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Parkinson’s disease (PD) is the second most common chronic progressive

neurodegenerative disease. The main pathological features are progressive degeneration

of neurons and abnormal accumulation of α-synuclein. At present, the pathogenesis

of PD is not completely clear, and many changes in the intestinal tract may be the

early pathogenic factors of PD. These changes affect the central nervous system (CNS)

through both nervous and humoral pathways. α-Synuclein deposited in the intestinal

nerve migrates upward along the vagus nerve to the brain. Inflammation and immune

regulation mediated by intestinal immune cells may be involved, affecting the CNS

through local blood circulation. In addition, microorganisms and their metabolites may

also affect the progression of PD. Therefore, paying attention to the multiple changes in

the intestinal tract may provide new insight for the early diagnosis and treatment of PD.

Keywords: Parkinson’s disease (PD), α-synuclein (α-syn), propagation, vagus nerve, immune inflammation,

microbial-intestinal-brain axis

INTRODUCTION

Parkinson’s disease (PD) is the second most common neurodegenerative disease (Grosso Jasutkar
et al., 2022). PD is characterized mainly by motor disorders such as tremor, muscle stiffness, motor
retardation and gait impairment (Nalls et al., 2014). These motor symptoms appear mainly in the
middle and late stages of the disease (Machado et al., 2016; Wiratman et al., 2019). In addition,
PD also shows non-motor symptoms (NMS) in the prodromal stage (Hussein et al., 2021), such
as gastrointestinal motility disorder, decreased sense of smell, and rapid-eye-movement (REM)
sleep behavior disorder. NMS are also a major cause of disability during the clinical stages of PD
and progress all through PD (Poewe et al., 2017). Gastrointestinal dysfunction is the main non-
motor symptom in patients with PD. The clinical manifestations are dysphagia, delayed gastric
emptying and constipation, among which constipation is the most common symptom (Knudsen
et al., 2017; Ahn et al., 2021). Clinical reports have shown that nearly 30% of patients with PD
develop constipation 20 years before motor symptoms appear (Savica et al., 2009; Schapira et al.,
2017; Manfredsson et al., 2018). About 70–80% of PD patients suffer from constipation, which is
four times higher than normal people of the same age and sex (Hurt et al., 2019). When motor
symptoms occur in PD patients, the degenerative changes are accompanied by a loss of 40–
60% of the nigral dopamine neurons (D’Andrea et al., 2019), and an 80% reduction in striatal
dopamine (Rabiei et al., 2019). At this time, PD is at an irreparable stage (Savica et al., 2018).
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Therefore, detecting the early NMS of the disease and providing
intervention as early as possible, would be an effective means of
treating or delaying the development of the disease.

Several lines of evidence suggest a close relationship between
the intestinal nerve and the central nervous system (CNS)
during the pathogenesis of PD. Braak and collaborators
initially hypothesized that the gut-brain axis is involved in PD
(Braak et al., 2006). Pathogens in the environment could pass
through the intestinal epithelium and induce misfolding and
accumulation of α-synuclein in specific neurons of the intestinal
nerve, and this agent may mediate the propagation of pathology.
But this connection still remains a hypothesis and it will be
very difficult to prove in humans or will remain controversial.
Recently, it was discovered that patients who had undergone a
total vagotomy due to peptic ulcers had a lower incidence of
PD than people who had not undergone this procedure or who
had a selective partial vagotomy (Svensson et al., 2015). However,
another study discussed clinical evidence that the case is not very
clear (Tysnes et al., 2015). In addition, experimental evidence in
rodents showed that the injection of the aggregated form of α-
synuclein into the intestinal wall could promote the accumulation
of endogenous α-synuclein (Kim et al., 2019; Van Den Berge
et al., 2019). These evidence indicated that α-synuclein aggregates
contributed to the accumulation of aggregated α-synuclein in
various brain regions through vagus nerve transmission. This
transmission was time-specific and region-dependent (Kim et al.,
2019). The gastrointestinal tract is innervated by parasympathetic
vagal and sympathetic non-vagal pathway. Structures along these
pathways also show α-synuclein pathology (Braak et al., 2007).
This means that the propagation of α-synuclein pathology via
sympathetic nerves, mediated by the intermediolateral nucleus of
the spinal cord, provides an additional potential route to the brain
(Van Den Berge et al., 2021). These studies have confirmed that
colonic lesions triggers the CNS lesions. However, a seminal work
provided detailed studies in postmortem tissue that the “body-
first” hypothesis is not the ultimate disease mechanism for PD
(Beach et al., 2021), indicating that the relationship between the
CNS and the enteric nervous system (ENS)might be bidirectional
(Garrido-Gil et al., 2018). The nervous systems of the brain and
the intestine are interlinked and this gut-brain axis can play a
critical role pathogenesis and progression of PD.

The intestinal tract is the largest and longest immune
organ in mammals (Liu et al., 2018). Therefore, the mucosal
immune barrier and abundant immune cells in the intestinal
tract may play an important regulatory role in gastrointestinal
inflammation in PD. Studies have confirmed that intestinal
nerve-derived IL-18 signals can control intestinal immunity
and have a far-reaching impact on the mucosal barrier (Jarret
et al., 2020). Gastrointestinal infections are associated with an
increased risk of PD (Nerius et al., 2020). A recent study showed
that α-synuclein is required for normal immune function, such as
the development of a normal inflammatory response to bacterial
peptidoglycan introduced into the peritoneal cavity as well as
antigen-specific and T cell responses following intraperitoneal
immunization (Alam et al., 2022). These indicate the presence of
information exchange between the ENS and the immune system.
Enteric glial cells (EGC) around intestinal neurons have closely

interaction with intestinal neurons (Clairembault et al., 2015b).
Intestinal neurons and glial cells may be targets for the treatment
of intestinal inflammatory diseases, such as inflammatory bowel
disease (IBD), via regulating the barrier function or immune
response (Puzan et al., 2018; Li et al., 2020). Some studies have
confirmed that the expression of pro-inflammatory cytokines and
glial markers was increased in colon biopsies of patients with PD
(Devos et al., 2013).

