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Abstract

Precision medicine emphasizes predictive, preventive and personalized treatment on the

basis of information gleaned from personal genetic and environmental data. Its implementa-

tion at health systems level is regarded as multifactorial, involving variables associated with

omics technologies, public genomic awareness and adoption tendencies for new medical

technologies. However, interrelationships of the various factors and their synergy has not

been sufficiently quantified. Based on a survey of 270 participants involved in the use of

molecular tests (omics-based biomarkers, OBMs), this study examined how characteristics

of omics biomarkers influence precision medicine implementation outcomes (ImO) through

an intermediary factor, public genomic awareness (represented by User Response, UsR). A

structural equation modelling (SEM) approach was applied to develop and test a 3 latent

variable mediation model; each latent variable being measured by a set of indicators ranging

between three and six. Mediation analysis results confirmed a partial mediation effect (an

indirect effect represented as the product of paths ‘a’ and ‘b’ (a*b)) of 0.36 at 90% confi-

dence level, CI = [0.03, 9.94]. Results from the individual mediation paths ‘a’ and ‘b’ how-

ever, showed that these effects were negative(a = -0.38, b = -0.94). Path ‘a’ represents the

effect of characteristics of OBMs on the mediator, UsR; ‘b’ represents the effect of the medi-

ator, UsR on implementation outcomes, ImO, holding OBMs constant. The results have

both theoretical and practice implications for biomedical genomics research and clinical

genomics, respectively. For instance, the results imply better ways have to be devised to

more effectively engage the public in addressing extended family support for extended fam-

ily cascade screening, especially for monogenic hereditary conditions like BRCA-related

breast cancer and colorectal cancer in Lynch syndrome families. At basic biomedical

research level, results suggest an integrated biomarker development pipeline, with early

consideration of factors that may influence biomarker uptake. The results are also relevant

at health systems level in indicating which factors should be addressed for successful.
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Introduction

Advances in genomic technologies have deepened insights into the complex structure and

function of the human genome, with far-reaching implications in medicine and health care.

The landmark Human Genome Project(HGP) [1, 2] took 13 years at a cost of over U$2 billion

to sequence the first human genome. The project’s ripple effects prompted multidirectional

breakthroughs in biotechnology, including the use of next generation sequencing (NGS) that

has dramatically reduced the cost and turn-around of genome sequencing to just a day at cost

ofU$1000. Precision medicine (PM), viewed as a future paradigm for medicine [3, 4], stems

from such bio-technological breakthroughs. It has potentials to usher in a more precise and

targeted approach to disease screening, diagnosis and treatment by accentuating predictive,

preventive and personalized medicine. With advances in omics technologies (tools used in the

study of the genome), PM’s achievements are no longer confined to biomedical research but

are steadily moving to the clinical practice settings [5]. Early PM applications have resulted in

improved genetic screening for newborns (for fatal yet preventable conditions) [6], oncology

(genetic screening to avoid metastatic and aggressive cancers) [7, 8] and population pharmaco-

genomics (in avoiding unnecessary pharmacological adverse reactions) [9, 10]. Biomarkers

discovered through omics technologies are driver-factors in realizing the promise of precision

medicine, at both individual and population health spaces. Yet, because of the complexities

involved in integrating new biomarkers into clinical care, many institutions and health systems

may face challenges, including resource inequities, differences in regulatory frameworks, dif-

fering social contexts, economic statuses and national health priorities. A PM implementation

model may be crucial in capturing these complexities and point to better implementation

pathways, especially at the health systems level.

Existing evidence in the field of implementation research offer a range of theoretical frame-

works that explain multi-level factors which can influence PM implementation at systems level

[11–15]. This consists of innovation-, individual- and institutional-level factors as illustrated

in Fig 1. An early consideration of characteristics of the innovation that is to be adopted (i.e.

omics biomarkers) in the discovery pipeline may help to emphasize tools, products, and

Fig 1. A precision medicine implementation meta-theoretical framework.

https://doi.org/10.1371/journal.pone.0240585.g001
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strategies that may mitigate variations in uptake not only across patient, provider, and/or orga-

nizational contexts, but also across time spaces. Furthermore, consideration of such individual

and institutional factors may help identify gaps in uptake facilitation and make for early miti-

gation of the gaps across systems (e.g., in terms of resource allocation). On the other hand,

early consideration of systems-level factors may help in addressing misaligned and non-

friendly genomic policies.

Even though there exists a number of theoretical frameworks that may inform optimal

implementation of PM at health systems level, little research specific to PM implementation

has been done, particularly in quantifying these determinants. Moreover, little is understood

about the mechanisms through which one set of factors transmit effects onto other related fac-

tors to achieve desired implementation outcomes, especially in resource constrained settings.

In this paper, we hypothesize that the relationship between characteristics attributable to

omics biomarkers (OBMs) and their utility in clinical settings may not be simple. For instance,

omics biomarkers, as the foundation of PM, have been shown to present clear advantages over

traditional biomarkers, especially for treatable-if-diagnosed-early diseases but for which

patients cannot benefit from existing treatment approaches if discovered at later stages of

development., e.g., systemic amyloidosis [16]. This fact however, if considered in isolation

with other factors, does not necessarily accord omics biomarkers ready integration into clinical

application. Unique contextual factors likely influence the extent to which OBMs are inte-

grated in routine clinical application. This study therefore sought to test the extent to which

the relationship between omics biomarkers and their clinical uptake is intermediated by user

response related to public genomic awareness or engagement (patients and providers). Fig 2

outlines the basic mediation model that is hypothesized and referred to in this study. In the

simple mediation model suggested in Fig 2, it is hypothesized that the observed relation

between characteristics of omics biomarkers (OBM), referred to as the exogenous (indepen-

dent) variable, and PM implementation outcomes, referred to as the endogenous (dependent)

variable, can be explained by the effect of user response from the public (patients and practi-

tioners), a third factor referred to as the mediator. This third factor is triggered by public geno-

mic awareness. It is further suggested that the observed indicators are caused by the three

latent variables, hence the direction of the variable-indicator arrows; i.e., in this reflective

model, the causal action flows from the latent variable to the indicators. The small residual

error circles indicate error in measurement attributable to the indicators they point to.

