
polymers

Article

Shape Tuning and Size Prediction of Millimeter-Scale
Calcium-Alginate Capsules with Aqueous Core

Jinchao Zhao 1,3, Qing Guo 1, Wei Huang 1, Teng Zhang 2, Jing Wang 1, Yu Zhang 2,
Leping Huang 2,3,* and Youhong Tang 3,*

1 Hubei Biomass Fibers and Eco-dyeing & Finishing Key Laboratory, School of Chemistry and Chemical
Engineering, Wuhan Textile University, Wuhan 430200, China; jczhao@wtu.edu.cn (J.Z.);
whiteguo0524@163.com (Q.G.); huangwei19950904@163.com (W.H.); jing0123wang@163.com (J.W.)

2 School of Material Science and Engineering, Wuhan Textile University, Wuhan 430200, China;
1715043028@mail.wtu.edu.cn (T.Z.); zhangyuer126@126.com (Y.Z.)

3 Institute for NanoScale Science & Technology, College of Science and Engineering, Flinders University,
South Australia 5042, Australia

* Correspondence: lphuang@wtu.edu.cn (L.H.); youhong.tang@flinders.edu.au (Y.T.);
Tel.: +86-27-59367580 (L.H.); +61-8-82012138 (Y.T.)

Received: 26 February 2020; Accepted: 16 March 2020; Published: 19 March 2020
����������
�������

Abstract: Controllable feature and size, good mechanical stability and intelligent release behavior is
the capsule products relentless pursuit of the goal. In addition, to illustrate the quantitative relationship
of structure and performance is also important for encapsulation technology development. In this
study, the sphericity and size of millimeter-scale calcium sodium alginate capsules (mm-CaSA-Caps)
with aqueous core were well tuned by manipulating the viscosity, surface tension, and density of
CaCl2/carboxyl methyl cellulose (CMC) drops and sodium alginate (SA) solution. The well-tuned
mm-CaSA-Caps showed significant mechanical and control-releasing property effects. The results
showed that the prepared mm-CaSA-Caps were highly monodispersed with average diameter
from 3.8 to 4.8 mm. The viscosity of the SA solution and the viscosity and surface tension of the
CaCl2/CMC solution had significant effects on the mm-CaSA-Caps sphericity. Uniform and spherical
mm-CaSA-Caps could be formed with high viscosity CaCl2/CMC solution (between 168.5 and 917.5
mPa·s), low viscosity SA solution (between 16.2 and 72.0 mPa·s) and decreased surface tension
SA solution (by adding 0.01 wt.% poloxamer 407). The diameter of the mm-CaSA-Caps could be
predicted by a modified Tate’s law, which correlated well with the experimental data. The Caps
with sphericity factor (SF) < 0.07 had better mechanical stability, with the crushing force 2.91–15.5
times and the surface Young’s modulus 2.1–3.99 times higher than those of the non-spherical Caps
(SF > 0.07). Meanwhile, the spherical Caps had a more even permeation rate, which was helpful
in producing uniform and sustained releasing applications in foodstuff, medicine, agriculture and
chemical industry.

Keywords: calcium-alginate capsules; size; sphericity; mechanical stability; drug release

1. Introduction

Fish-egg-like calcium sodium alginate (CaSA) matrix capsules (Caps) with an aqueous core at
the millimeter scale prepared using the extrusion dripping method have been studied in food [1],
agriculture [2] and biomedical industries [3,4]. Sodium alginate (SA), an anionic linear polysaccharide
of 1,4-linked-α-L-guluronic acid and β-D-mannuronic acid residues that are widespread in seaweeds,
can produce gel in the presence of divalent and trivalent cations and form non-toxic and biocompatible
mini-dose containers by dripping SA into a calcium salt coagulation bath under very mild crosslinking
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conditions [5]. The active compounds, from water to oil, encapsulated in the CaSA hydrogel matrix can
be protected by a semipermeable gel membrane with controlled release and shielding functions [6,7].
For core-shell structures, CaCl2 droplets containing the active molecule and non-gelling polymer used
to modulate viscosity and density are dropped into a SA bath to form the gel membrane in the interface
of alginate molecules and calcium cations [8]. This inverted extrusion dripping method is popular due
to its simple setup. As well, it ensures that bioactive materials to be encapsulated never come into
contact with the ionotropic gel-forming polymers and remain within their original environment [8].
Moreover, this method is more likely to obtain microcapsules within a narrow dimensional range and
with high encapsulation efficiency, thereby proving a good choice for industrialized production [9].