Intestinal innate immunity is also involved in the follow-up
process of the T cell immune response. The antigen-presenting
cells, such as dendritic cells (DCs), may take up previous
inclusion bodies and then present the major histocompatibility
complex (MHC) peptides derived from this process. The MHC
peptides can be recognized by specific T-cell receptors (TCRs)
on T cells. This triggers activation of the adaptive immune cells
in the intestine, such as T cells, causing chronic inflammation
(Campos-Acuña et al., 2019). At the same time, regulatory T
(Treg) cells or other immune cells can also be activated to play an
anti-inflammatory role through the dopamine pathway (Levite,
2016; Xue et al., 2018; Campos-Acuña et al., 2019) and short-
chain fatty acid pathway (Zeng and Chi, 2015; Yuan et al., 2021).
A variety of immune cells acquire immunophenotype in the
intestinal tract and are transported to the CNS through abundant
local blood flow, which affects the central immune response
(Korn and Kallies, 2017). T cells are a “double-edged sword” and
these cells undoubtedly add a new possibility to the pathogenic
and therapeutic mechanisms of PD.

The intestinal tract has close contact with the external
environment. Changes in the microflora in the intestinal cavity
may be closely related to immune inflammation and the
aggregation of pathological α-synuclein (Sampson et al., 2016).
Changes in the intestinal flora can also affect the integrity
of the blood-brain barrier (Rutsch et al., 2020). Short-chain
fatty acids (SCFAs), the metabolites of intestinal flora, have
multiple protective effects. Changes in the intestinal flora and its
metabolites are indispensable factors affecting the occurrence and
development of PD (Cholan et al., 2020).

While there is also the hypothesis of “brain-first” for
PD and the evidence for that is similar and based on
neuropathology in humans, this review will focus on the “body-
first” hypothesis with an emphasis on the role of the microbiome
and immune pathways.

PATHOPHYSIOLOGICAL MECHANISM OF
CONSTIPATION IN PD

There are various gastrointestinal symptoms (GIS) in patients
with PD, including dry mouth, drooling, dysphagia, constipation,
and defecation dysfunction (Travagli et al., 2020). Clinical studies
have confirmed that the symptoms of gastroparesis in patients
with PD precede motor symptoms, although the prevalence rate
between PD and the control group was not significantly different
(Edwards et al., 1991; Cersosimo et al., 2013). Constipation and
defecation dysfunction are the main pre-motor GIS of PD.

According to different diagnostic criteria of chronic
constipation, the prevalence rate of constipation ranges
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from 24.6 to 63% (Stocchi and Torti, 2017). Constipation is
one of the main and crippling NMS of PD. In this review,
we will first discuss the pathophysiological mechanism of
PD-related constipation.

α-Synuclein Is Involved in the
Pathophysiology of Intestinal Function
α-Synuclein is the major component of the intraneuronal Lewy
bodies (LBs) (Grochowska et al., 2021) and Lewy neurites (LNs)
(EhgoetzMartens and Lewis, 2017), the pathological hallmarks of
PD (Koprich et al., 2010). Pathological aggregation of α-synuclein
in gastric and colonic neurons has been detected in autopsies
from patients with advanced PD (Wang et al., 2012). These
neuroanatomical changes observed in patients with PD suggest
that there is an abnormal accumulation of α-synuclein in the
gastrointestinal system, whichmay play a role in the development
of the gastrointestinal pathology in PD.

α-Synuclein is widely expressed in the brain and is thought
to have a variety of functions, including regulating the release of
neurotransmitters and vesicular circulation of central synapses
(Burré et al., 2018). However, little is known about the
physiological and pathological functions of α-synuclein in the
peripheral nervous system. Studies on the gut of humans and
guinea pigs have found that α-synuclein is expressed in the cell
bodies of some intestinal neurons, especially in the varicosities
and terminals of cholinergic neurons, and has an immune
response to vesicular acetylcholine transporter (Vacht) (Sharrad
et al., 2013). Some studies have confirmed that α-synuclein can
regulate the development of cholinergic neurons (Swaminathan
et al., 2019). It is not clear how α-synuclein affects and regulates
intestinal function.

Studies on α-synuclein pathology have shown that α-synuclein
pathology, induced in the α-synuclein virus overexpression
model and prefabricated fibril (PFF) model, leads to abnormal
gastrointestinal motility in the ENS of rats and non-human
primates (Manfredsson et al., 2018). Human A53T α-synuclein
transgenic mice have gastrointestinal disorders in the early stage
(<6 months), insufficient intestinal peristalsis and decreased
motor response of the longitudinal and circular muscle layer of
the colon (Rota et al., 2019). Verification on a variety of animal
models showed a correlation between intestinal α-synuclein
pathology, reduced cholinergic function and prolonged gastric
transit time in PD (Van Den Berge et al., 2021; Van Den
Berge and Ulusoy, 2022). While it has been inferred that the
possible mechanism of constipation might be the weakening of
cholinergic transport in the ENS by α-synuclein pathology, this
remains to be further studied.