Studying contextual effects by investigating mediating variables has the potential to extend

the generalizability of PM implementation efforts to different settings. By analyzing mediation

effects in this way, this study hopes to contribute to the refinement of existing implementation

knowledge on PM.

In the following sections, the utility of examining mediation effects in PM implementation

is presented. The results and discussion sections present effect size and other intermediation

statistics. The “likert” ver.1.3.5 [17] and “lavaan” version 0.6–3 [18, 19] in R version 3.6.0. [20]

were used for descriptive and inferential statistics, respectively. This was done using structural

equation modelling (SEM), a method that estimates all parameters simultaneously and gener-

ally results in unbiased estimates [21].

Theoretical background, latent variable measurement and

hypothesis statements

Biomarker discovery might be the primary focus of most biomedical research, but the long-

term goal for PM is to fully integrate them into the healthcare delivery system to enhance qual-

ity of medical care through improved disease screening, diagnostics and therapeutics. Apart
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from innovation-level factors, regulatory, social, technical and other contextual factors need to

be attended to in order to realize the broader implementation and full potential of precision

medicine. Three factors, hypothesized to influence PM implementation in this study, are

briefly discussed below. They are innovation-level factors associated with omics biomarkers

(e.g. sufficient evidence generated to validate biomarkers), individual-level factors (i.e. public

genomic awareness through patient and provider engagement) and system level factors that

indicate institutionalized uptake of omics-based biomarkers.

Characteristics of omics biomarkers (OBM)

Years of sustained developments in omics technologies and expanded knowledge of disease

pathogenesis at the molecular level have resulted in novel biomarkers useful for disease charac-

terization, early diagnosis, and drug discovery and development [22–24]. The biomarkers help

to identify causative gene mutations or polymorphisms of susceptibility and can also reveal

DNA and RNA characteristics related to drug responses. Even though single gene biomarkers

have existed for a long time (e.g. in linking genetic effects for both patient and family in cystic

Fig 2. Hypothesized systems level precision medicine implementation mediation model. Key: Large oval shapes = latent (unobservable) factors;

Rectangles = indicator (observable) variables; Arrows = hypothesised correlation direction; Small circles = residual errors explaining measurements errors;

Me = the mediator variable, a = the effect size of the independent variable on the mediator, b = the effect of the mediator on the dependent variable

controlling for X, and c’ = the direct effect of X on Y controlling for Me.

https://doi.org/10.1371/journal.pone.0240585.g002
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fibrosis testing and to monitor particular effects on large populations e.g. HIV mRNA, HCV

mRNA), recent developments have led to an expanded array of omics biomarkers with

improved diagnosis, characterization, and therapy selection [25]. Omics biomarkers are geno-

mic characteristics that indicate normal biologic processes, pathogenic processes, and/or

response to therapeutic or other pharmacological interventions. They include single nucleotide

polymorphisms (SNPs), DNA modification, e.g. methylation, insertions and deletions (Indels),

RNA sequences, RNA expression levels and microRNA levels. Successful biomarkers offer a

span of benefits including patient stratification for preventive interventions [26], screening

populations for early disease detection [27], subtyping disease to facilitate chemotherapy tai-

lored at the molecular level [28], and monitoring response to treatment [29]. Despite these

apparent advantages, there are varying perceptions about the effectiveness of omics

biomarkers.

Single gene mutation testing to diagnose or determine predispositions to certain disorders

is common in clinical settings. Although polygenic diseases are more common than single-

gene disorders, clinical tests using molecular biomarkers for polygenic (multifactorial) disor-

ders are not routinely done. The multifactorial nature of polygenic disorders presents chal-

lenges in the discovery of appropriate omics biomarkers. Due in part to high population

prevalence of most polygenic disorders, lack of clear Mendelian transmission patterns and

phenotypic heterogeneity associated with these diseases, the validity and clinical utility of

some biomarkers may vary based on specific population characteristics. Such heterogeneity

has implications on case and control populations for such biomarkers. Moreover, quality bios-

pecimen and right bio-sample quantities maybe prerequisites for biomarker discovery research

for well-defined clinical applications to be ascertained. Therefore, characteristics associated

with biomarkers influence perceptions about their advantages, clinical validity and public

health applicability.

Involved individuals’ response to omics biomarkers (UsR)

The use of biomarkers for diagnostics, prognostic or predictive purposes is beneficial in cir-

cumstances such as identifying inherited susceptibility for future disease, thereby informing

tailored and timely preventive strategies, besides providing means for optimizing drug thera-

pies based on individual pharmacological responses.

However, use of genetic profiling is often met with anticipation, skepticism and concern at

personal level [30, 31]. Genetic testing necessarily demands much effort in anticipating, under-

standing and addressing associated ethical, legal and social implications. Use of omics bio-

markers, therefore, presents particular challenges with respect to providers’ ethical and

professional responsibilities, including the appropriate use of genomic information in health

care settings. For example, women found to have an inherited susceptibility to cancer after a

genetic test on them or their relatives might face social discrimination or stigmatization. In

addition, family members may be disenfranchised by the very process of genetic testing, partic-

ularly if some members wished to pursue testing and others did not, or if some individuals

found out information about their own risk through genetic test results of other family mem-

bers, or if those with normal test results experienced survivor guilt. Genetic test results could

also be misinterpreted [32] or create an impetus toward the use of unproven medical therapies

due to despair [33]. Yet some genetic tests do not generate these concerns. An excellent exam-

ple for this is the case of neonatal and fetal omics/genetic screening exercises to determine con-

ditions amenable to early interventions. While the differences between desirability and

skepticism for testing in the above scenarios may seem intuitively clear, many aspects of test-

ing; nature of test, mode of inheritance, person tested, social or medical context–might
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contribute to their acceptability or rejection among involved individuals, both as providers

and as patients.

