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Abstract

After spinal cord injury, transected axons fail to regenerate, yet significant, spontaneous functional improvement can be
observed over time. Distinct central nervous system regions retain the capacity to generate new neurons and glia from an
endogenous pool of progenitor cells and to compensate neural cell loss following certain lesions. The aim of the present
study was to investigate whether endogenous cell replacement (neurogenesis or gliogenesis) in the brain (subventricular
zone, SVZ; corpus callosum, CC; hippocampus, HC; and motor cortex, MC) or cervical spinal cord might represent a structural
correlate for spontaneous locomotor recovery after a thoracic spinal cord injury. Adult Fischer 344 rats received severe
contusion injuries (200 kDyn) of the mid-thoracic spinal cord using an Infinite Horizon Impactor. Uninjured rats served as
controls. From 4 to 14 days post-injury, both groups received injections of bromodeoxyuridine (BrdU) to label dividing cells.
Over the course of six weeks post-injury, spontaneous recovery of locomotor function occurred. Survival of newly generated
cells was unaltered in the SVZ, HC, CC, and the MC. Neurogenesis, as determined by identification and quantification of
doublecortin immunoreactive neuroblasts or BrdU/neuronal nuclear antigen double positive newly generated neurons, was
not present in non-neurogenic regions (MC, CC, and cervical spinal cord) and unaltered in neurogenic regions (dentate
gyrus and SVZ) of the brain. The lack of neuronal replacement in the brain and spinal cord after spinal cord injury precludes
any relevance for spontaneous recovery of locomotor function. Gliogenesis was increased in the cervical spinal cord remote
from the injury site, however, is unlikely to contribute to functional improvement.
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Introduction

Spinal cord injury (SCI) with complete axonal transection

precludes any degree of sensorimotor or autonomous functional

recovery [1,2]. In contrast, neurological and consecutively

functional recovery is consistently observed in individuals with

incomplete SCI, reflected by conversion in the American Spinal

Injury Association Impairment Scale and by gains in respective

functional assessments, such as the Spinal Cord Independence

Measure and the Walking Index for Spinal Cord Injury [3–5]. The

observed recovery should not be called ‘‘spontaneous’’, since

patients with SCI undergo intense rehabilitation programs

intended to promote functional recovery.

The exact structural correlates contributing to functional

improvement in incomplete SCI have yet to be determined. It

has been shown that axonal sprouting and synaptic rearrange-

ments above and below the injury site in rodent and primate

models contribute to recovery of function [6–10]. Whether

intrinsic neural cell replacement remote from the injury site

underlies the recovery process, at least in part, is yet unknown.

Adult neurogenesis - the generation of new neurons in the adult

brain - represents a continuously occurring process in the dentate

gyrus of the hippocampus (HC) and in the subventricular zone

(SVZ), the latter of which demonstrates subsequent migration and

neuronal differentiation in the olfactory bulb in animals and

humans [11–13]. Several studies have documented the generation

[14,15] and integration of newborn neurons into complex

neuronal networks in neurogenic regions of the rodent and

primate central nervous system (CNS) [16–18]. Neurons under-

going apoptotic cell death in the motor cortex (MC) following a

highly selective cortical lesion appear to be replaced by newborn

neurons, some with the capacity to extend axons as far as the
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cervical spinal cord in adult mice [17]. If remote neuronal cell

death is a significant consequence of SCI, as previously indicated

[19], neuronal replacement, as described in a proof of concept

study [17], could contribute to spontaneous recovery observed in

incomplete SCI.

In the injured adult spinal cord, neuronal and glial cell death

occurs in the vicinity of and remote from the lesion site [20].

However, in the intact or injured adult spinal cord, cell

replacement has only been described for glial cells, whereas

neurogenesis has not been convincingly demonstrated and seems

unlikely [21–29]. For spontaneous recovery after SCI, glial

replacement might play a role in the context of oligodendroglial

turnover and remyelination of axons, which survive to some

degree even in clinically complete SCI subjects [30]. In spinal cord

regions remote from the injury site, the relevance of glial cell

replacement for spontaneous functional recovery has yet to be

demonstrated.