Loss of Intestinal Neurons Leads to a
Defecation Disorder
In PD, constipation is due to slower colonic transit or outlet
dysfunction, or both (Stocchi and Torti, 2017). In either case, it
may be related to an imbalance in the control of defecation by the
intestinal nerve. The early involvement of intestinal neurons may
explain the occurrence of constipation in early PD.

Previous studies have confirmed the loss of vasoactive
intestinal peptide (VIP) neurons in the colon of patients with
PD (Wakabayashi et al., 1993) and the loss of excitatory
dopaminergic neurons in the colon of the 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) model (Anderson et al.,
2007). Both showed a deficiency in the relaxation function of
the colonic smooth muscle, which may be closely related to the
occurrence of constipation. Some studies have also confirmed a
large loss in the number of dopamine neurons in the colonic
myenteric plexus in patients with PD (Singaram et al., 1995).
In contrast, recent studies have detected Lewy pathology in
the colonic submucosal biopsies from PD patients (Shannon
et al., 2012). However, no significant difference was found in
the intermuscular neuron density between PD patients and the
control group (Annerino et al., 2012). This may mean that
the decrease in the intermuscular neurons may be the result
of the gastrointestinal symptoms rather than the cause. This
study also suggested that the neuropathology of the dorsal motor
nucleus of the vagus nerve (DMV) and/or submucosal plexus is
more likely than myenteric plexus injury to be the cause of the
gastrointestinal motility disturbance associated with PD.

Constipation and the Presence of Lewy
Pathology in the ENS
Some studies have found that Lewy body dementia (DLB),
another disease with the same Lewy body pathology as PD,
also produces non-motor disorders (Fereshtehnejad et al.,
2019). Literature statistics have shown that in DLB, α-synuclein
aggregation appears earlier in the peripheral nerves than in the
brain, such as the vagus nerve (86.7%), myenteric nerve plexus
(86.7%), and cardiac sympathetic nerve (100%) (Gelpi et al.,
2014). Constipation associated with Lewy bodies is called Lewy
body constipation. Constipation in DLB may be more common
than in PD (Sakakibara et al., 2019). Therefore, the current
research on non-motor disorders in patients with PD should not
be limited to PD but should include Lewy body disease and all
neurodegenerative diseases.

PD PATHOLOGY SPREADS ALONG THE
BRAIN-GUT AXIS THROUGH THE VAGUS
NERVE

What we know so far is that constipation occurs in the early stage
of PD and there is a variety of pathological changes associated
with it. So, is there a relationship between early intestinal changes
and the occurrence and development of CNS lesions in the later
stage? Furthermore, does PD originate from the intestinal tract
and spread to the CNS through a particular mode of transmission
to cause pathological changes? Next, we will discuss this part of
the content (Figure 1).

Intestinal Pathology Occurs Earlier Than
CNS Pathology in PD
Neurodegenerative diseases have always been regarded as central
system diseases. Therefore, most studies have focused on the
CNS. However, peripheral pathology is also closely related to
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FIGURE 1 | Parkinson’s disease pathology spreads along the brain-gut axis through the vagus nerve. This figure reflects the “gut-first” hypothesis as well as the

“brain-first” hypothesis was omitted. The environmental changes in the intestinal lumen may pass through the gastrointestinal wall and enter the myenteric neurons,

triggering the formation of α-synuclein inclusions in the enteric nervous system (ENS). Parkinson’s disease (PD) pathology was first found in the ENS, and this process

may cause gastrointestinal dysfunction in the early stage of PD. The change in the lumen environment may lead to pathological changes in α-synuclein in enteric

endocrine cells (EEC). Through the structure named “neuropods,” this signal is transmitted to the ENS, and induces the pathological changes in α-synuclein in the

ENS. A variety of immune cells in the lamina propria may participate in this process through a variety of immune responses. Subsequently, α-synuclein ascends

retrograde through the vagus nerve to the neurons in the dorsal motor nucleus of the vagus (DMV) in the brainstem, and finally reaches the substantia nigra pars

compacta (SNpc), causing dopaminergic neuronal degeneration. At this time patients show typical motor symptoms of PD. NTS, nucleus tractus solitarius; α-syn,

α-synuclein; Tc, T cells; EGC, enteric glial cells.

the occurrence and development of CNS diseases. Braak et al.
demonstrated that LBs are present in the neurons of theMeissner
plexus of the stomach of patients with early stage PD, further

supporting the hypothesis that the periphery, especially the ENS,
is the origin of PD. The pathology of PD may start in the
gastrointestinal tract and then spread to the brain through the
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vagus nerve. The findings by Braak and colleagues suggest that
in the pathogenesis of PD, pathological alterations appear in the
DMV and the ENS before they develop in the substantia nigra
(Braak et al., 2006).

At present, this view is supported by pathophysiological
evidence. It has been reported that α-synuclein inclusions appear
in the ENS, glossopharyngeal nerve, and vagus nerve in the
early stage of PD (Burré et al., 2018). Immunohistochemical
detection in PD transgenic mice showed that a few months
before the loss of striatal dopaminergic neurons, age-dependent
α-synuclein-GFP was progressively expressed and accumulated
in the Meissner and Auerbach plexus of the colon (Chen et al.,
2018a). Some studies have shown that different forms of α-
synuclein can be transmitted to the brain through the vagus
nerve, which may be the mechanism of prion-like transmission
of α-synuclein in PD and related diseases (Zhong et al., 2017;
Kim et al., 2019; Liu et al., 2021a). This evidence all shows that
the abnormal intestinal α-synuclein deposition is earlier than the
occurrence of degenerative diseases of the CNS (Hilton et al.,
2014).