Precision medicine implementation outcomes (ImO)

The hypothesized implementation model explains what influences PM implementation out-

comes. Such evidence can inform the design and execution of implementation strategies that

aim to change relevant determinants. The model explicitly depicts determinants that influence

implementation outcomes as nonlinear, considering individual barriers and enablers that may

interact in various ways within and across levels.

Indicators for the implantation outcome construct were drawn from the RE-AIM Frame-

work [34]. Implementation outcomes are concerned with the evaluative dispositions of imple-

mentation efforts. Using elements of RE-AIM, those in research or practice can make use of

necessary information to justify adoption of the biomarker, and how to maintain it if adopted

or widen its reach (penetration) into a given service setting.

Hypotheses. In formulating the following hypotheses we followed the segmentation and

transmittal approaches as expounded in Rungtusanatham et al. [35].

H1. Characteristics of an omics-based biomarker (OBM) has a positive effect on user response

(public genomic acceptance).

H2. User response due to public genomic awareness mediates the relationship between charac-

teristic of an omics-based biomarker and precision medicine implementation outcomes.

H3. The effect of user response on implementation outcomes is statistically significant.

Methods

Study participants and procedure

This study was approved, and institutional review board permit obtained from the University

of KwaZulu-Natal (BREC Permit Ref No BE513/18).

Snowball sampling method was applied in identifying potential participants from popula-

tion of interest for this study. The seed (initial) sample population composed of individuals

affiliated to various academic institutions and organizations known to be involved in molecu-

lar/genetic testing and omics-based biomarkers across Africa. Other participants were identi-

fied in precision medicine-related academic conferences and invited to participate. Guided by

general principles of the Nuremberg Code, the Declaration of Helsinki and institutional review

board as already noted, the study package was distributed via email to potential participants

between June and July 2019. Since this study contained negligible risk of potential embarrass-

ment or other ethical dilemmas that are usually associated with snowball sampling in many

other studies, initial participants were encouraged to forward the email containing the study

package to their colleagues. The study package included an invitation letter with study descrip-

tion, consent form and a link to an online questionnaire. We hosted the questionnaire online

on a platform hosted and supported by Optimal Workshop [36]. Besides offering convenience

to study participants, the online platform ensured data security and confidentiality. Partici-

pants were encouraged to complete the study but informed that the platform was open only

for a period of 60 days (1st June to 31st July). Snowball sampling was deemed the ideal sampling

method for the study as it was expected that initial study participants would likely know others

in the same industry or academic circles as themselves and hence, could collegially inform oth-

ers about the study and its potential benefits. However, despite this advantage, use of this
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method meant that it was not possible to determine the sampling error based on the obtained

sample.

Online means of data collection are known to be convenient and cost-effective in reaching

large numbers of participants over a relatively short periods of time as compared to conven-

tional paper-based surveys [37]. However, this approach is prone to increased risk of survey

attrition—participants dropping out. To address this risk and possibly curb the potential

havoc such participant attrition may have on our study findings, we set crucial question set-

tings on the online survey tool to ‘compulsory’. This implied that participants had to answer

the first survey question to proceed to the next one and all questions had to be completed

before successfully submitting the survey form at the finish line. However, the survey platform

still recorded any attempt to participate, completed or not. This measure meant that attempt

by quitters to participate was registered. Unfortunately, this measure did not discriminate

between genuine quitters and subsequent attempters. To eliminate possibility of a bias due to

survey attrition or attrition affecting study findings and thus having a negative statistical impli-

cation on our model, we only used data from participants who actually completed the survey

for all statistical analyses.

We operationalized “members of academia” as consisting of those involved in biomedical

research related to translating newly discovered molecular biomarkers (OBMs) for purposes of

clinical or population health use; members of “industry” as those involved in the clinical use of

the biomarkers (e.g., clinical pharmacogenomic testing); or those involved in commercial enti-

ties related to OBMs (e.g., Direct-To-Consumers Genetic Testing, DTC-GT); “precision medi-

cine implementation” was defined as constituting the process of translating newly discovered

omics-based biomarkers (OBMs) for purposes of clinical or population health use; OBMs were

taken to be either candidate genetic biomarkers that are in the process of being clinically vali-

dated, or those that are already validated and in clinical use. Additional participation eligibility

criteria included working on Africa-based precision or genomic medicine projects i.e., study

participants who are primarily in continental Africa.

Participants were asked to answer four short sections in the questionnaire. The first three

sections related to the three factors (constructs) thought to influence PM implementation. The

fourth section was designed to elicit demographic information about participants, including

their age, gender and organizational affiliations. Regarding factors influencing PM implemen-

tation, participants were asked to rate their considered opinion on a five point “strongly agree”

to “strongly disagree” Likert-type scale. The items that participants were responding to are

listed in Table 1. Their responses formed the dataset underlying the analysis in this paper. As

described in the Results section, differences in participant responses in relation to the organi-

zation type they belonged to was extensively explored and reported upon.