In the present study, we hypothesized that spontaneous

functional recovery observed in spinal cord contused adult rats is

linked to relevant neuronal or glial cell replacement in cortical,

subcortical, or spinal regions. To address this question, adult

female rats underwent thoracic spinal cord contusions followed by

intraperitoneal bromodeoxyuridine (BrdU) injections in order to

visualize newborn cells. Animals were assessed in terms of

locomotor function over 6 weeks after SCI. Thereafter, newly

generated cells and their differentiation patterns were assessed in

the MC, SVZ, corpus callosum (CC), HC, and cervical spinal

cord.

Materials and Methods

Ethics Statement
Experiments were carried out in accordance with the European

Communities Council Directive (86/609/EEC) and institutional

guidelines. The animal protocol was approved by the District

Government of Upper Palatinate (Permit Number: 54-2531.1-33/

05). All surgical procedures were performed using a cocktail of

ketamine, xylazine, and acepromazine, as defined below. All

efforts were made to minimize discomfort.

Animal Subjects and Experimental Groups
Twenty female adult Fischer 344 rats (Charles River Germany

GmbH, Sulzfeld, Germany) weighing between 160 and 180 g

were used. All animals were housed in groups of 5 on a 12-h light/

dark cycle with access to food and water ad libitum. For

experimental purposes, the animals were separated into two

groups (injured and control group), 10 animals each. All animals of

the injured group received a spinal contusion, as described below.

Animals of the control group did not undergo any surgical

intervention.

Surgical Procedures and BrdU injections
Rats were deeply anesthetized by intramuscular injection of

ketamine (62.5 mg/kg; 100 mg/l; WDT, Garbsen, Germany),

xylazine (3.125 mg/kg; 20 mg/ml; Serumwerk Bernburg AG,

Germany), and acepromazine (0.625 mg/kg; 13.56 mg/ml; Sa-

nofi-Ceva, Düsseldorf, Germany). Animals received a laminecto-

my at Th10. Following fixation of the adjacent Th9 and Th11

vertebral body to suspend the target region, a standardized

thoracic spinal contusion (200 kDyn) was applied using an Infinite

Horizon Impactor (Precision Systems & Instrumentation, Lex-

ington, KY, USA), as described [31,32]. Following the injury,

muscle layers were sutured and the skin was closed. Post-

interventional care included manual voiding of the bladder twice

a day for the first 10 days, subcutaneous injections of cotrimox-

azole (10 mg/kg; Ratiopharm, Ulm, Germany) to avoid bladder

infections, and administration of analgesics (buprenorphine;

0.03 mg/kg max. twice a day) as needed. From day 4 to day 14,

animals of both experimental groups received daily intraperitoneal

injections of BrdU (50 mg/kg KG; 10 mg/ml in 0.9% saline). The

prolonged period of BrdU injections was chosen to follow the fate

of dividing cells in non-neurogenic regions, where a very limited

number of cells undergoing neuronal differentiation was expected.

Functional Testing
Locomotor function was assessed by two observers indepen-

dently using the modified 12-point Basso, Beattie & Bresnahan

(BBB) open field locomotor scale on post-op days 1, 8, 15, 22, 29,

36, and 40 [33,34].

Tissue Processing
Six weeks post-operatively, rats were deeply anesthetized as

described above and transcardially perfused with 0.9% saline

solution, followed by 4% paraformaldehyde in 100 mM phosphate

buffered saline (PBS). Brains and spinal cords were dissected, post-

fixed with 4% paraformaldehyde overnight, and subsequently

submersed in 30% sucrose at 4uC for at least 24 h. Brains were cut

into 40 mm coronal sections on a sliding microtome (Leica,

Germany), with every 12th section (480 mm intervals) processed

for immunolabeling. A 5 mm block of spinal cord was excised at

cervical level C4 and cut into 35 mm coronal sections with a

cryostat (Leica, Germany). Every 10th section (350 mm intervals)

was processed for immunolabeling. Brain and spinal cord sections

were stored at 220uC in cryoprotectant solution (25% glycerol,

25% ethylene glycol, and 0.1 M phosphate buffer, pH 7.4).