The Theory of Transmission of PD
Pathology via the Vagus Nerve
The view that α-synuclein deposition in the intestine is earlier
than in the CNS, and that Lewy pathology begins in the DMV
has been supported. Moreover, the gastrointestinal system and
the brain are anatomically connected through the vagus nerve.
Although supported by the above theories, no studies have
fully confirmed this process. The theory that PD begins in the
intestinal tract and spreads by the vagus nerve is still widely
debated (Gershanik, 2018).

The ENS is one of the earliest structures showing PD
pathology, but the experimental results have not been confirmed
in a large autopsy cohort study. It has also been shown that some
patients show early pathology in the intermediolateral nucleus
of the spinal cord (IML) and autonomic ganglia (data from
large patient cohorts), also indicating a peripheral start of disease
(Borghammer et al., 2021). α-Synuclein injected into the stomach
of rats was retrogradely transported from the intestine to the
brain through the vagus nerve (Kurnik et al., 2015). Another
recent study confirmed that exogenous venereal α-synuclein
injection could induce the accumulation of endogenous α-
synuclein in the gastrointestinal tract and transmit it to the
brain along the vagus nerve, causing corresponding pathological
changes in various brain regions that finally lead to motor and
cognitive impairment in the mice (Kim et al., 2019). A recent
study indicated that propagation of α-synuclein pathology from
the gut to the brain is more efficient in old vs. young wild-type
rats, upon gastrointestinal injection of aggregated α-synuclein
(Van Den Berge et al., 2021). However, overexpression of α-
synuclein has also been proven to be transmitted from the brain
to the ENS as a bidirectional pathway (Santos et al., 2019),
which can not mean that the pathological changes in the brain
must come from the intestinal tract. A study from Borghammer
and Van Den Berge formulated two hypothesized PD-subtypes,
a “body-first” subtype where pathogenic α-synuclein arises in

the body and spreads to the brain, and a “brain-first” subtype
where pathogenic α-synuclein arises in the brain and spreads to
the body. Recent studies report new evidence in support of this
hypothesis from newly diagnosed PD patients (Horsager et al.,
2020; Borghammer et al., 2021; Knudsen et al., 2021) and animal
models (Van Den Berge and Ulusoy, 2022). Moreover, the toxic
changes of endogenous α-synuclein in the intestinal tract have
not been solved. Therefore, the scientific question of whether and
why the pathology of PD begins in the intestinal tract remains to
be explored.

EECs Are Involved in the Nerve
Transmission Pathway
Enteric endocrine cells (EECs) are cells that sense the content
of substances in the lumen, produce and release hormone/signal
molecules, regulate a variety of physiological functions in the
intestine and maintain homeostasis (Liddle, 2018). In recent
years, the role of EECs in gut-brain/brain-gut communication
has sparked people’s interest (Ye et al., 2021). It was found
that the cytoplasmic processes of cholecystokinin (CCK) and
peptide tyrosine-tyrosine (PYY) cells are similar to axons,
and their synaptic ends have been named “neuropods.” They
contain a large number of secretory vesicles, many of which are
distributed at the tip, indicating that they may guide the process
of hormone secretion (Bohórquez et al., 2015). “Neuropods”
contain intermediate filaments, are surrounded by glial cells, and
appear to connect directly to nerves (including sensory nerve
endings) (Latorre et al., 2016).

Intestinal nerves are not exposed to the intestinal lumen,
so they are not directly affected by substances in the lumen.
However, EECs have many neuron-like characteristics, which
provide a possible way for intestinal luminal substances and
intestinal nerves to communicate with each other. Rabies virus
and mad cow disease prion can infect EECs and transfer to the
intestinal nerve (Liddle, 2018). It has been confirmed that EECs
express α-synuclein (Chandra et al., 2017), and that misfolded
α-synuclein has the ability to transfer from nerve to nerve in a
prion-like manner (Angot et al., 2012). Therefore, EECs may be
involved in the neural transmission pathway in PD. α-Synuclein
can misfold in EECs due to change in the intestinal environment
and other factors. Through the prion-like characteristics and
neuron-like properties of EECs, the misfolded α-synuclein may
spread to the adjacent ENS and eventually spread to the brain
through the vagus nerve pathway.

PD PATHOLOGY TRANSFERS TO THE CNS
THROUGH THE HUMORAL PATHWAY

The transfer of gastrointestinal Lewy pathology to the CNS along
the vagus nerve pathway in the initial stage of the disease leads
to Lewy pathology and inflammation in the brain. However, the
development of the disease may also be related to the peripheral
intestinal tract. Because the intestine is the largest and longest
immune organ of the body, and the intestinal cavity is in close
contact with the external microenvironment, there are abundant
immune cells and a variety of immune responses. Changes in
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intestinal permeability and continuous contact with a variety
of antigens may trigger innate and acquired immune responses
in the intestinal immune system, leading to gastrointestinal
inflammation. Under normal circumstances, there is also an anti-

inflammatory mechanism in the body. This immune balance is

disrupted in the disease state. The activated immune cells are
muchmore likely to affect the CNS through the humoral pathway

and aggravate the level of pathology and inflammation in the
brain. Therefore, the inflammatory changes caused by intestinal

microecology and the regulation of immune cells involved in
it provide new ideas for the potential risk factors and possible
pathogenesis of PD (Figure 2, Table 1).