Sphericity of diameter and mono-dispersion are required for the production of high-quality
mm-CaSA-Caps. It has been reported that capsules are easily deformed during the dripping
process [5,10]. In the production of traditional CaSA solid core beads with a desired size and
spherical shape [8], SA solution is dripped into a Ca2+ coagulation bath and some trial-and-error
attempts are often required with regard to aspects of the liquid formulation and experimental setup,
e.g., solution viscosity or surface tension, tip size and collecting distance, aspects that are important
for mm-CaSA-Caps preparation. Lee et al. [11] discussed the influence of process variables of the
method on the capsule size and shape by optimizing preparation conditions, notably the concentration
of SA and CaCl2, gelation time, dripping tip diameter, gelation solution height and stirring rate of the
gelation bath. Messaoud et al. [12] reported that the inner polymer thickening agent had an impact
on membrane stability and could act as an internal coating or provide mechanical reinforcement that
could effectively prevent breakage and leakage of capsules.

Efficiency of mass transfer and mechanical stability are vital for capsule applications. The capsules
should not only control sustained release but also protect the inner fluid from mechanical stresses [13],
especially with regard to their biological function. For example, red blood cells, which are natural
microcapsules, can squeeze through capillaries with only 10% of their diameter without any damage
due to their lowest bending resistance membranes [14]. Researchers have kept the focus on membrane
modification to prepare capsules with specified releasing and mechanical properties that can meet
different needs in various environments [15–21], but few researchers have paid attention to capsule
shape and size manipulation and their effects on the final properties.

In this work, carboxyl methyl cellulose (CMC) was added as thickener to CaCl2 solution and
dripped into a SA bath to form mm-CaSA-Caps. The diameter and sphericity of the capsules was
regulated by controlling viscosity, surface tension and density of SA and CaCl2/CMC solutions. Capsule
diameter was predicted based on the modified Tate’s law. In particular, the sphericity factor (SF) effect
on the mechanical properties and permeability of mm-CaSA-Caps is discussed.

2. Experimental

2.1. Materials

Sodium alginate (SA, 10 g/L, 20 ◦C, > 0.02 Pa·s) was dissolved in deionized water as a gelation
bath. Sodium carboxymethyl cellulose (CMC, 20 g/L, 25 ◦C, 800–1200 mPa·s) was used as a non-gelling
thickener agent to increase the viscosity of the aqueous core solution. Tween 80, a nonionic surfactant,
was used to modify the surface tension of the CMC solutions. Dextrose monohydrate, glycerin and
sodium hydroxide used were of analytic grade. The above reagents were purchased from Sinopharm
Chemical Reagent Co. Ltd., Shanghai, China. Poloxamer 407 (Lutrol F127, average Mn~12600), a
nonionic surfactant used to modify the surface tension of the SA solutions, was provided by BASF,
Ludwigshafen, Germany. 3,5-dinitrosalicylic acid (98%) was purchased from Macklin, Shanghai, China.
Deionized water was used throughout the experiments.
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2.2. Preparation of mm-CaSA-Caps

The mm-CaSA-Caps were prepared at 20–25 ◦C by an extrusion dripping device [11] as shown in
Figure 1a. In detail, a solution containing 1 wt.% CMC and 1.5 wt.% CaCl2 was loaded into a 20 mL
plastic syringe, pumped dropwise with the flow rate of 0.5 mL/min by a dripping nozzle into a gelation
bath containing 200 mL 0.5 wt.% SA solution. A hypodermic needle with the outer diameter of 1.06
mm (19G) was used as the dripping nozzle. The distance between the dripping nozzle and the surface
of SA solution was fixed at 10 cm. After 10 min dripping process, the solution was stirred for 20 min,
and the obtained capsules were then washed with deionized water three times. Then, an additional
crosslinking process for the capsules was conducted for 15 min in 2.0 wt.% CaCl2 solution. Finally,
the mm-CaSA-Caps were stored in deionized water before measurement. As shown in Figure 1, the
mm-CaSA-Caps with the diameter of 4.170 ± 0.072 mm have a beautiful round shape (Figure 1b). The
transparent membrane of the capsules was formed of an even 0.20 mm film (Figure 1c). After freeze
drying for 24 h, the mm-CaSA-Caps retained their spherical structure (Figure 1d). The cross section
of the membrane (Figure 1e) had the typical layered porous structure of a common hydrogel after
dehydration, as shown in the high magnification (Figure 1e) of a rectangular portion from Figure 1d.
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Figure 1. (a) Schematic drawing of the preparation process of millimeter-scale calcium sodium alginate
capsules (mm-CaSA-Caps); (b) mm-CaSA-Caps (top view); (c) microscope image of the mm-CaSA-Caps
(in water); (d) SEM image of the mm-CaSA-Caps (after freeze drying) and (e) high magnification of the
rectangular part in (d).

2.3. Experimentation

The viscosity and density of SA and CaCl2/CMC solutions were adjusted by concentration of
solution. The concentrations of CMC were 0.5, 0.75, 1.0, 1.25 and 1.5 wt.%. The concentrations of SA
were 0.25, 0.5, 0.75, 1.0 and 1.25 wt.%. The surface tension of the SA solution was adjusted by adding
poloxamer 407. The concentrations of poloxamer 407 were 0, 0.01, 0.05, 0.1 and 0.2 wt.%. The surface
tension of the CMC/CaCl2 solution was adjusted by adding Tween 80. The concentrations of Tween 80
were 0, 0.015, 0.025, 0.038, 0.075, 0.15 and 0.3 g/L.

