after convergence was reached (posterior probability< 0.01, potential

scale reduction factor between 1.00 and 1.02), we discarded 25% of the samples as burn-in [44].

Then, the sequence divergence between species was calculated using a Kimura two-parameter

model of substitution as implemented in MEGA v.6.05 [47].

Results

In total, we collected 245 blood samples (153 from Saguinus fuscicollis, 92 from Saguinus impe-
rator) spread across 129 individuals (83 and 46, respectively) during the study period. Zero

infections were confirmed from examination of thin blood smears; however, 10 samples were

successfully amplified by nPCR from emperor tamarins (three each from 2012 and 2013, and

two each from 2014 and 2015) and one from a saddleback tamarin in 2014 (Table 1). The sin-

gle infection of a saddleback tamarin only amplified once during preliminary screening for

Plasmodium following the Duval et al. [42] protocol, and because the cytb fragment was of

shorter length it was excluded from phylogenetic analysis; however, the sequence was 100%

identical to others obtained in this study. The remaining 10 partial cytb sequences (1,038bp)

were 100% identical to each other and to reference sequences for human isolates of P. malariae
and squirrel monkey (Saimiri sp.) isolates of P. brasilianum (Fig 2); only one sequence per year

is included in the phylogeny. These 10 sequences have been deposited in GenBank (Accessions

KY709297– KY709306).

Prevalence of infection among emperor tamarins was 0.14 in 2012 (n = 21), 0.13 in 2013

(n = 24), and 0.10 in 2014 (n = 21), and 0.08 in 2015 (n = 26) with an average across years of

0.11+/-0.03 (Table 1). While prevalence remained relatively stable across years, incidence

decreased from 0.33 in 2013 to 0 in 2014 and 2015. Prevalence was maintained by 1 adult male

that remained infected across the entire study period, and 1 adult female, born in this same

group in 2011, that acquired and maintained an infection from 2013 to 2015 (see Table 1).

Two other emperor tamarin individuals (an adult male and female from 2012) were found

infected in the only years they were sampled. An infection in one sub-adult female from 2013

could not be detected in 2014 or 2015. Although this study assessed 7 emperor tamarin groups,

Plasmodium brasilianum infections in wild tamarins
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4 of the 5 emperor tamarin infections belonged to the same group. The infected saddleback

tamarin was an adult male from 2014 whose home range partially overlapped with the infected

emperor tamarin group and also included parts of the basecamp at the field site. An infection

was not detected from this individual in 2015.

Discussion

A handful of Plasmodium species other than P. malariae/brasilianum can infect both human

and nonhuman primates. However, in many cases, there is still limited evidence that non-

human primates are a reservoir of human malaria. A clear example of zoonotic malaria is Plas-
modium knowlesi, a simian parasite in southeast Asia that has been repeatedly found in

humans [48,49]. This parasite appears to have independently infected humans in many areas

of Southeast Asia [49–51]. In addition, Plasmodium cynomologi parasitizes Asian macaques

and has at least one documented case in humans [52]. Beyond these two cases, other studies

have detected human malarias in non-human primates but the epidemiological and genetic

data are still insufficient to implicate non-human primates as reservoirs for human malaria.

The human parasite P. vivax is suspected of circulating in a subset of west African apes that are

positive for the Duffy blood group antigen molecule [4]. The normal hosts for Plasmodium
simium are large New World monkeys (Atelidae), but there is at least one case of a human

infection [53]. P. falciparum, the most virulent human Plasmodium, is sometimes detected in

New World monkeys (8 species over 5 genera) [5] but there is no evidence indicating that such

non-human primates act as malaria reservoirs.

Table 1. Nested-PCR screening results.

Individuals

sampled

Prevalence (S. imperator

only)

Incidence

(S. imperator

only)

Animal ID Species Sex Age

class

Group ID

(size)

Sample Collection

Date

S.fuscicollis 35

S. imperator 21

0.14 NA 81 S.

imperator

M Adult 9 (6) 6/13/12

32 S.

imperator

M Adult 9 (6) 6/13/12

89 S.

imperator

F Adult 15 (3) 6/18/12

S. fuscicollis 45

S. imperator 24

0.13 0.33 34* S.

imperator

F Sub-

adult

9 (7) 7/10/13

32 S.

imperator

M Adult 9 (7) 7/10/13

36** S.

imperator

F Adult 9 (7) 7/10/13

S.fuscicollis 36

S. imperator 21

0.10 0.0 140 S.

fuscicollis

M Adult 13 (4) 6/27/14

32 S.

imperator

M Adult 9 (6) 7/6/14

36 S.

imperator

F Adult 9 (6) 7/6/14

S.fuscicollis 37

S. imperator 26

0.08 0.0 32 S.

imperator

M Adult 9 (8) 6/27/15

36 S.

imperator

F Adult 9 (8) 7/3/15

*Infection was not detected in this individual in 2014.