Measures. The measurement tool was earlier developed in a pretest study; its validation

was presented in a separate paper that is related to the present study. A pretest study was car-

ried out to test and validate the data collection tool and assess whether the proposed methods

of data collection and analysis would meet study objectives. This was done to ensure appropri-

ate domain sampling, good factor structure and high internal consistency. The pretest study

was carried out with 31 subject matter experts (SMEs) that were not selected for participation

in the mainstream data collection phase. From the pretest study, good scale score reliability

(internal measurement consistency) for the entire tool was confirmed for the study population

(omega (ωt) = 0.95). An omega measurement consistency coefficient of 0.95 indicated a high

and accurate approximation of the tool’s reliability [38]. In confirmatory factor analysis

(CFA), satisfactory values of the fit indices were obtained (comparative fit index, CFI = 0.98;

Tucker-Lewis Index, TLI = 0.97; root mean square error of approximation, RMSEA = 0.06;

standardized root mean square residual, SRMR = 0.2). The tool was found to have an
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appropriate level of validity and reliability. Measurement indicators for the three factors are

listed in Table 1. Indicators SQ101 to SQ106 for the exogenous variable “OBM” and

SQ301-SQ306 and SQ401-SQ404 for the endogenous variables “UsR” and “ImO” respectively.

Data analysis

The latent variable mediation analysis model under consideration in this paper has each of its

3 latent variables measured by a set of indicators: SQ101 to SQ106 for the exogenous variable

“OBM”, SQ301-SQ306 and SQ401-SQ404 for the endogenous variables “UsR” and “ImO”

respectively. The indirect effect, the product of coefficients a�b as presented in Fig 2 and

Table 2 corresponds to the effect of the independent latent variable “OBM” on the outcome

variable, “ImO”, through the mediator “UsR”. The mediator is the process that explains why

changes in the independent variable might result in changes in the outcome.

The “likert” package ver.1.3.5 [17], an R package designed to help in analyzing and visualiz-

ing Likert-type items, was used to provide descriptive statistics and summarize the Likert type

responses. Data was then subjected to statistical analysis using “lavaan” (acronym for latent

variable analysis) version 0.6–3 [18, 19] in R version 3.6.0 [20]. The package was chosen for its

collection of tools that can be used to explore, estimate, and understand a wide family of latent

variable models, including factor analysis, structural equation, longitudinal, multilevel, latent

class, item response, and missing data models. We applied structural equation modeling

(SEM) principles, using a conceptual model, path analysis and a system of linked regression-

style equations to capture relationships within a web of observed and unobserved variables.

We estimated the relationships among the three latent variables, as well as tested the overall

Table 1. Latent variable indicators.

SQ101 It is easy to obtain the right quantity of bio-samples to assure accuracy in biomarker test results

SQ102 It is easy to obtain specified quality of bio-samples to ensure accuracy in the biomarker

SQ103 The bio-marker has previously been tested among people with similar characteristics as the present target

population

SQ104 Genetic counselling is part of the procedures when undertaking testing using this bio-marker

SQ105 The turn-around time for obtaining results after the genetic/omics biomarker test is reasonable for the

intended use.

SQ106 There are step-by-step instructions on how to obtain samples from individuals for biomarker tests.

SQ301 Participants easily give consent to obtain samples from them for the purpose of biomarker testing

SQ302 Getting buy-in from the public (patients, and/or providers) in carrying out the biomarker testing is easy

SQ303 Publicity and free information publicly available about the genetic biomarker make potential users to

willingly ask for the biomarker test

SQ304 Using this genetic/omics test has been regarded by most practitioners as an appropriate mechanism for

patient management (e.g. aid in drug dosage decisions, in carrying fetuses to term or carry out prophylactic

surgery).

SQ305 There is a considerable ‘pushback’ from practitioners as they feel the genetic/omics test is not consistent

with their skills, role, or job expectations.

SQ306 Targeted individuals feel that the genetic test is in line with their family members’ wishes, desires and

expectations

SQ401 The genetic test is yet to be used as a routine practice within its intended service settings

SQ402 Practitioners are more willing to order the genetic/omics test more often whenever they deem it necessary

to do so

SQ403 The number of eligible persons able to access the genetic/omics test is far less than the total number

potentially in need of the service

SQ404 So far, the authorities that are supposed to acquire the biomarker testing service have communicated a

decision to fully fund its roll out

https://doi.org/10.1371/journal.pone.0240585.t001
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structural model in addition to individual paths. SEM was used to obtain effect sizes simulta-

neously from the exogenous variable to the mediator and mediator to the outcome variable, as

well as the combined mediation effect, corrected for any attenuating effects of the measure-

ment error (residual errors).

Although the Baron & Kenny method for testing mediation variables [39] is popular as a

normal theory (NT) approach, we applied the alternative approach described by Shrout and

Bolger [40] based on bootstrap data resampling procedures to establish confidence intervals

for testing the statistical significance of our indirect effect. Standard errors (SE) were also boot-

strapped. Bootstrap methods treat the collected research sample as a “population reservoir”

from which a large number of random samples are drawn with continuous replacement such

that the probability of selection for any given case remains equal over every random draw [40].

We requested 5,000 bootstrap samples, drawn by default with replacement from the full data

set of 270 cases (our empirical sample) at 90% confidence intervals. We used the maximum

likelihood (ML) estimation method. Although ML estimation method is usually good for con-

tinuous variables, it has been observed that ordinal variables with many categories, such as

5-point Likert-type scales of agreement, are usually safely treated as “continuous” [41].

The bias-corrected (but not accelerated) confidence interval method was selected. Estimates

of indirect, direct, and total effects, ‘a’, ‘b’, and ‘c’ path coefficients and other parameters

were requested for through the “lavaan” “parameterEstimates” function. The “parameterEsti-

mates” function estimates the bootstrap parameters and extracts not only the values of the esti-

mated parameters, but also the standard errors, the z-values, the standardized parameter

values.