2.4. Measurement of Solution Properties

The viscosities of SA solution and CaCl2/CMC solution were determined by a rotary viscometer
(NDJ-5S, Shanghai Pingxuan Scientific Instrument Co., Ltd., Shanghai, China) in accordance with
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ISO3219:1993. During the viscosity measurements, the temperature was kept at 25 ◦C. The data
were the averages of 3 measurements. The surface tension was determined using a surface tension
instrument (DCAT21, Dataphysics Instruments GmbH, Filderstadt, Germany) in accordance with
ISO 304:1985. The data were the averages of 3 measurements. The density was measured using the
pycnometer method in accordance with ISO 1675: 1985. The data were the averages of 3 measurements.

2.5. Capsule Characterization

Images of the capsules in air and water were captured by a digital camera (BL-SM500, Jinhua
Oseelang Trade Co., Ltd., Jinhua, China). The diameter of the capsules (D, mm, using Dmin as the
diameter D.) was measured with a digital micrometer and the shape of the capsules was quantified
using the sphericity factor (SF) in Equation (1) [22,23]

SF = (Dmax − Dmin)/(Dmax + Dmin) (1)

where Dmax is the longest f diameter length, and Dmin is the shortest diameter length perpendicular to
Dmax. The capsules were considered spherical when SF < 0.07. To determine D and SF, 15 capsules for
each condition were randomly chosen.

No apparent trends of capsule membrane thickness were observed when the CMC concentration
was increased [11]. Therefore, the effect of SF on the mechanical and diffusion properties of the
capsules was investigated with the CMC concentration increased. Mechanical properties of the
capsules were measured with a transducer rotational rheometer (Ar2000ex, TA Instruments, New
Castle, DE, USA) and the force gap test was used to compress the capsules from 4.2 to 0.05 mm with the
linear compression speed of 0.3 mm/s [12]. At least five replications were considered for each capsule
type. The surface Young’s modulus (Es), the measure of mm-CaSA-Caps stiffness, was estimated by
analyzing the force–displacement curves in the range of small deformations and using Equation (2) [24]:

F =
4ESh

r
√

3
(
1− ν2

s

)dD (2)

where dD is the Caps displacement, F is the measured force, h is the membrane thickness, which is
imported as a fixed value of 0.20 mm, r is the radius of the Caps and υs is the surface Poisson ratio for
which a value of 1/2 was assumed for the alginate hydrogel [25].

The permeability of mm-CaSA-Caps was measured by the diffusion of glucose from bulk solution
into intra-hollow Caps. The concentration of glucose was measured by the dinitrosalicylic colorimetric
method (DNS) [26]. In detail, 500 mm-CaSA-Caps was added into 100 mL glucose solution (20 mg/mL),
of which 1 mL was taken at intervals into a 10 mL glass tube, followed by 1.5 mL DNS reagent and
1.5 mL deionized water, all shaken up and boiled for 5 min, cooled to room temperature, brought to
volume in a 10 mL volumetric flask, and tested at 540 nm by an ultraviolet spectrophotometer. The
variation of glucose concentration with time was ascertained against the glucose standard curve.

2.6. Prediction of the Diameter of mm-CaSA-Caps

The diameters of CaSA capsules (dp, mm) could be predicted using the modified Tate’s law
mathematical model, given as Equation (3):

dp= K(6d tγ/ρg)
1
3 (3)

where K is the overall size correction factor, dt is outer diameter of the needle (mm), γ is the surface
tension of CaCl2/CMC solution (mN/m), ρ is the density of CaCl2/CMC solution (kg/m3) and g is the
gravitational force (9.81 m/s2). Compared to the Tate’s law, the overall size correction factor (K) was
introduced into the modified model to take into account the residual liquid at the dripping nozzle (KLF)
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and the change of droplet diameter after gelation (KSF). The KLF and KSF were calculated by Equations
(4) and (5) [27].

KLF= 0.98−0.04dt (4)

KSF= D/dd (5)

The outer diameter of the needle was 1.06 mm and KLF was 0.9376 in this study. The diameter of
the droplet (dd, mm) was calculated by Equation (6) [27]:

dd =
3

√
6V
π

= 3

√
6m
πρ

(6)

where V is the volume of CaCl2/CMC solution droplet (m3), m is the mass of the CaCl2/CMC solution
droplet (kg) and ρ is the density of CaCl2/CMC solution (kg/m3). In this equation, it is assumed that
the droplet is in the form of a sphere.

To evaluate the accuracy and reliability of the capsule diameter prediction model, average absolute
deviation (AAD) and maximum absolute deviation (MAD) were introduced. AAD analysis indicates
the average deviation of the experimental data and MAD analysis reflects the degree of deviation of
the experimental data. AAD is given by Equation (7) [27] and MAD is defined as the maximum value
of the absolute deviation between the experimental data and the reference values.