Changes in Intestinal Wall Permeability
One of the important functions of the gastrointestinal tract is

to act as a semi-permeable barrier, regulating the absorption of

nutrients, ions, and water, and regulating host contact with a
large number of dietary antigens and bacteria (Ménard et al.,

2010). Intestinal permeability can be defined as a facility in

which intestinal epithelial cells allowmolecules to spread through

passive diffusion, and it is an important index for evaluating

the integrity of the mucosal barrier (Luissint et al., 2016).
Several chronic autoimmune intestinal diseases, such as IBD, are

associated with increased intestinal permeability (Chang et al.,
2017). Case studies with patients with PD have confirmed that
there is a significant increase in intestinal permeability, and
increased exposure to intestinal bacteria and bacterial endotoxins
in patients with early diagnosed PD (Karunaratne et al., 2020).
The increased α-synuclein in intestinal biopsies was associated
with high intestinal permeability (Oreja-Guevara et al., 2011;
Schwiertz et al., 2018). Some literatures have detected changes
in the distribution of the tight junction proteins ZO-1 and
occludin in colonic mucosa samples of PD patients and decreased
amounts of occludin (Clairembault et al., 2015a), which is related
to changes in colonic permeability. The LPS mouse model has
shown different intestinal permeability changes. That is, the
increased intestinal permeability occurred mainly in the colon,
while phosphorylated α-synuclein serine 129 was detected in the
intermuscular neurons of the colon (Kelly et al., 2014).

Prolonged intestinal permeability dysfunction can lead to
the translocation of bacteria (such as Escherichia coli) and
bacterial products (such as lipopolysaccharide), which creates
a pro-inflammatory environment and increases the burden of
oxidative stress on the ENS. Various factors contribute to the
appearance of pathological α-synuclein in the gastrointestinal
tract and make the immune cells acquire an antigenic
phenotype. Therefore, intestinal leakage in patients with a genetic

FIGURE 2 | Gastrointestinal immune inflammatory response participates in the progression of α-synuclein. α-Synuclein may activate T cells to trigger downstream

inflammatory responses through APCs (①) and EGCs (③), resulting in traumatic changes in intestinal structure and function. The inflammatory reaction further

aggravates the aggregation and toxicity of α-synuclein. The excessive accumulation of α-synuclein in intestinal neurons can inhibit synaptic vesicle transport and

reduce dopamine production, then inhibit the transformation of T cells to protective regulatory T (Treg) cells, and aggravate inflammation (②). Dopamine in this process

participates in T cell protective regulation through the dopamine receptor. The pro-inflammatory or anti-inflammatory reaction caused by the above processes further

aggravate the aggregation and toxicity of α-synuclein. Subsequently, these changes affect the central nervous system (CNS) through the dual pathways of nerve

(vagal and non-vagal circuits) and blood circulation. α-syn, α-synuclein; APC, antigen presenting cell; EGC, enteric glial cells; ENS, enteric nervous system.
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TABLE 1 | Types of gastrointestinal immune cells associated with PD and their pro-/anti-inflammatory effects.

Immune cell Markers Cytokines Type of immune

response

References

Th1 CD3+CD4+IFN-γ+ IFN-γ, TNF-α, IL-17,

IL-1, IL-2, IL-21

Pro- inflammation Kaiko et al., 2008; Sulzer et al., 2017;

Campos-Acuña et al., 2019

Th17 CD3+CD4+IL-17+

Th2 CD3+CD4+IL-10+ IL-4, IL-5, IL-13 Anti-inflammation González et al., 2015; Kustrimovic

et al., 2018

Treg CD4+CD25+Foxp3+ IL-10, TGF-β1 Anti-inflammation Huang et al., 2017, 2020; Kustrimovic

et al., 2018

DC CD80+CD86+ IL-6, IL-12, IL-10 Present antigen Pacheco et al., 2009

EGC (M1) GFAP, SOX-10 TNF-α, IL-1β, IL-6 Pro-inflammation Côté et al., 2011, 2015; González et al.,

2015

PD, Parkinson’s disease.

susceptibility to PD may be a key early step in promoting the
pro-inflammatory/oxidative environment. Combined with the
transmission theory of PD, this change in the microenvironment
would contribute to the initiation and/or progression of PD.

Regulation of Gastrointestinal
Inflammation by the Innate Immune
Response
Crohn’s disease (CD) and ulcerative colitis (UC) are two
IBD. UC involves the colon and rectum, while CD involves
the small intestine and colon (Chang, 2020). Coincidentally,
IBD and PD have some common characteristics, including
several common risk genes, such as LRRK2 (Hui et al.,
2018). In recent years, several studies have reported the
causal relationship between IBD and PD (Lin et al., 2016;
Peter et al., 2018; Brudek, 2019; Kishimoto et al., 2019;
Zhu et al., 2019; Rolli-Derkinderen et al., 2020; Wan et al.,
2020; Lee et al., 2021). Therefore, the two diseases are
often compared.

It has been confirmed that initially α-synuclein aggregation
and subsequently Lewy body generation occur in neurons such
as the olfactory bulb and gastrointestinal tract that are exposed
to adverse environmental factors (Del Tredici and Braak, 2016).
A study using endoscopic biopsy from children with intestinal
inflammation found a significant correlation between the level of
α-synuclein accumulation in the ENS and the degree of intestinal
inflammation (Stolzenberg et al., 2017). Recent literature has
determined the capacity of the appendix to modify PD risk
and influence pathogenesis (Gray et al., 2014; Killinger et al.,
2018; Gordevicius et al., 2021). Lewy bodies stimulated Toll-like
receptor 2 (TLR2) and Toll-like receptor 4 (TLR4) on local glial
cells to induce NF-κB activation through Toll-like receptor (TLR)
signaling pathway, thus inducing initial inflammation in the
microenvironment (González et al., 2015). The EGC population
is species specific and as complex as CNS glia (Grundmann et al.,
2019). Some literature has hypothesized that the inflammatory
mediators produced by EGCmay damage the surrounding tissue,
and induce and aggravate the misfolding and accumulation

of α-synuclein in the intestinal nerve (Fellner and Stefanova,
2013).