Immunolabeling
For immunolabeling, free-floating brain and spinal cord sections

were treated with 0.6% H2O2 in Tris-buffered saline (TBS:

0.15 M NaCl, 0.1 M Tris–HCl, pH 7.5) for 30 min. After rinsing

in TBS, free-floating sections were incubated in 0.6% H2O2 for

30 min, washed again, and incubated for 1 h in 50% formamide/

2xSSC (0.3 M NaCl, 0.03 M sodium citrate) at 65uC. Sections

were rinsed in 2x SSC, incubated for 30 min in 2 M HCl at 37uC,

and rinsed for 10 min in 0.1 M boric acid (pH 8.5). Following

extensive washes in TBS, sections were blocked with a solution

composed of TBS, 0.2% fish skin gelatin (Sigma-Aldrich,

Germany), 1% bovine serum albumin (Biomol, Hamburg,

Germany), and 0.1% Triton X-100 (Sigma-Aldrich, Germany)

for 1 h followed by overnight incubation with the primary

antibody at 4uC. On the following day, sections were washed

extensively and incubated with biotin-conjugated species-specific

secondary antibodies (Dianova, Hamburg, Germany and Vector

Laboratories, Burlingame, USA) for 1 h, followed by incubation

with a peroxidase–avidin complex solution (Vectastain Elite ABC

kit; Vector Laboratories, Burlingame, USA). The peroxidase

activity of immune complexes was visualized with a solution of

TBS containing 0.25 mg/ml 3, 39-diaminobenzidine (Vector

Laboratories, Burlingame, USA), 0.01% H2O2, and 0.04% NiCl2.

Sections were mounted on gelatin coated slides and coverslipped

in Neo-Mount (Merck, Darmstadt, Germany).

For the analysis of neuronal and glial differentiation, immuno-

fluorescence labeling techniques were performed. For immuno-

fluorescence labeling including BrdU antibodies, the DNA

denaturation steps required for BrdU immunohistochemical

detection were performed as described above. A combination of

rat anti-BrdU and appropriate neuron- or glia-specific antibodies

were applied in TBS-donkey serum for 24 h at 4uC. Fluorophor-
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labeled secondary antibodies, as defined below. After several

washes in TBS, sections were mounted on slides and coverslipped

with ProLongHAntifade (Molecular Probes).

The following primary antibodies were used: rat anti-BrdU

antibody (1/500; Harlan SeraLab, Loughborough, UK), goat anti-

doublecortin (DCX; 1/1000, Santa Cruz Biotechnology, Dallas,

TX, USA), mouse anti-NeuN (1/500, Chemicon, Temecula, CA),

rabbit anti-glial fibrillary acidic protein (GFAP) (1/1000, Dako,

Hamburg, Germany), and mouse anti-adenomatous-polyposis-coli

(APC)-protein (1/500; Calbiochem, Darmstadt, Germany), rabbit

anti-NG2 (1:200; Chemicon, Temecula, CA, USA), and rabbit

anti-ionized calcium binding adapter molecule 1 (IBA1) (1:500;

Wako, Richmond, VA, USA). Immunoreactivity was visualized

using Rhodamin-conjugated anti-rat (1/500; Dianova, Hamburg,

Germany), Alexa 488–conjugated anti-goat (1/1000; Molecular

Probes, Karlsruhe, Germany), Cy5-conjugated anti-rabbit (1/500;

Dianova, Hamburg, Germany), and Alexa 488–conjugated anti-

mouse (1/1000; Molecular Probes, Karlsruhe, Germany). All

Alexa secondary antibodies were of donkey origin.