AAD =
n∑

i=1

∣∣∣∣∣∣dp−D
dp

∣∣∣∣∣∣× 100
n

(7)

where n is sample number of the capsules.

3. Results and Discussion

3.1. Solution Properties

The viscosities of the SA and CaCl2/CMC solutions are shown in Figure 2. The viscosity of the
SA solution increased from 16.2 to 516.0 mPa·s in an exponential manner with the SA concentration
increasing from 0.25 to 1.25 wt.% (Figure 2a). These results were in good agreement with previous
studies [9,28]. Similar trends were also evident in the CaCl2/CMC solution. The viscosity of the
CaCl2/CMC solution increased from 20.0 to 917.5 mPa·s as the concentration of CaCl2/CMC increased
from 0.5 to 1.5 wt.% (Figure 2b).
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Figure 2. Viscosity of the solution as the function of SA (a) and CaCl2/CMC (b) concentration.

Two surfactants were used, poloxamer 407 and Tween 80, which reduced the surface tension
of the SA and CMC solutions respectively. The critical micelle concentration of Tween 80 is 0.014
g/L, according to literature data [29]. As 0.1 wt.% poloxamer 407 was added into the SA solution,
the surface tension decreased from 47.01 ± 0.246 to 41.71 ± 0.401 mN/m, as shown in Figure 3a. The
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surface tension of the SA/poloxamer continued to decrease when the concentration of poloxamer
407 increased. As shown in Figure 3b, the surface tension of the CaCl2/CMC solution also obviously
decreased with the addition of Tween 80. When 0.015 g/L Tween 80 was added into the CaCl2/CMC
solution, the surface tension of the mixed solutions decreased from 63.41 to 49.01. The surface tension
continued to decrease with the increase in Tween 80 content, until it was close to a constant 37 mN/m
at 0.075 g/L Tween 80. Comparison of Figure 3a,b shows that the surface tension of the SA solution
with poloxamer 407 decreased gradually, unlike the obvious critical micelle concentration appearing
in the CaCl2/CMC/Tween 80 solution. Compared to the behavior of low-molecular-weight nonionic
surfactants, the aggregation behavior of PEO-PPO-PEO surfactants like poloxamer 407 is complex, in
that aggregation of poloxamer 407 occurs over a range of concentrations rather than at a unique critical
micelle concentration [30].

Polymers 2020, 12, 688 6 of 15 

 

in the CaCl2/CMC/Tween 80 solution. Compared to the behavior of low-molecular-weight nonionic 
surfactants, the aggregation behavior of PEO-PPO-PEO surfactants like poloxamer 407 is complex, in 
that aggregation of poloxamer 407 occurs over a range of concentrations rather than at a unique 
critical micelle concentration [30]. 

 
Figure 3. The surface tension of the solution as the function of (a) 0.5 wt.% SA solution with different 
concentrations of poloxamer 407 and (b) 1.5 wt.% CaCl2 and 1 wt.% CMC solution with different 
Tween 80 concentrations. Inserts show the chemical structures of poloxamer 407 and Tween 80. 

Figure 4 shows that the concentrations of SA and CaCl2/CMC solution have limited impact on 
the density of the solution. The densities of SA (1.05–1.06 g cm−3) and CaCl2/CMC (1.06–1.07 g cm−3) 
solution are close to that of water (1.00 g cm−3). According to previous researches [31], the density of 
alginate solution showed minimal impact on the size and shape of Ca-alginate beads formation 
because the increment degree of alginate solution’s density is only marginal, which is close to that of 
water. So, we did not make further experiments. 

 
Figure 4. The density of (a) SA solutions at concentrations of 0.25, 0.5, 0.75, 1.0 and 1.25 wt.% and (b) 
CaCl2/CMC solutions at CMC’s concentrations of 0.5, 0.75, 1.0, 1.25 and 1.5 wt.%. 

3.2. Tuning Mechanical and Permeation Properties by Controlling SF 

The SF of mm-CaSA-Caps is detailed in Table 1 in relation to the designed experiments. 
Spherical mm-CaSA-Caps (SF < 0.07) were obtained within the shaded area, which conformed with 
the viscosity of SA solutions < 72.0 mPa·s and the viscosity of CaCl2/CMC solutions > 56.7 mPa·s. 

Table 1. Effects of viscosity of SA and CaCl2/CMC solutions on the sphericity factor (SF) of mm-CaSA-
Caps. 

Figure 3. The surface tension of the solution as the function of (a) 0.5 wt.% SA solution with different
concentrations of poloxamer 407 and (b) 1.5 wt.% CaCl2 and 1 wt.% CMC solution with different Tween
80 concentrations. Inserts show the chemical structures of poloxamer 407 and Tween 80.