Multigroup analysis. Even though factors hypothesized to affect PM implementation in

this study may seem to be premised on a multilevel framework (e.g. innovation-level factors,

individual-level factors, and organizational factors, etc.), based on the available data, a multi-

level structural equation modeling was not applicable. Previous research has shown that multi-

level structural equation modeling is appropriate in handling clustered or grouped multivari-

ate data; it demonstrates how levels of the within-group endogenous and exogenous variables

vary over between-group units, hence explaining between-group variation of within-group

variables [42]. Our data however, contained latent variables and indicators that only varied

between units (study participants) and therefore lacked nested clusters, i.e., it lacked variables

measured at different levels of sampling hierarchy.

Table 2. Parameter estimates for fitted mediation model.

lhs op rhs label est se ci.lower ci.upper std.lv std.all std.nox

UsR ~ OBM a -0.382 0.492 -2.722 -0.084 -0.105 -0.105 -0.105

ImO ~ OBM c -1.885 1.668 -56.230 -1.004 -0.380 -0.380 -0.380

ImO ~ UsR b -0.945 1.430 -4.682 -0.283 -0.694 -0.694 -0.694

direct : = c direct -1.885 1.668 -56.230 -1.004 -0.380 -0.380 -0.380

indirect : = a�b indirect 0.361 1.300 0.030 9.944 0.073 0.073 0.073

total : = c+(a�b) total -1.523 0.744 -6.266 -0.924 -0.307 -0.307 -0.307

UsR r2 UsR 0.011

ImO r2 ImO 0.571

Key: lhs and rhs = Left and right hand side(of the model equation); op = operator (e.g., ~ = ‘regression operator); est = unstandardized estimates; r2 = r squared; ci.lower

and ci.upper = lower and upper confidence intervals at 90% confidence level; Std.lv = only the latent and not the observed variables are standardized; Std.all = fully

standardized solution (both latent and observed) variables are standardized to have a variance of one. std.nox = estimates in which the latent variables and endogenous

observed variables are standardized but the exogenous observed variables are left in their raw scale, i.e. partially standardized estimates.

https://doi.org/10.1371/journal.pone.0240585.t002
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Results and discussion

Demographic characteristics of participants

Of a total of 442 who showed an initial attempt to complete the survey as registered on the

study’s online platform, 270 (61%) participants went ahead to successfully complete the survey.

This implies that 172 attempters probably “abandoned” the survey.

Majority of participants belonged to the 26-45-year age bracket (>52%), whereas there

were more males (70%) than females (30%). There were more participants affiliated to aca-

demic institutions (>82%) than industry (<18%) in the survey. A summary of basic demo-

graphic data of study participants is presented in Fig 3.

Descriptive statistics that were obtained for the data included linearity and multivariate

normality evaluated for the 270 participants with complete data using R package ‘psych’ ver-

sion 1.8.12 [43]. The squared Mahalanobis distance was plotted against quantiles of the chi-

square distribution to detect detect outliers in multivariate data, as shown in Fig 4. Because

Fig 3. Demographic summary of study participants.

https://doi.org/10.1371/journal.pone.0240585.g003

Fig 4. Quantile-Quantile (Q-Q) plot describing squared Mahalanobis distance (y-axis) against the quantiles of the chi-

square distribution (x-axis).

https://doi.org/10.1371/journal.pone.0240585.g004
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points in the plot tended to fall along a straight line, suggesting that the squared Mahalanobis

distance has an approximate chi-squared distribution. We therefore concluded that the data

were distributed as multivariate normal (MVN). Despite one item being an outlier, its inclu-

sion in the data set did not alter results, and therefore all items were included for further

analysis.

Descriptive statistics. Fig 5A through 5c are diverging two-way bar-charts that graphi-

cally present the responses obtained from study participants. The charts show comparisons in

percentages within subgroups of the survey population. All bars have equal vertical thickness,

although panel heights are proportional to the number of bars in each graph. The x-axis labels

are displayed with positive numbers on either side of the center reference point (0). The bars

are horizontal to conveniently accommodate group and indicator labels as displayed horizon-

tally on the y-axis. Each indicator is mapped onto a pair of stacked bar-chart. Responses corre-

spond to each indicator of the three constructs as presented in the measures section of this

paper. “OBM”, “UsR” each has 6 by 2 panels while “ImO” has 4 by 2. Each indicator is re-

sponded to by two groups as indicated by group affiliation (academic or industry). Responses

in percentages of each respondent subgroup who agreed with the indicator statement are

shown to the right; the percentages who disagree are shown to the left; the center indicates

those in neutral (neither agreeing nor disagreeing), all adding up to 100%. For instance, in

Fig 5. A. Survey responses to questionnaire section on characteristics of omics biomarkers. B. Survey responses on public genomic awareness presented as “user

response”(UsR). C. Diverging stacked bar-charts for survey responses on implementation outcomes (ImO) construct.

https://doi.org/10.1371/journal.pone.0240585.g005
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Fig 5A, there were no “strongly disagree” and “disagree” responses for the item “SQ101: It is

easy to obtain the right quantity of bio-samples to assure accuracy in biomarker test results”

among the “academic” subgroup (hence 0% at the far right of the stacked bar-chart corre-

sponding to the item. Neither was there any “Neutral” response for this item. All participants

(100%) in the academic subgroup agreed to the same statement, though approximately 60% of

them “agreed” while 40% “strongly agreed”. On the other hand, among the “Industry” sub-

group, whereas there were none (0%) disagreements on item “SQ101”, 1% of them were “Neu-

tral”. This means 99% of this subgroup agreed with the SQ101 statement. Each portion of the

bar has a different color: left side is brown while right side is green, with a grey center. Darker

colors indicate stronger agreement/stronger disagreement. The bar for the neutral position is

split, half to the left side of the vertical zero reference line and half to the right side.