**This individual is natal to this group, born in 2011. An infection was not detected in 2012 as a sub-adult.

https://doi.org/10.1371/journal.pone.0184504.t001
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Fig 2. Cytochrome b phylogeny with new Plasmodium isolates. One Plasmodium isolate per year from this study has been

included in the phylogeny with infected animals indicated by their unique animal ID numbers. Plasmodium isolates from humans

are indicated in red and a squirrel monkey isolate from Perú is in blue. For each sequence, host species, sample locations, and

GenBank accession numbers are provided. Emperor tamarin photo reprinted from https://fieldprojects.org under a CC BY

license, with permission from Ishaan Raghunandan, original copyright [2014].

https://doi.org/10.1371/journal.pone.0184504.g002
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Although host switches are common in non-human primates, not all host switches indicate

the presence of a zoonosis [43,54]. As an example, P. falciparum has been found in apes, partic-

ularly chimpanzees [20,55]. However, such infections had a human origin because they were

all resistant to commonly used antimalarial drugs [43]. Thus, it was shown that apes could

acquire the parasite from humans; however, whether there could be human infections from a

non-human primate host (a true zoonosis) requires additional evidence beyond the detection

of identical parasites. In particular, evidence of active gene-flow and the presence of competent

vectors that can infect humans from a non-human primate are missing. A case in which zoo-

noses have been clearly established by these criteria is P. knowlesi from isolated macaque

(Macaca spp.) populations in Borneo and Peninsular Malaysia [51]. A first step in the case of

P. malariae/brasilianum, however, is to better characterize its host range throughout South

America.

P. brasilianum has been screened for in S. fuscicollis on two separate occasions between

1995 and 2013 (n = 19 and 6, respectively) in Brazil using only microscopy [9,22], and only

once in S. imperator (n = 2) [56], with zero reported infections for both species. Here we con-

firm for the first time that these two species are susceptible to P. brasilianum/malariae. Like

past studies of Plasmodium from other simian hosts in South and Central America, P. brasilia-
num was genetically identical to P. malariae using cytb, reinforcing that they are likely to be a

single organism [14]. That we were only able to amplify a single saddleback tamarin infection

in a single assay is likely caused by poor sample quality, extremely low parasitemia, or both. As

the sample was physically isolated from any other surrounding positives, it would represent a

very improbable instance of contamination during laboratory analyses.

Importantly, our data suggest that chronic infections of P. brasilianum occur in the wild,

consistent with the low, stable prevalence in emperor tamarins despite decreasing incidence of

new infection (Table 1). If true, this provides evidence that Callitrichidae might act as reser-

voirs for human zoonotic malaria; however further investigation should take place to show

that a complete parasite lifecyle is taking place, such as the presence of intraerythrocytic devel-

opment. Given the low diversity of Plasmodium parasites that infect primates in this area, the

possibility of reinfections should not be ruled out. Our findings also suggest that these non-

human primates may naturally clear infection of P. brasilianum; however, it will be necessary

to differentiate a natural clearance from a sub-microscopic infection with a parasitemia that is

below PCR detection thresholds. Since infections appear to be clustered in our study popula-

tion, additional years of data will allow us to track the rate of transmission to new group mem-

bers (for example, offspring within infected groups) and to new groups. This also opens

possibilities for measuring individual health parameters before and after the onset of P. brasi-
lianum infections and whether there exist associations with other natural parasites [21].

The parasite prevalence we observed for emperor tamarins was in the same range that has

been published from other wild Neotropical primate populations. Although prevalence was

too low to analyze variation between different demographic groups, we observed that 4 of 5

infections occurred in a single group (out of 7). Previous studies on Plasmodium from Neo-

tropical primates make little mention of how parasites are distributed within host populations,

but potentially uneven distributions would be an important factor for assessing disease risk

[51], particularly if some of those non-human primates share competent vectors with humans.

Although the available data are limited, there are several explanations for the observed pattern

of clustered infections. First, the mosquito vector might show preference for certain vertebrate

hosts. This hypothesis requires additional data, including some evidence of population struc-

ture in the parasite that is linked to specific hosts. Indeed, Plasmodium inui, also a quartan par-

asite, does not show host population structure in Borneo [57] but P. knowlesi does in Malaysia

[51]. This effect could even be exaggerated by host behavior, if, for example, the infected group
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utilizes unusually open sleep site locations. Nunn and Heyman [58] found preliminary support

for the hypothesis that primates that sleep in closed microhabitats experience lower prevalence

of Plasmodium infection. Emperor tamarins generally sleep in thick tangles of branches and

vines, and sometimes tree holes, and although this is an unlikely explanation, it will be worth

ruling out in future years. Second, there could be additional hosts within the home range of

the infected group of S. imperator that might increase the parasite encounter rate. The latter

scenario is not unlikely, as there are 9 other nonhuman primate species present that could host

Plasmodium, including members of the Atelidae, Cebidae, Pithecidae, and Aotidae, as well as a

small but dynamic population of human researchers. However, all of the nonhuman primate

species occur concurrently throughout the study area, and thus may not explain clustering

within one species and one social group. Regarding the risk from infected humans at EBLA,

the home range of this group does not overlap with the stations basecamp. Of two saddleback

and two emperor tamarin groups with home ranges that do intersect with the basecamp, only

the sole saddleback tamarin that appeared infected for a single year is a member of these

groups. That these groups closest to basecamp, which are the most well-sampled and exposed

to the highest degree of proximity with researchers, accounted for a single Plasmodium infec-

tion from one year, suggests that transmission from human to nonhuman primates is not the

source of P. brasilianum infection at EBLA. However, none of the resident staff or researchers

were tested for infection even though asymptomatic human carriers of P. malariae have been

reported [59,60], and in general, greater efforts to detect P. malariae in human populations

that are in contact with non-human primates infected with P. brasilianum are needed to fully

assess whether there are zoonotic infections. Finally, there could be differences in host suscep-

tibility or simply very low parasitemia below the detection of the PCR implemented in this

study. As we have only sampled tamarin groups that occur within an approximate 200-hectare

area, it would be worthwhile to expand the study area to see if other clusters are present.
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Perú), El Centro de Ecologı́a y Biodiversidad (CEBIO, Perú), El Dirección General Forestal y
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32. De Arruda ME. Presenç a do Plasmodium brasilianum em macacos capturados na área de enchimento
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