Figure 4 shows that the concentrations of SA and CaCl2/CMC solution have limited impact on
the density of the solution. The densities of SA (1.05–1.06 g cm−3) and CaCl2/CMC (1.06–1.07 g cm−3)
solution are close to that of water (1.00 g cm−3). According to previous researches [31], the density
of alginate solution showed minimal impact on the size and shape of Ca-alginate beads formation
because the increment degree of alginate solution’s density is only marginal, which is close to that of
water. So, we did not make further experiments.
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3.2. Tuning Mechanical and Permeation Properties by Controlling SF

The SF of mm-CaSA-Caps is detailed in Table 1 in relation to the designed experiments. Spherical
mm-CaSA-Caps (SF < 0.07) were obtained within the shaded area, which conformed with the viscosity
of SA solutions < 72.0 mPa·s and the viscosity of CaCl2/CMC solutions > 56.7 mPa·s.

Table 1. Effects of viscosity of SA and CaCl2/CMC solutions on the sphericity factor (SF)
of mm-CaSA-Caps.

Viscosity of
CaCl2/CMC (mPa·s)

Viscosity of SA (mPa·s)

16.2 33.6 72.0 148.5 265.5

20.0 / / / / /
56.7 0.067 ± 0.026 0.086 ± 0.029 0.258 ± 0.011 0.394 ± 0.016 0.371 ± 0.024
168.5 0.032 ± 0.019 0.018 ± 0.011 0.153 ± 0.035 0.289 ± 0.012 0.323 ± 0.007
372.0 0.009 ± 0.006 0.006 ± 0.004 0.026 ± 0.022 0.230 ± 0.014 0.242 ± 0.011
917.5 0.009 ± 0.006 0.008 ± 0.008 0.002 ± 0.002 0.136 ± 0.009 0.219 ± 0.009

Images of the mm-CaSA-Caps produced by different viscosities of SA solution with the viscosity
of CaCl2/CMC solution at 917.5 mPa·s are shown in Figure 5a–e. The mm-CaSA-Caps changed from
spherical pearl shapes to teardrop shapes when the viscosity of the SA solution increased from 16.2 to
265.5 mPa·s. Plotting the average SF of column data in Table 1 against the viscosity of the SA solution1

produced the curve shown in Figure 5f. The SF of the mm-CaSA-Caps increased from 0.029 to 0.289.
Uniform and spherical capsules could be formed when the viscosity value of the SA solution was less
than 52.58 mPa·s.
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A significant shape variation was observed for the range of viscosity values from 56.7 to 168.5 mPa·s. 
The CMC as a thickening agent was added into the CaCl2 solution to modulate the viscosity and 
density of the core layer solution to ensure the formation of spherical capsules [8]. The deformation 
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Figure 5. Effect of SA solution viscosity (a) 16.2 mPa·s, (b) 33.6 mPa·s, (c) 72.0 mPa·s, (d) 148.5 mPa·s
and (e) 265.5 mPa·s on (a–e) morphologies and (f) SF of the mm-CaSA-Caps when the viscosity of the
CaCl2/CMC solution is 917.5 mPa·s. The concentrations of SA were 0.25, 0.5, 0.75, 1.0 and 1.25 wt.%.
The concentrations of CaCl2 was 1.5 wt.%. The concentrations of CMC was 1.5 wt.%.

Images of the mm-CaSA-Caps produced by different viscosities of CaCl2/CMC solution with the
SA solution viscosity of 72.0 mPa·s are shown in Figure 6. No mm-CaSA-Caps could be formed when
the viscosity of the CaCl2/CMC solution was too low, i.e., 20.0 mPa·s, because serious deformation
was caused when CaCl2/CMC droplets with low viscosity impacted on the surface of the viscous SA
solution [22]. With an increase in the viscosity of the CaCl2/CMC solution, mm-CaSA-Caps formed. A
significant shape variation was observed for the range of viscosity values from 56.7 to 168.5 mPa·s. The
CMC as a thickening agent was added into the CaCl2 solution to modulate the viscosity and density of
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the core layer solution to ensure the formation of spherical capsules [8]. The deformation of droplets
on impact with the SA solution surface could be minimized and consequently spherical capsules could
be formed with low viscosity SA solution and high viscosity CaCl2/CMC solution [27,32]. Uniform
and spherical mm-CaSA-Caps were formed with further increase in CaCl2/CMC viscosity. Taking the
average SF of column data in Table 1 and plotting it against the viscosity of the CaCl2/CMC solution
produced the curve shown in Figure 6f. That curve shows that the viscosity of the SA solution must be
below 72 mPa·s and the viscosity of the CaCl2/CMC solution must be between 56.7 and 917.5 mPa·s to
obtain spherical mm-CaSA-Caps with SF < 0.07.
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372.0 mPa·s and (e) 917.5 mPa·s on morphology and (f) SF of mm-CaSA-Caps when the viscosity of the
SA solution is 72.0 mPa·s. The concentrations of SA were 0.75 wt.%. The concentrations of CaCl2 was
1.5 wt.%. The concentrations of CMC were 0.5, 0.75, 1.0, 1.25 and 1.5 wt.%.