Fig 5A presents the survey responses on characteristics of omics biomarkers. As shown in

the bar-chart, both participant subgroups gave similar agreeing responses to the first two

items, while equally agreeing and disagreeing on the third item seeking their opinion on

“Right number of bio-samples”, “Specified bio-sample quality” and “Population of interest”,

respectively. Given the extreme care that is taken in ensuring accuracy of biomarker tests, seek-

ing right amounts and qualities of bio-samples is necessary. Therefore, the response pattern to

the first two items was expected. However, the responses given for the next four items ranging

from SQ103 to SQ106 were surprising. The responses imply that on average, characteristics of

population of interest and genetic counselling given to participants before obtaining bio-sam-

ples from them are generally not attended to with respect to biomarker testing among patients

or study participants. On the other hand, genetic test results turnaround times seem not to be

a serious concern among those in industry (e.g., practitioners) as compared to those in acade-

mia, as evidenced by the 12% disagreement margin between the two subgroups. 33% and 42%

of those affiliated to industry and academia respectively disagreed with the statement “SQ106:

There are step-by-step instructions on how to obtain samples from individuals for biomarker

tests”. This implies that there is more caution in handling bio-samples from patients/partici-

pants in “industry” settings (e.g., obtaining bio-samples from patients in clinical settings) than

in academic biomedical research settings. Further analysis of these responses is beyond the

scope of this paper but are presented in another paper related to this study.

Fig 5B presents survey responses on public genomic awareness as represented as “user

response”(UsR). As shown in the bar-chart, as compared to industry-affiliated participants,

slightly more academic-affiliated participants disagreed with the statement “SQ301: Partici-

pants easily give consent to obtain samples from them for the purpose of biomarker testing”.

This was expected because people are more likely to hesitate in giving consent for bio-samples

in academic research settings than they would in clinical settings. Same expectation was

expected in responses to “SQ306: Targeted individuals feel that the genetic test is in line with

their family members’ wishes, desires and expectations”. In this case, more in academia than

in industry (difference of 8%) disagreed with this item. The rest of the responses to items in

this construct can be seen in Fig 5B. Each panel of the plot shows a breakdown of the responses

into categories defined by the criterion listed in its left strip label and the legend at the bottom

of the plot.

Fig 5C presents survey responses on the construct “Implementation outcomes (ImO)”. As

shown, out of the four items measuring this construct, the item “SQ404: So far, the authorities

that are supposed to acquire the biomarker testing service have communicated a decision to

fully fund its roll out” received the greatest “Neutral” responses (31% and 22% among industry

and academia respectively). This may be reflective of the relatively long time it takes for those

in health system authority to communicate decisions on adoption of new biomarkers for rou-

tine use. The rest of participant responses are presented on “ImO” are presented in Fig 5C.

PLOS ONE The mediating effects of public genomic knowledge in precision medicine implementation

PLOS ONE | https://doi.org/10.1371/journal.pone.0240585 October 14, 2020 12 / 20

https://doi.org/10.1371/journal.pone.0240585


Inferential statistics. The goal of biotechnological advances is to effect improved health

outcomes. This study sought to test what effects perceptions about characteristics of omics-

based biomarkers, also referred to as molecular tests and/or genetic biomarkers, may be having

on precision medicine implementation outcomes. The study also sought to explain the process

through which such effects occur, i.e. the mediation effect of public genomic awareness (PGA)

on the relationship between “OBM” and “ImO”. In this section, we test a set of three hypothe-

ses whose outcome logically infers these correlational pathways. Statistical significance of effect

sizes is used to infer theoretical and practical importance of the effects.

Fig 6 represent the latent variable mediation model with the three latent variables: “OBM”,

“UsR” and “ImO”, each measured by a set of observable indicators as shown. The model

shows the relationships of characteristics of omics-based biomarkers (OBM), public genomic

awareness represented by user response (UsR) and precision medicine implementation out-

comes (ImO). Path ‘a’ is the coefficient for the exogenous variable “OBM” as it effects mediator

“UsR”. Paths ‘b’ and ‘c’ are the coefficients in the model predicting the dependent variable

“ImO” from both “UsR” and “OBM”, respectively. Path ‘c’ quantifies the direct effect of

“OBM”, whereas the product of (a�b) quantifies the indirect effect of “OBM” on “ImO”

through “UsR”, while tracing the effect of “OBM” on the outcome variable, through the media-

tor. The effect sizes are based on standardized model parameters. For instance, the indirect

effect is interpreted as the amount by which two cases that differ by one unit on “OBM” are

expected to differ on “ImO” through the effect of “OBM” on “UsR”, which in turn affects

“ImO”. In other words, the mediator explains why changes in the independent variable might

result in changes in the outcome. The direct effect is interpreted as the part of the effect of

‘OBM’ on ‘ImO’ that is independent of the pathway through ‘UsR’.

The mediation model was specified using appropriate syntax in lavaan version 0.6–3 [18,

19] (the r code is available). However, the model’s modification indices (MI) suggested modifi-

cation paths to improve the fit of the model. Almost all the modification indices were consid-

ered but others were not implemented owing to conflict with theory informing the model. The

mediation model was then updated.

Fig 6. Structural model showing the relationship between omics-based biomarkers (OBM), public genomic

awareness represented by user response (UsR) and precision medicine implementation outcomes (ImO). Red lines

indicate estimated parameters while green lines indicate fixed parameters.

https://doi.org/10.1371/journal.pone.0240585.g006
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Examination of ANOVA results after testing the overall fit differences between the two

models (the updated and initial model) indicated an improved updated model with a lower chi

square value(11873.71 (improved) vs 11907.05 (initial model). The updated model was also

better fitting than the initial model as indicated by a much lower Akaike Information Criterion

(AIC = 91 vs 92) and Bayesian Information Criteria (BIC = 11711.79 vs 11748.72). Therefore,

the updated model was used for mediation analysis and for hypothesis testing.