Early postmitotic neurons were identified by DCX immunore-

activity. Newly generated mature neurons were visualized by co-

localization of BrdU and NeuN, astroglial cells by co-localization

of BrdU with GFAP, oligodendrocytes by co-labeling of BrdU with

APC in the absence of GFAP labeling, glial progenitor cells by co-

labeling of BrdU with NG2 and activated microglia by co-

localization of BrdU with IBA1 [35–40].

Counting Procedures
For quantification of the brightfield BrdU and DCX immuno-

histochemistry, a systematic unified random counting procedure,

similar to the optical dissector [41], was used as described

previously [42]. Every 12th brain section and every 10th spinal

cord section were selected from each animal and analyzed for

BrdU or DCX positive cells in the MC (7 sections per animal),

SVZ (3 sections per animal), CC (5 sections per animal), HC (6

sections per animal) and cervical spinal cord (14 sections per

animal).

The reference volume was determined by tracing the areas

using a semi-automatic stereology system (Stereoinvestigator,

MicroBrightField, Colchester, VT, USA) using a light microscope

(Leica, Wetzlar, Germany). Newly generated cells (BrdU positive)

and neurons (DCX positive) were counted exhaustively on each

section in the SVZ, CC, HC, and MC. Within the HC only the

dentate gyrus was included in the analysis. For analysis of the CC

and SVZ the total extent according to the respective anatomical

borders was chosen. The MC was defined as follows [43]: anterior-

posterior from +3,7 to +1,6 mm, dorso-ventral was defined by a

horizontal line drawn between the most dorsal edge of the cortex

in each hemisphere (dorsal border) and another horizontal line

drawn through the genu corpus callosum (ventral border). Within

the spinal cord, BrdU positive cells were separately quantified in

the region of the central canal, as well as in the surrounding

parenchyma. The sums of BrdU and DCX positive cells of each

section within the different brain and spinal cord regions were

multiplied by a factor of 12 and 10, respectively, and are presented

as absolute numbers.

Analysis of immunofluorescently labeled sections was performed

using laser confocal microscopy (Leica TCS-NT). Co-localization

of BrdU positive cells with respective differentiation markers in the

spinal cord was determined by analyzing specimens of 5 animals

with the highest number of BrdU positive cells in each group. 40

BrdU positive cells per animal – 20 cells in the ventral and 20 cells

in the dorsal part of a horizontal spinal cord section (divided by a

line through the central canal) – were randomly analyzed.

Adjacent to the central canal, 40 BrdU positive cells were selected

and also immunolabeled with differentiation markers. Co-locali-

zation for GFAP, APC, NG2 and IBA1 was confirmed, once the

differentiation marker was spatially associated with BrdU nuclear

labeling through subsequent optical sections in the z-axis. Co-

localized cells are presented as percentage of BrdU positive cells.

Total numbers were then calculated by multiplying the amount of

BrdU positive cells with the respective ratios.

Statistical Analysis
All data are presented as mean values 6 standard error of the

mean (SEM). For intra-individual comparison of BBB scores in

injured animals at two particular times of observation, one-way

repeated measures ANOVA including Bonferroni post-hoc-test

were applied. For all further inter-individual comparisons between

injured and control animals, an unpaired t-test was used. A value

of p,0.05 was considered significant (p,0.05 = *; p,0.01 = **;

p,0.001 = ***). For statistical analysis, Prism software (Prism

GraphPad Software, USA) was used.