The effect of the surface tension of the coagulation bath, i.e., SA/poloxamer 407, on the shape of
the mm-CaSA-Caps was investigated. From Figure 7, the mm-CaSA-Caps prepared in 0.5 wt.% SA
solution without poloxamer 407 were pear-shaped and had an obvious “tail” appearance, as shown in
Figure 7a, e with SF = 0.087, which was above 0.07 (Figure 7i). It has been proved that non-spherical
shape CaSA beads not only reduced the gel strength, but also resulted in uncontrolled release rate
of the encapsulant compared to that of spherical beads [31]. After the addition of a small amount of
poloxamer 407, the sphericity of capsules obviously improved, although there were still individual
irregular capsules, as shown in Figure 7b,f with SF decreased to 0.014 (Figure 7i). The sphericity and
uniformity of the capsules improved continuously while the surface tension of SA/poloxamer 407
solution continued to decrease and the SF decreased to 0.011. However, the surfactant poloxamer
407 had a limited effect on the surface tension of the SA solution, as shown in Figure 3a. The capsule
shape did not obviously change with the increase in the concentration of poloxamer 407 (Figures 7
and 8). It has been proved that the penetration depth of droplets is mainly affected by the viscosity and
surface tension of the bath solution [1]. During the production of the CaSA capsules, a surfactant was
added to the gelation bath to reduce surface tension, and hence the impact force could be reduced
to obtain spherical capsules [31]. Thus, the surfactant addition enhanced penetration and prevented
shape deformation of the CaSA capsules.
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Figure 7. Images of mm-CaSA-Caps prepared with different surface tensions of SA/poloxamer 407
solution (a) 47.01 mN/m, (b) 41.71 mN/m, (c) 39.6 mN/m, (d) 37.17 mN/m; (e–h) are higher magnification
images of (a–d) respectively and (i) SF of the mm-CaSA-Caps. The concentration of SA was 0.5 wt.%.
The concentration of CaCl2 was 1.5 wt.%. The concentration of CMC was 1.0 wt.%. The concentrations
of poloxamer 407 were 0, 0.01, 0.05 and 0.2 wt.%.
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Figure 8. Images of the mm-CaSA-Caps prepared at different surface tensions of CaCl2/CMC/Tween 80
solution (a) 63.61 mN/m, (b) 49.07 mN/m, (c) 45.14 mN/m, (d) 39.85 mN/m, (e) 38.86 mN/m, (f) 38.29
mN/m, (g) 36.63 mN/m and (h) SF of the mm-CaSA-Caps. The concentration of SA was 0.5 wt.%. The
concentration of CaCl2 was 1.5 wt.%. The concentration of CMC was 1.0 wt.%. The concentrations of
Tween 80 were 0, 0.015, 0.025, 0.038, 0.075, 0.15 and 0.3 g/L.

The effects of the surface tension of the inner layer solution on the size and shape of the
mm-CaSA-Caps is shown in Figure 8a–g. It can be observed that uniform and spherical capsules were
obtained at different surface tensions of CaCl2/CMC/Tween 80 solution. As shown in Figure 8h, as the
surface tension of the solution decreased from 63.41 to 36.63 mN/m, the SF of capsules increased but
still remained below 0.07 and the D of capsules decreased from 4.18 to 3.88 mm. Spherical beads can be
obtained with low impact force and high penetration depth, depending mostly on the surface tension
of bath solution and the viscosity of droplets [1,31]. The surface tension of droplets had less impact on
SF but a decrease in the surface tension of droplets was not beneficial to the form of spherical capsules.

The force–displacement curve of mm-CaSA-Caps with different SF (Figure 9a–e) and the crushing
force and the crushing displacement of the Caps (Figure 9f) are shown here. It can be seen that the
mm-CaSA-Caps with SF = 0.258 ± 0.011 had no crushing point. They developed uneven capsule walls
that functioned as stress concentrators, leading to breakage under a small force when the wall touched
the plate of the rheometer and the touching force was beyond the rheometer’s detection limit. With the
decrease in SF, the crushing point appeared and the crushing force and crushing displacement of the
Caps clearly increased. However, the crushing force and crushing displacement appeared to show
large errors when the SF of the mm-CaSA-Caps was above 0.07, as shown in Figure 9f. It was also
evident that the mm-CaSA-Caps with SF > 0.07 had unstable mechanical properties. In comparison,
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the Caps with SF < 0.07 had good mechanical stability. The Caps with SF = 0.002 ± 0.002 had the
highest crushing force of 18.1 N and the crushing displacement of 3.96 mm.
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Figure 9. The effect of SF on the mechanical properties of mm-CaSA-Caps. The concentrations of CMC
were 0.75 (a), 1.0 (b), 1.15 (c), 1.25 (d) and 1.5 (e) wt.%. The crushing force and the crushing displacement
of the Caps with different SF (f). The concentration of SA was 0.75 wt.%. The concentration of CaCl2
was 1.5 wt.%.