At present, there is sufficient evidence that innate
immune cells are involved in PD-related gastrointestinal
inflammation. Through the analysis of colon biopsies
from patients with PD, it has been determined that pro-
inflammatory cytokines (TNF-α, IF-γ, IL-6, and IL-1β)
and glial cell markers GFAP and SOX-10 are significantly
increased in patients with PD (Devos et al., 2013). Recent
findings demonstrated that chronic colitis promotes
parkinsonism in genetically susceptible mice, and TNF-α
plays a detrimental role in the gut-brain axis of PD (Lin et al.,
2021).

The interaction between intestinal inflammation and
intestinal nerves has also been reported. It has been found
that partial knockout of M1 monocytes has a neuroprotective
effect on the myenteric plexus in the MPTP model, but
has no protective effect on basal ganglia (Côté et al., 2015).
Moreover, the ENS provides a key link in the innate immune
response, which is not only important for coordinating mucosal
barrier homeostasis, but also for combating invasive bacterial
infections. Therefore, intestinal nerve damage caused by
inflammation may further aggravate local inflammation (Jarret
et al., 2020).

How local gastrointestinal inflammation in PD affects the
follow-up progress of the disease in the CNS will be summarized
in 4.4.

Regulation of Gastrointestinal
Inflammation by the Acquired Immune
Response
Innate immunity may play an initiating role in gastrointestinal
inflammation. In addition to innate immune inflammation,
innate immunity can also participate in subsequently
acquired immune inflammation. Acquired immunity plays
the role of inflammatory cascade amplification and anti-
inflammatory response, resulting in follow-up regulation
of inflammation. Acquired immunity plays an important
role in both neurodegenerative diseases and IBD (Table 2).
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TABLE 2 | Changes of immune cells in neurodegenerative diseases/IBD.

Disease CNS immunity Peripheral

immunity

Reference

AD Microglia lost

phagocytic ability

Th1 cells↓, Treg

cells↑

Baruch et al., 2015; Schwartz

and Deczkowska, 2016

PD Microglia (M1)

activation,

CD4+/CD8+↓

Th1 and Th17

cells↑, Treg cells↓

González et al., 2015; Moehle

and West, 2015; Baird et al.,

2019

MS Proinflammatory,

exacerbate

disease

Th1 and Th17

cells↑, Treg cells↓

Yamasaki et al., 2014; Schwartz

and Deczkowska, 2016; Quinn

and Axtell, 2018

CD Microglia

activation

Th1/Th2↑, Th17

cells↑, Treg cells↑

Li et al., 2016; Kishimoto et al.,

2019; Kredel et al., 2019

UC Microglia

activation

Th1/Th2↓, Th17

cells↑, Treg cells↑

Li et al., 2016; Kishimoto et al.,

2019; Kredel et al., 2019

IBD, inflammatory bowel disease; AD, Alzheimer’s disease; PD, Parkinson’s disease; MS,

multiple sclerosis; CD, Crohn’s disease; UC, ulcerative colitis; ↑, increase; ↓, decrease.

Early studies showed that while B cells were not significantly
increased, T cells were significantly increased in the postmortem
brains of patients with PD and brains of the MPTP model.
A decrease in dopaminergic cell death induced by MPTP
was observed in CD4-deficient mice (Brochard et al.,
2009). CD4+ T cells contribute to neurodegeneration in
Lewy body dementia (Gate et al., 2021). This suggests
that T cells, especially CD4+ T cells, may be involved
in the pathogenesis of PD (Chen et al., 2019) or other
neurodegenerative disease.

α-Synuclein can be an antigenic substance. It has been
reported that the peptides of its two regions (Tyr39 and
phosphorylated Ser129 region) can be used as antigenic epitopes
to stimulate infiltrating antigen-presenting cells (APCs) (that
is, monocytes/macrophages and DC). These cells capture and
receive stimulation through the TLR signaling pathway, then
process Lewy bodies into suitable small peptides, before forming
Lewy body-specific MHC-II antigens (Sulzer et al., 2017).
Then, APCs present MHC-II antigen to naive CD4+ T cells
(González et al., 2015; Sulzer et al., 2017). CD4+ T cells
activate, proliferate, and differentiate into Th1 and Th17 cells,
infiltrate into the lamina propria of the colon, and release
IFN-γ, IL-17, and other inflammatory mediators that recruit
and stimulate neutrophils and macrophages, thereby inducing
chronic inflammation in the intestinal mucosa (Dardalhon et al.,
2008). Reactive oxygen species (ROS) induced by Th1 and
Th17 immunization in local phagocytes promotes the further
accumulation of α-synuclein in ENS neurons (González et al.,
2015). This mechanism creates a cycle of increased toxicity of
α-synuclein. Moreover, the intestinal inflammation of IBD is
driven mainly by Th1 and Th17 cells of the CD4+ T cell subset
(Granlund et al., 2013). A study defined that a compromised
immune system increases the accumulation of pathological α-
synuclein in the brain (George et al., 2021). This suggests that
the pro-inflammatory responses of CD4+ Th1 and Th17 play
an important role in gastrointestinal inflammation in both IBD
and PD.