Results

Spontaneous recovery of locomotor function after
contusion spinal cord injury in adult rats

A standardized thoracic spinal contusion (200 kDyn) at T10

level induced complete paresis of both hindlimbs in all animals one

day post-injury (Fig. 1). Two animals died within 24 h after

surgery. Prior to surgery, none of the animals showed noticeable

gait impairment. At post-op day 8, locomotor function substan-

tially improved to an average BBB score of 5.961.6, (p,0.0001)

compared to day 1 (Fig. 1). Animals displayed coordinated

hindlimb movement with partial body weight support. Compared

to BBB scores at day 8, locomotor function further improved at

day 40, showing spontaneous functional recovery with nearly

unimpaired walking patterns (BBB score 11.160.5; p,0.0001;

Fig. 1).

Cell proliferation and neurogenesis
Effects of thoracic SCI on cell renewal in the brain (MC, SVZ,

CC, HC) and cervical spinal cord of adult rats were assessed by

counting BrdU positive cells 42 days post-injury (animals received

BrdU injections between post-op day 4 and 14). No difference was

observed in the number of newly generated cells between intact

and injured animals in any of the brain regions investigated (MC,

SVZ, CC, HC; Fig. 2).

DCX immunoreactive cells representing early post-mitotic

neurons were only detectable in the SVZ and HC, as expected

(Fig. 3). In both regions, quantification did not reveal any

difference between intact and injured rats (SVZ: 28426201 versus

30606140; HC: 1062667 versus 1007658). In the MC, we

analyzed on average 290 BrdU positive cells per animal and did

not identify any BrdU/NeuN positive cell, indicating that no

persisting new neurons were generated in this area following SCI

(data not shown).

In contrast, BrdU positive cells were significantly increased in

injured animals compared to intact animals in the cervical spinal

cord, both in the spinal parenchyma and in the region of the

central canal (101.5624.1 versus 37.863.6, p,0.05; central

canal: 14,462.9 versus 4.761.3, p,0.05; Fig. 4 A-E). The

differentiation pattern within the spinal cord was further analyzed

by examining the co-localization of BrdU with the astroglial

marker GFAP, the oligodendroglial marker APC (Fig. 4F-J), the

glial progenitor cell marker NG2 and the microglial marker IBA1

(Fig. 5). Glial cell renewal was observed only in the spinal

Glio- and Neurogenesis after Spinal Cord Injury
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parenchyma of the cervical spinal cord. In the ependymal layer

around the central canal, BrdU positive nuclei could not be co-

localized with any of the tested glial markers (data not shown). The

proportion of newborn cells displaying astro-/oligodendroglial,

glial progenitor, or microglial differentiation was similar in the

cervical spinal cord of injured versus intact animals (BrdU/GFAP

co-localized cells: 35.563% versus 3662.2%; BrdU/APC co-

localized, GFAP negative cells: 7.560.8% vs. 8.061.5%; BrdU/

NG2 co-localized cells: 14.565.1% vs. 15.062.4%; BrdU/IBA1

co-localized cells: 30.063.8% vs. 23.562.3%). Considering the

significant difference in the number of BrdU positive cells, the

absolute numbers of astroglial, oligodendroglia, glial progenitor

cells, and microglia were significantly increased in the cervical

spinal cord of injured animals (BrdU/GPAP co-localized cells:

36.063.8 vs. 13.660.9; p,0.05; BrdU/APC co-localized cells:

7.661.0 vs. 3.060.6, p,0.05; BrdU/NG2 co-localized cells:

14.763.5 vs. 5.760.5, p,0.05; BrdU/IBA1 co-localized cells:

30.467.2 vs. 8.960.8, p,0.005; Fig. 4F, Fig. 5A,E). There was no

detectable DCX immunoreactivity in the cervical spinal cord, both

in intact and injured animals (data not shown).

Discussion

The present study investigated cell proliferation/neurogenesis in

remote CNS areas following a contusion injury that closely reflects

human spinal cord pathology. Rats show robust spontaneous

recovery of locomotor function, which is not paralleled by

neurogenesis in the MC or CC. Moreover, neurogenesis is not

altered in SCI rats compared to uninjured animals in the SVZ and

HC. Interestingly, increased glial cell renewal can be observed in

the cervical spinal cord remote from the thoracic lesion site. The

functional relevance of the latter finding has yet to be determined.