Force–displacement curves with the displacement of 0–1 mm were selected and linearly fitted to
investigate the elastic deformation and surface elastic modulus (Es) of mm-CaSA-Caps. As shown in
Figure 10A, the slope of the initial force–displacement curve increased when the SF of Caps decreased.
The calculated Es of the Caps showed similar results (Figure 10B). The spherical Caps (SF < 0.07)
had good resistance to deformation, with the Es of Caps with SF of 0.002 and 0.026 being 146.1 and
139.4 N/m respectively, whereas the Es displayed a three-fold decrease of 50.1 N/m when the SF of
Caps was 0.074. In general, compared with mm-CaSA-Caps with poor sphericity, Caps with good
sphericity had better mechanical stability and higher crushing strength under the action of external
force. When capsules had greater rigidity, a larger external force was required to achieve the same
deformation. Good mechanical properties guaranteed long term stability for protection of the active
ingredients, such as additives, fragrance, pesticides and decorative pearls used in food, home care
products, agriculture and cosmetics areas [33].

Effect of SF on the permeability of mm-CaSA-Caps was investigated via measurement of the
diffusion of glucose from the bulk solution into intra-hollow Caps. As shown in Figure 11, a decrease
of glucose concentration produced different behaviors with different SF of mm-CaSA-Caps below and
above 0.07. The mm-CaSA-Caps with SF > 0.07 showed a faster initial permeation rate and shorter
equilibrium time than observed in the mm-CaSA-Caps with SF < 0.07. Unlike the uniform capsule
wall thickness of the spherical Caps, the pear-shaped Caps had thin wall structure at their tip, leading
to rapid permeation of glucose. The spherical Caps had a more even permeation rate, conducive to
uniform and sustained release of a loaded drug. Furthermore, the millimeter-scale alginate capsules
are extensively used to encapsulate cells and immobilize enzymes. It is also important to adjust and
control the permeability of solutes across the Ca-alginate capsule membrane [7].
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Figure 11. The effect of SF on the permeability of mm-CaSA-Caps. The concentrations of CMC were
0.75 (SF = 0.258 ± 0.011), 1.0 (SF = 0.153 ± 0.035), 1.25 (SF = 0.026 ± 0.022) and 1.5 (SF = 0.002 ± 0.002)
wt.%. The concentration of SA was 0.75 wt.%. The concentration of CaCl2 was 1.5 wt.%.

3.3. Size Control and Prediction

The results in Table 2 show that the outer layer SA solution and the inner layer CaCl2/CMC solution
had different levels of effect on the diameter of capsules. As the viscosity of SA solution increased from
16.2 to 265.5 mPa·s, the diameter of capsules decreased significantly under the different CaCl2/CMC
concentrations. Taking the average D of column data in Table 2 and plotting it against the viscosity
of SA solution produces the curve shown in Figure 12a. The average diameter of mm-CaSA-Caps
decreased 27.3%, i.e., from 4.418 to 3.213 mm. As the CaCl2/CMC solution was dripped into the SA
solution, the chelate reaction occurred quickly on the interface of CaCl2/CMC and SA. The speed
and degree of the reaction were controlled by the bidirectional diffusion of SA molecules and Ca2+,
mainly by the Ca2+ diffusion rate. Since the number of SA molecules per unit volume increased at
high SA concentrations, the number of binding sites of –COO− for Ca2+ also increased, leading to
higher degrees of crosslinking than those formed with lower SA concentrations. The crosslinking
structure thus formed could prevent the Ca2+ diffusion, while the high viscosity of the SA solution as
the external phase also decreased the diffusion rate of Ca2+, as illustrated in Figure 13. Therefore, the
capsule diameter no longer increased in a short time [6]. The diameters of capsules formed with high
SA concentrations were lower than those formed with low SA concentrations.
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Table 2. Effects of viscosities of SA and CaCl2/CMC solution on D (mm) of the mm-CaSA-Caps.

Viscosity of
CaCl2/CMC (mPa·s)

Viscosity of SA (mPa·s)