Regulatory T (Treg) cells are an inhibitory subtype of
lymphocytes and play an important role in maintaining intestinal
homeostasis (Chen et al., 2021). Treg cells can inhibit the
inflammation induced by effector T cells (Th1 and Th17) in
chronic UC models induced by T cells transferred to lymphocyte
knockout mice. One of the main inhibitory mechanisms depends
on the secretion of IL-10 by Treg cells (Powrie and Mason,
1990). IL-22 produced by Treg cells induces the expression of
tight junction proteins (claudin1 and ZO-1) in epithelial cells,
thereby reducing intestinal infiltration, increasing the integrity of
the intestinal mucosal barrier and protecting it from intestinal
inflammation (Fang et al., 2018). In the presence of chronic
neuroinflammation in the CNS, there is evidence that peripheral
immune cells can infiltrate the CNS through the damaged blood-
brain barrier. It has been confirmed that the adoptive transfer
of CD4+CD25+ Tregs into the MPTP model could reduce
neuroinflammation and protect dopaminergic neurons in the
substantia nigra compacta of themodel mice (Huang et al., 2020).
Dopamine can enhance the protective effect of CD4+ T cells or
reduce the inflammatory damage of CD4+ T cells so as to inhibit
inflammation (Contreras et al., 2016; Ahlers-Dannen et al., 2020).

To sum up, Lewy body-derived antigens may be an important
target for T cell-mediated immunity. Inflammation induced
by CD4+ T cells promotes the further accumulation of α-
synuclein. The pro-inflammatory response mediated by Th
cells and the anti-inflammatory response driven by Treg cells
show the subsequent regulation of acquired immunity on the
inflammatory process and represent the central process of PD
and IBD, and dopamine may regulate this process.

Local Gastrointestinal Inflammation
Affects the CNS Through the Humoral
Pathway
It has been reported that a variety of neurodegenerative diseases
(Sweeney et al., 2018), including PD, exist in the presence
of blood-brain barrier damage (Varatharaj and Galea, 2017).
Similarly, a variety of animal models of PD, such as the rotenone
model (Ravenstijn et al., 2012), MPTP model (Liu et al., 2017),
and LPS model (Sweeney et al., 2018), also show different degrees
of damage to the blood-brain barrier. This damage to the blood-
brain barrier may be attributed to the ascending transmission of
Lewy bodies along the vagus pathway. Lewy bodies accumulate
in the brain to produce pro-inflammatory mediators, such as IL-
1β, which activate microglia and related inflammatory cytokines
to cause damage to the blood-brain barrier (Varatharaj and
Galea, 2017; Gordon et al., 2018). Peripheral inflammatory
factors can also cause damage to the blood-brain barrier.
There is abundant blood flow in the intestinal tract. Innate
immune cells or antigen-activated T cells and corresponding
inflammatory factors obtained in the gastrointestinal tract can
enter the blood circulation, pass through the damaged blood-
brain barrier, and migrate to the brain parenchyma, leading to
neuroinflammation and neurodegeneration (Chen et al., 2018b).
This mechanism represents a vicious cycle: Inflammation may
continue to aggravate the production of Lewy bodies and damage
the blood-brain barrier in the brain, which in turn leads to
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the continuous aggravation of inflammation and progression
of disease.

POTENTIAL KEY ROLE OF THE
INTESTINAL FLORA IN THE
PATHOGENESIS OF PD

The gastrointestinal tract of healthy people is inhabited by a
wide variety of microorganisms called intestinal flora. Bacteria
in the human gastrointestinal tract can form a large and
complex ecosystem. These microbes are involved in almost all
intestinal functions, affecting host metabolism, and behavior,
neural circuits, hormone secretion, and immune response (Cox
and Weiner, 2018). In recent years, with the introduction of
the concept of microorganism-intestine-brain axis, it was shown
that there is a two-way interaction between intestinal flora and
the brain (Cryan et al., 2019). This may play an important role
in neurological diseases, including anxiety disorder, depression
(Foster and McVey Neufeld, 2013), autism, multiple sclerosis,
PD (Elfil et al., 2020; Liu et al., 2021b), and Alzheimer’s disease
(Quigley, 2017; Srivastav and Mohideen, 2021).

The gastrointestinal microbiome is altered in PD and likely
plays a key role in its pathophysiology. A study showed that
compared with healthy controls, the abundance of Prevotella
in the feces of patients with PD is decreased (Unger et al.,
2016). This results in decreased intestinal mucus secretion,
increased intestinal permeability, and increased local and
systemic susceptibility to bacterial antigens and endotoxins, as
well as a large amount of α-synuclein expression and misfolding.
However, changes in intestinal flora can also affect the occurrence
of PD. Intestinal gram-negative bacterial infection in mice can
induce a decrease in dopaminergic neurons in the substantia
nigra of PINK1–/–mice and produce PD-like behavioral changes,
such as dyskinesia (Matheoud et al., 2019). In the intestinal
tissue of germ-free mice, the activation of microglia is decreased,
the content of pathological α-synuclein is also significantly
decreased (Sampson et al., 2016). There are obvious changes in
the intestinal flora in patients with PD. Therefore, gut dysbiosis
has a significant potential as a therapeutic target in PD.