The only other published study that analyzed supraspinal

neurogenesis in spinal cord injured rats identified persistent

depression of neurogenesis in the HC over 90 days after a cervical

hemisection injury in adult rats [44]. In contrast, the mid-thoracic

contusion SCI in the present study did not alter neurogenesis in

the HC. The divergent findings may be explained by the different

lesion level (cervical versus thoracic) and/or the different lesion

paradigms, which likely effect axon pathways communicating with

higher brain regions differentially.

Neuronal renewal should only be relevant for spontaneous

functional recovery if the respective disease causes neuronal

degeneration and cell death that contributes to functional

impairment. For example, cell death represents an indisputable

pathophysiological hallmark underlying functional impairment in

ischemic stroke [45,46]. In contrast, neuronal cell death has a

limited impact on functional decline in SCI, where the transection

of long distance motor, sensory, and autonomous axon pathways

defines the clinical phenotype [47,48]. Whether spinal cord axon

transection results in neuronal cell death in the brain remains

controversial. After a rat dorsal column transection, substantial

degeneration of corticospinal neurons, as determined by the

expression of apoptotic markers in layer V of the MC, has been

Figure 1. Spontaneous recovery of locomotion. Postoperative assessment of the modified 12-point BBB open field locomotor rating scale in 8
adult rats after a 200 kDyn mid-thoracic spinal cord contusion. Animals were monitored weekly starting day 1 post-injury until post-op day 40.
doi:10.1371/journal.pone.0102896.g001
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reported within 2 weeks after injury [19]. In contrast, corticospinal

axon quantification at the brainstem level following thoracic and

cervical rat contusion SCI could not identify a significant decline

of axon profiles, suggesting that cell death of corresponding

neurons does not occur [49]. A more recent study from the same

group employing an identical lesion model and identical assess-

ments to determine pyramidal neuron cell death, as reported by

Hains et al, could not replicate the finding of cortical neuronal

death following rat SCI [50]. In human SCI subjects, atrophy of

the corticospinal tract has been reported by magnetic resonance

Figure 2. Post SCI cell renewal in motor cortex, subventricular zone, corpus callosum and hippocampus. (A, D, G, J) Quantification of
BrdU positive cells in control (Intact) versus spinal cord injured (SCI) animals in the motor cortex (MC; A), subventricular zone (SVZ; D), corpus
callosum (CC; G) and hippocampus (HC; H). Brightfield micrographs display cell renewal represented by BrdU immunoreactive nuclei in the MC (B, C),
SVZ (E, F), CC (H, I) and HC (K, L) of control (Intact; B, E, H, K) and injured animals (C, F, I, L). Scale bar: 50 mm in (L).
doi:10.1371/journal.pone.0102896.g002

Glio- and Neurogenesis after Spinal Cord Injury
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imaging. However, the limited resolution of MRI does not allow

counting of individual axons. The observed atrophy could have

been caused by degeneration of glial cells or shrinkage of

corticospinal neurons/axons [51], rather than axon depletion

due to pyramidal neuron cell death as the morphological substrate

[52].

Figure 3. Neurogenesis in the subventricular zone and hippocampus. (A, D) Quantification of DCX immunoreactive cells in the
subventricular zone (SVZ; A) and hippocampus (HC; D) in control (Intact) versus spinal cord injured (SCI) animals. Brightfield micrographs display
representative section of DCX-expressing neuroblasts in the SVZ (B, C) and HC (E, F) of control (B, E) and spinal cord injured animals (C, F). Scale bar:
100 mm.
doi:10.1371/journal.pone.0102896.g003