Since the product (a�b) in mediation analysis is often non-normally distributed as

explained in [44], we used the bootstrap methodology [45] for more accurate standard errors

and confidence intervals. Generally, bootstrapped confidence intervals and standard errors are

more accurate for significance testing because they do not depend on an assumption of nor-

mality [45]. The summarized parameter outputs for the updated fitted mediation model are

presented in Table 2. The measurement model showed an acceptable fit according to simple

SEM fit statistics and indices: Root Mean Square Error of Approximation (RMSEA) = 0.056;

Standardized root mean square residual (SRMR) = 0.070. Rule of thumb guidelines are that

RMSEA�0.06 and SRMR� 0.08 for acceptable and/or good fitting models [46].

Labels ‘a’, ‘b’, and ‘c’ are regression weights (as also illustrated in Fig 4). The 90% CI for

(a�b) was obtained by a bias-corrected bootstrap, with 5,000 resamples.

Hypotheses interpretation. To appropriate sample effect sizes to the general population,

bootstrap confidence intervals for the effect sizes were used. Confidence intervals (CIs) are

often recommended for effect size interpretation [47] as they show the range within which the

true population effect is likely to lie. Therefore, we used confidence intervals, rather than p val-

ues, in ascertaining statistical significance of effect sizes. We used bias-corrected bootstrap

confidence intervals based on 5000 bootstrap samples at 90% confidence level. To find a mean-

ingful and comparable scale, and because their coefficients are standardized, effect sizes are

interpreted in standard deviation units.

H1. Characteristics of an omics-based biomarker (OBM) affect user response (UsR)

From Table 2, the effect size represented by path ‘a’ corresponds to the effect size of percep-

tions on characteristics of OBM on the mediating variable, user response (UsR). Given that the

standardized regression coefficient can be used as an effect size measure for the ‘a’ coefficient

[48], and that a correlation coefficient can be interpreted as the number of standard deviations

that the dependent variable is expected to increase for a change of one standard deviation in

the independent variable:

From Table 2, a = -0.105 (90% CI [-2.7217556, -0.0843599]).

Since the lower and upper confidence interval bounds do not contain zero, we can safely

conclude that the influence (effect size) of characteristics of omics biomarkers (OBM) on user

response (UsR) is non-zero in magnitude at 90% confidence level (0.1 SL). Also, since the con-

fidence interval does not contain the null hypothesis value, we therefore reject the null hypoth-

esis that the true influence of OBM on UsR (the ‘a’ effect size) is zero at 0.1 level of

significance, in favor of the alternative hypothesis that characteristics of an omics-based bio-

marker (OBM) affect user response (UsR).

The point estimate of -0.105 corresponding to the value of standardized ‘a’ coefficient

implies that for every (one) upward standard deviation change in characteristics of omics bio-

marker (OBM) in the population, there is a corresponding decrease of 0.105 standard devia-

tions in user response (UsR) controlling for implementation outcomes (ImO) in the model.

This is surprising given the expectation that as the public (patients and providers) become

more aware of characteristics of omics biomarkers, their response should be positive or more

favorable. But this expectation is not supported by the data from our sample.
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The most probable explanation for this kind of negative observation could be related to the

current dilemma in precision medicine of balancing the ever-advancing biotechnology with

an appropriate evidence threshold for moving promising technology from research to practice.

In part, initial omics technology discoveries have fueled increased expectations of major break-

throughs in medicine. However, as deeper insights are uncovered about genetic variations,

their interactions and products, a disconcerting mismatch between expectations and reality

sets in. There are few diagnostic and screening tests based on individual genetic makeup, dis-

ease biomarkers and other genomics applications with proven clinical utility, e.g. HLA-B�

5701 (used in pharmacogenomics tests before starting HIV patients on abacavir to reduce the

risk of hypersensitivity reaction) [49], and HFE testing (screening asymptomatic persons for

HFE mutations) [50]. On the other hand, even though there are many such promising geno-

mics applications (OBMs), most lack sufficient clinical utility evidence to support their routine

use in clinical practice or population screening [51].

H2. User response (UsR) through public genomic engagement affects precision medicine imple-
mentation outcomes (ImO)

From Table 2, the path representing ‘b’ codes the relation between the mediating variable

(UsR) and the outcome variable (ImO) adjusted for the independent variable (OBM).

From Table 2: b = -0.694 (90% CI [-4.68, -0.283]).

Just as coefficient ‘a’ above, the lower and upper confidence interval bounds for coefficient

‘b’ do not contain zero, hence we can safely conclude that the effect size of user response (UsR)

on implementation outcomes (ImO) is non-zero in magnitude (confidence level = 90%).

Given that the confidence interval does not contain the null hypothesis value of 0, we reject the

null hypothesis that the true population influence of UsR on ImO (‘b’) is zero (SL = 0.1). We

therefore accept the alternative hypothesis that user response (UsR) through public genomic

awareness significantly affects precision medicine implementation outcomes (ImO).

The point estimate of ‘b’ is negative at -0.694. This implies that for every standard deviation

change in ‘user response’ in the population, there is a corresponding decrease of 0.694 stan-

dard deviations in implementation outcomes (ImO), controlling for characteristics of omics

biomarkers in the model. Once again, the expectation is that more public genomic knowledge

should result in an upsurge of omics biomarker uptake (more implementation outcomes). A

possible reason for this surprise finding could still be linked to perceived quality of genomic

evidence, as explained under hypothesis H1 above.

Public genomic involvement is increasingly becoming recognized, with emphasis on the

need to educate and consult the general public and those in clinical practice [52]. However,

limited understanding of public engagement particularities and modalities, as well as the type

of public to be involved, the methods of involving the public and the need to assess effective-

ness could explain the counterproductive effect as observed in this PM implementation model.