Changes in Intestinal Flora Affect the
Blood-Brain Barrier
Some studies have found that the intestinal flora can change
the permeability of the blood-brain barrier in germ-free mice,
which indicates that changes in the intestinal flora will affect
the defense function of the blood-brain barrier (Rutsch et al.,
2020). The expression of different types of TLR in brain
endothelial cells can respond to bacterial cell wall components
such as lipopolysaccharide (LPS) of gram-negative bacteria and
lipoteichoic acid (LTA) of gram-positive bacteria, and directly
affect the function of the blood-brain barrier (Tang et al., 2017).
LPS can also induce other cell types to produce and release pro-
inflammatory mediators, and thus regulates the function of the
blood-brain barrier (Nagyoszi et al., 2010).

Protective Effect of SCFAs in Intestinal
Flora
SCFAs, such as butyrate, acetate and propionate, are produced
by the fermentation of dietary fiber by intestinal microflora.
After reaching the CNS through the blood circulation, SCFAs
enhance the blood-brain barrier function by up-regulating the
expression of tight junction protein in the blood-brain barrier.
SCFAs also have neurotrophic and anti-inflammatory effects (Al-
Asmakh and Hedin, 2015; Cholan et al., 2020). Reductions in
fecal SCFAs but increased plasma SCFAs were observed in PD
patients (Aho et al., 2021; Chen et al., 2022). SCFAs can also
improve the dysfunctional blood-brain barrier in germ-free mice
(Braniste et al., 2014), and it is also beneficial to the intestinal
mucosal barrier (Chen et al., 2017).

SCFAs can up-regulate brain-derived nerve growth factor
and glial cell line-derived neurotrophic factor. They can also
protect dopaminergic neurons by activating the expression of
G protein coupled receptors and inhibiting histone deacetylase
(Abdel-Haq et al., 2019). In animal experiments, microglia in
the brain of germ-free mice have shown immaturity and had
almost no response to inflammatory stimuli (Erny et al., 2015).
After supplementing with SCFAs, immature microglia routinely
matured and could be activated to respond to inflammation and
stimulation, suggesting that SCFAs have a neuroprotective effect
(Scott et al., 2017).

SCFAs can also regulate immunity through a variety of
mechanisms (Yao et al., 2022). G protein-coupled receptor
(GPR)-mediated SCFA signaling can stimulate the differentiation
of Treg cells and inhibit intestinal inflammation, or regulate
the differentiation of Treg cells through epigenetic modification,
which is helpful for the dynamic balance of immunity in the
colon. At the same time, SCFAs promote the production of IL-
10 by microbiota antigen-specific Th1 cells to limit the induction
of colitis (Sun et al., 2018).

DISCUSSION

PD is the second most common neurodegenerative disease.
The main clinical manifestations are dyskinesia and non-motor
symptoms. Gastrointestinal dysfunction is the main non-motor
symptom in patients with PD, among which constipation is the
most common. Constipation symptoms may appear 20 years
earlier than exercise symptoms, suggesting that PDmay originate
from the intestinal tract.

The occurrence of constipation may be closely related to the
loss of intestinal neurons and the pathology of α-synuclein. At
present, although evidence supports the view that α-synuclein
deposition occurs earlier in the intestine than in the CNS,
whether PD pathology originates from the periphery and then
affects the CNS, or whether PD begins in the intestinal tract, is
still widely debated. In recent years, studies on the pathogenesis
of the microorganism-gut-brain axis in PD suggest that early
changes in the intestinal flora and α-synuclein expression in
intestinal nerves cause toxic and aggregation-like changes under
inflammation. These changes affect the CNS through the dual
pathways of nerve (vagal and non-vagal circuits) and blood
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circulation. This causes CNS damage and promotes disease
progression. In this process, the anti-inflammatory responses of
Treg cells, the T cell anti-inflammatory pathway mediated by
dopamine, and the multiple protective effects of SCFAs, produce
certain anti-inflammatory effects. These results enrich the theory
of the intestinal origin of PD and provide theoretical support for
the discovery of new therapeutic targets for PD.

In the prodromal stage of PD, the changes in neural or
immune molecules in the gastrointestinal tract and peripheral
blood may become biomarkers of PD and provide the
basis for early diagnosis. Based on the microorganism-gut-
brain axis hypothesis in PD, each part of it may become
a potential therapeutic target. Early application of drugs
and antibodies against gastrointestinal α-synuclein or immune
cells may reduce the transmission of α-synuclein. Dietary
or pharmacological interventions aimed at modifying the gut
microbiota composition and enhancing the intestinal epithelial
barrier integrity in PD patients or subjects at higher risk for
the disease may delay disease progression. Cellular therapies
using Treg cells are currently undergoing clinical trials for the
treatment of autoimmune diseases, transplant rejection, and Treg
cells have also been shown to have neuroprotective effects in
mouse models of Alzheimer’s disease.

In this review, we first focused on the possible mechanism
of constipation in PD. Then, by analyzing the effects of
intestinal changes on the CNS, we analyzed the involvement
of the vagus nerve in the transmission of α-synuclein to the
brain, as well as the pro-inflammatory and anti-inflammatory

responses of congenital and adaptive immune cells. We also
considered the anti-inflammatory and protective functions of
dopamine. Finally, we analyzed how the flora and its metabolites
participate in this process. Combining these findings suggest
that intestinal lesions may be the origin of PD. Intestinal
pathological changes may spread to the CNS through the
vagus nerve, causing pathological changes in the brain and
inflammation. This leads to damage of the blood-brain barrier,
which occurs at the initial stage of the disease. However,
the immune response activated by the intestinal tract is key
to the subsequent vicious cycle: Intestinal immune response
aggravates intestinal α-synuclein deposition; activated immune
cells pass through the damaged blood-brain barrier through
blood circulation. Both may cause CNS inflammation and
irreversible neurodegeneration.
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