16.2 33.6 72.0 148.5 265.5

20.0 / / / / /
56.7 4.769 ± 0.137 4.757 ± 0.129 3.951 ± 0.087 2.940 ± 0.087 3.131 ± 0.150
168.5 4.355 ± 0.176 4.243 ± 0.109 3.847 ± 0.115 3.336 ± 0.074 3.239 ± 0.042
372.0 4.271 ± 0.071 4.221 ± 0.037 4.323 ± 0.176 3.208 ± 0.067 3.167 ± 0.065
917.5 4.278 ± 0.081 4.170 ± 0.072 4.076 ± 0.027 3.597 ± 0.054 3.313 ± 0.091
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viscosity of the CaCl2/CMC solution was 917.5 mPa·s; (b) effect of CaCl2/CMC solution viscosity on
the diameter of the mm-CaSA-Caps. The viscosities of the CaCl2/CMC solution were 20.0 mPa·s, 56.7
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of mm-CaSA-Caps prepared at different surface tensions of CaCl2/CMC/Tween 80 solution and (e)
validation of the capsule diameter prediction model.
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From Table 2, the diameter of the mm-CaSA-Caps decreased as the viscosity of the CaCl2/CMC
solution increased when the viscosity of the SA solution was ≤ 33.6 mPa·s. However, no apparent trend
was observed when the CaCl2/CMC concentration increased with the viscosity of the SA solution ≥
72.0 mPa·s. It has been reported that the hydroxyl groups in CMC have the potential to form hydrogen
bonding with alginate carboxyl groups to enhance the mechanical stability of capsules [12,34]. Thus,
when the viscosity of SA was low, the crosslinking density of CaSA was low during the initial reaction
period of the CaCl2/CMC drop entering the SA base, facilitating easier bidirectional diffusion of CMC
and SA molecular in the interface. As the viscosities of CaCl2/CMC and SA solution were both low, the
diameter of capsules was high because of the easier polymer chain diffusion and hydrogen bonding
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formation. With the increase in viscosity of the CaCl2/CMC solution, even the diffusion of the CMC
chain became easier, as the CMC and SA molecules would have more hydrogen bond connection,
increasing the interface viscosity and preventing further diffusion of CMC molecular chains. Therefore,
the capsule diameters decreased with the increase in the viscosity of CaCl2/CMC solution under the
low viscosity of SA solution. When the viscosity of the SA solution increased, the molecular diffusion
was mainly affected by the high crosslinking density of CaSA and the high viscosity of the SA solution.
Effects on the viscosity of CaCl2/CMC solution were not apparent. The diameter of the mm-CaSA-Caps
no longer changed. Taking the average D of row data in Table 2 and plotting it against the viscosity of
the CaCl2/CMC solution produced the curve shown in Figure 12b, demonstrating that no apparent
trend was observed when the CaCl2/CMC concentration increased, as reported by others [11,35], the
reason being that the concentration of Ca2+ was not changed in the CaCl2/CMC solution, further
evidence that the diameter of the mm-CaSA-Caps was mainly controlled by the Ca2+ diffusion.

The effects of surface tension of the coagulation bath (SA/poloxamer 407) on the size of
mm-CaSA-Caps were investigated. The capsules diameters decreased a little with the decrease
of the surface tension of SA/poloxamer 407 solution, as shown in Figure 12c. It had been reported that
decreasing the surface tension of a gelation bath was beneficial to decreasing capsule deformation but
had no apparent influence on the size of capsules [31] and beads [1]. The effects of the surface tension
of the inner layer solution on the size of mm-CaSA-Caps are shown in Figure 12d. The surface tension
of droplets had a greater impact on the diameter of the capsules [36], which decreased as the surface
tension of CaCl2/CMC solution decreased.

The diameter of mm-CaSA-Caps was predicted by Equation (2). The predicted diameter was
verified with experimental data to evaluate the accuracy and reliability of the capsule’s diameter
prediction model for mm-CaSA-Caps. As presented in Figure 12e, the predicted diameter was in good
agreement with the experimental data. Error analysis of the capsule’s diameter predicted by the model
(Figure 14) shows that the AAD and MAD were < 4% and 15%, respectively. This result demonstrated
that the modified prediction model could be used to predict the diameter of mm-CaSA-Caps within
reasonable deviation.
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4. Conclusions

Millimeter-scale calcium-alginate capsules (mm-CaSA-Caps) were produced by the extrusion
dripping method based on the ionotropic gelation principle. The viscosity and surface tension
of SA solution and CaCl2/CMC solution were considered as major factors for tuning the shape of
mm-CaSA-Caps. The results indicated that viscosities of SA solution and CaCl2/CMC solution were
both critical factors for the preparation of spherical mm-CaSA-Caps. Deformed capsules were formed
at high SA viscosity or low CaCl2/CMC solution viscosity, due to impact forces that distorted the
shape of CaCl2/CMC droplets when they hit the surface of the viscous SA solution. A small amount
of surfactant in the CaCl2/CMC solution was helpful for decreasing the SF of the mm-CaSA-Caps.
For the diameter of mm-CaSA-Caps, the ranking of influential parameters is the viscosity of SA
solution>surface tension of CaCl2/CMC solution > surface tension of SA solution > viscosity of the
CaCl2/CMC solution. The diameter of capsules was predicted based on the modified Tate’s law with an
absolute deviation of less than 4%. The SF of mm-CaSA-Caps had a marked impact on the mechanical
properties and permeability of mm-CaSA-Caps. Spherical Caps had superior mechanical stability,
higher crushing strength and higher steady-state permeation rate, findings that have broad application
prospects in the food and medical fields.
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