The model’s analysis corroborates other research that have been carried out on public genomic

awareness of recent. For instance, a recent report commissioned to investigate the public’s

awareness of issues around genomics in the UK, it was observed that relatively few of the pub-

lic feel that they are well informed around genomics, with only one in ten (11%) stating they

knew a great deal or a fair amount and a significant minority (37%) reporting they know noth-

ing at all about this subject [53]. The report concluded that attitudes towards genomics is

mixed which is unsurprising given the lack of awareness of the topic, while concerns about

ethical and data protection issues raised by genomic research were equally disconcertingly

divided [53]. Existing literature also point to evident mild to negative attitudes towards OBMs,

and genetic testing, particularly due to anticipated emotional impact of test results, and con-

cerns about confidentiality, stigma, and discrimination [54].
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H3. User response (UsR) due to public genomic awareness mediates the relationship between
characteristic of an omics-based biomarker(OBM) and precision medicine implementation
outcomes (ImO)

The indirect effect (coefficients (a�b)) of characteristic of an omics-based biomarker(OBM)

on implementation outcomes (ImO) through user response (UsR) was non-zero based on a

90% bias-corrected bootstrap confidence interval (CI = 0.030, 9.944), with a standardized

point estimate of 0.073 (Table 2). This statistical evidence led to the rejection of the null

hypothesis which stated that ‘at 90% confidence level, the user response (UsR) due to public

genomic awareness does not mediates the relationship between characteristic of an omics-

based biomarker(OBM) and precision medicine implementation outcomes (ImO)’. Therefore,

the alternative hypothesis was adopted.

This analysis showed that implementation outcome (ImO) increases by 0.073 standard

deviations for every 1 SD increase in the characteristics of omics biomarkers (OBM) in the

population indirectly via user response (UsR).

This finding is consistent with observations about holistic public genomic engagement as a

crucial process in integrating genomics into healthcare systems, both at research (especially

with regard to bio-sample donation) and practice settings [55]. Public acceptance of omics

based biomarkers has variously been cited as a critical aspect in realizing the potential of preci-

sion medicine to improve health outcomes [56]. Additionally, issues of problematized partici-

pant consents have been resolved through genomic engagement that helps build institutional

trust among the public [57].

An important question to consider in the above hypotheses testing and interpretation is

whether any unmeasured and/or omitted variables might have been a basis for inferential bias.

Intuitively, the superlative solution to the unmeasured variables is to reliably measure all exog-

enous and endogenous variables, i.e., variables that are causes of an endogenous (dependent)

variable and are correlated with other causes of that endogenous variable [58]. Although mea-

suring for the additional variables, building them into the model and statistically controlling

for them would potentially be an important strategy for dealing with such confounds, it has

been shown that such statistical control has a shortcoming in that it is useful only in ruling out

specific, known and measurable confounds, rather than an entire class of alternative models

[59]. Consequently, and in line with existing literature [58–60], we considered that in our case,

measuring all potentially impactful variables for the model would be impossible to achieve.

Instead we considered the operative question of the degree to which the unavoidable unmea-

sured variables potentially biased estimates of path coefficients and provided a basis for alter-

native explanations of our findings. Alternative models having to do with uncontrolled

common causes may be less plausible because data analysis was conducted in a setting known

to eliminate, or at least substantially reduce, the impact of important confounds (unmeasured

third variables). This is because multiple indicators used to measure the latent variables for the

model allowed for the modelling of correlated errors. This meant that the mediated effect, rep-

resented by coefficients ‘a’ and ‘b’, is couched in terms of error-free latent variables; thus, these

values are corrected for imperfect reliability in the indicators and should be more accurate.

This therefore forms the basis of the observation that based on prior knowledge, the research

design used, and empirical analysis of the data used in this study, alternative models to the one

presented can be ruled out.

Conclusion

In this study, we constructed a precision medicine implementation mediated model applying

SEM analysis using various r packages, including ‘lavaan’ and ‘likert’ packages. Three
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hypotheses raised in the study relating to effect sizes and their significance were tested and

confirmed. The relationships between characteristics of omics biomarkers (OBM) as the exog-

enous latent variable and user response (UsR) and implementation outcomes (ImO) as the

endogenous variables were not only successfully predicted, but the mechanisms that underlie

the relationship among these variables were investigated and explained. Model analysis sug-

gests that failure or success of precision medicine implementation efforts depend on the per-

ceived characteristics of OBMs. However, this effect is not entirely directly flowing from this

perception as user response acts indirectly to influence it. The practical and theoretical impli-

cations of the intermediation as observed were discussed.

This study contributes to our understanding of the mediating processes through which pre-

cision medicine implementation outcomes are linked with perceived advantages associated

with characteristics of omics biomarkers. The results have both theoretical and practice impli-

cations for biomedical genomics research and clinical genomics, respectively. For instance, the

results imply better ways have to be devised to more effectively engage the public in addressing

extended family support for cascade screening, especially for monogenic hereditary conditions

like BRCA-related breast cancer and colorectal cancer in Lynch syndrome families. At basic

biomedical research level, results suggest an integrated biomarker development pipeline, with

early consideration of factors that may influence biomarker uptake. The results are also rele-

vant at health systems level in indicating which factors should be addressed for successful pre-

cision medicine implementation. Admittedly however, this study had some limitations in

terms of sample size, unmeasured variables and inadequate representation particularly on the

gender and age aspects. Even though some of these limitations were variously mitigated in the

study, there was not enough data to particularly explore and show if there were any differenti-

ated effects across subgroups, e.g., gender and age. More data would be needed to assess

moderation effects in the structural equation model.
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