Figure 4. Post SCI cell renewal in the cervical spinal cord. Coronal spinal cord sections were analyzed in the parenchyma and around the
central canal. (A) Quantification of BrdU positive surviving newborn cells in the spinal parenchyma and around the central canal of intact and SCI
animals. BrdU positive nuclei in the lateral white matter (B, C) and in the ependymal layer of the central canal (D, E) of intact and injured animals (SCI).
(F) Quantification of BrdU positive cells expressing GFAP representing astroglia; BrdU positive cells co-localizing with APC, but negative for GFAP,
were counted as oligodendrocytes. (G-J) Immunofluorescent labeling for (G) BrdU (red), (H) APC (green) and (I) GFAP (blue) in a coronal cervical spinal
cord section of an injured animal taken from the ventral gray matter. (J) Merged image of (G-I). Co-localization of BrdU with GFAP indicates astroglial
differentiation (arrow), whereas BrdU/APC positive cells that are GFAP-negative represent oligodendrocytes (arrowhead). Scale bars: 100 mm in (C),
50 mm in (E), 34.1 mm in (J).
doi:10.1371/journal.pone.0102896.g004
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Irrespective of the debate regarding cell death of pyramidal

neurons other factors may have contributed to the failure to detect

cortical neurogenesis after SCI. The only study that has so far

reported replacement of lost cortical neurons in adult mammals

following a CNS lesion used a highly specific, limited injury model

- apoptotic cell death via chromophore photoactivation. The first

newborn mouse neurons projecting axons to the cervical spinal

cord were detected at 12 weeks, peaking at the latest investigated

time point – 56 weeks post cortical lesion. Overall, the number of

detected newborn neurons was very small, between 1–6 neurons

per mm3 [17]. In the present study, the maximum time between

neural progenitor generation and analysis of neuronal fate (BrdU/

NeuN co-localization) was much shorter - 38 days (42 days post-

injury survival minus 4 days post-injury start of BrdU adminis-

tration). The time window of 38 days after BrdU injection in the

present study should have been sufficient to detect at least DCX

positive immature neuroblasts in the MC or in the primary

neurogenic sites – the SVZ. Alternatively, the quantity of SVZ

neurogenesis destined to replace cortical neurons might be too low

to be identifiable in the current experimental setting.

The failure to demonstrate neurogenesis in the adult spinal cord

confirms numerous previous reports [22–29]. Cell proliferation

and reactive gliogenesis have been shown in regions close to the

lesion site [24,35,53]. As sources of glial renewal cells around the

central canal, NG2 positive glial progenitor cells in the white and

grey matter and mature GFAP expressing astrocytes have been

identified [54]. The observed glial cell replacement is paralleled by

ongoing glial cell death in spinal cord regions, not only adjacent

but also remote from the injury site [20,55,56]. In monkeys, sites of

oligodendrogliogenesis correlate with demyelinated areas suggest-

ing that replaced oligodendroglia contribute to remyelination and

possibly functional recovery in incomplete SCI [57]. In the present

study, glial replacement (astroglia, oligodendroglia, microglia) in

the cervical spinal cord exceeded gliogenesis compared to

uninjured control animals. It is conceivable that remote areas of

demyelination become spontaneously remyelinated via endoge-

nous oligodendroglial replacement. Whether remote demyelin-

ation or potential remyelination by replaced oligodendroglia

influence the functional outcome, cannot be determined at this

point. Astroglial renewal immediately at the spinal cord lesion site

is attributed to reactive astrogliosis, which seals off the injury site

from the surrounding spinal cord. The relevance of astroglial

turnover observed at remote spinal cord levels has yet to be

defined. Wallerian degeneration of ascending sensory projections

at cervical spinal cord level represents a potential trigger, which

might explain enhanced microglial cell recruitment following

thoracic SCI.

Conclusion
The true functional relevance of the observed glial replacement

in spinal regions distant from the injury site is unknown. However,

considering the robust spontaneous recovery in contrast to the

moderate cell replacement activities in the cervical spinal cord, it is

unlikely that endogenous cell replacement contributes to sponta-

neous functional improvement in incomplete SCI.
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