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Abstract
The S100 protein family contains 20 functionally expressed members, which are commonly dysregulated in
cancer. Their wide range of functions includes cell proliferation, cell differentiation, regulation of transcription
factors, inflammation, chemotaxis, and angiogenesis. S100 proteins have in several types of cancer proven to be
biomarkers for disease progression and prognosis. Acute myeloid leukemia (AML) is a highly heterogeneous and
aggressive disease in which immature myeloblasts replace normal hematopoietic cells in the bone marrow. This
review focuses on the S100 protein family members, which commonly are dysregulated in AML, and on the
consequences of their dysregulation in the disorder. Like in other cancers, it appears as if S100 proteins are
potential biomarkers for leukemogenesis. Furthermore, several S100 members seem to be involved in maintaining
the leukemic phenotype. For these reasons, specific S100 proteins might serve as prognostic biomarkers,
especially in the patient subset with intermediate/undetermined risk, and as potential targets for patient-adjusted
therapy. Because the question of the most suitable candidate S100 biomarkers in AML still is under discussion,
because particular AML subgroups lead to specific S100 signatures, and because downstream effects and the
significance of co-expression of potential S100 binding partners in AML are not fully elucidated yet, we conclude
that a panel of S100 proteins will probably be best suited for prognostic purposes.
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cute myeloid leukemia (AML) comprises a biologically and
netically heterogeneous group of disorders characterized by an
cumulation of immature myeloblasts in the bone marrow [1,2].
hese blasts proliferate rapidly and have a block in differentiation and
creased resistance towards apoptosis; as a result, they outgrow
rmal hematopoietic cells. The median age at diagnosis is about
years, and in most cases, AML occurs de novo; but AML can also
treatment-related or be secondary to myelodysplastic syndromes
DSs) or myeloproliferative neoplasia [3]. The backbone of AML

eatment for younger/fit patients is induction therapy with
tarabine in combination with an anthracyclin, followed by
nsolidation therapy [4]. Due to a high rate of relapse, the overall
year survival is below 50% also for those patients who can receive
e most intensive treatment; for the remaining patients, the
ognosis is even worse [4,5].
AML is highly heterogeneous with regard to cell morphology,
togenetics, and gene mutations. More mature blasts are character-
ed by their loss of the stem cell marker CD34 [6]. Morphologically,
ML has been divided into eight distinct groups in the FAB system
AB M0-M7), where the cells are categorized as showing no/
inimal signs of differentiation (FAB M0/M1) or presenting a more
ature phenotype (FAB M5-7) [7]. Out of these groups, only FAB
3 — acute promyelocytic leukemia (APL) — entails its own
eatment regimen [8] and is now considered by hematologists as a
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stinct disorder rather than an AML subtype. Furthermore, 50%-
% of AML patients carry chromosomal alterations, which are
vided into low/favorable, intermediate, and high/adverse risk [2,8].
inally, more than half of the patients show gene mutations in their
ukemic cells, with FMS-related tyrosine kinase 3-internal tandem
plications (Flt3-ITD, negative prognosis) and nucleophosmin
sertions (NPM1-ins, positive prognosis in absence of Flt3-ITD)
ing the most prominent [4,9]. In recent years, mutations in isoci-
ate dehydrogenases 1 and 2 (IDH1/2), which are present in about
% of AML patients, have been particularly in the focus of research
.g., [10,11]).
Due to its aggressiveness and still abysmal outcome as compared to,
r instance, childhood acute lymphoblastic leukemia (ALL), there is a
ed for more patient-adjusted therapy than standard induction and
nsolidation treatment in AML. Furthermore, because AML is highly
terogeneous, identifying predictive biomarkers and/or targets that are
mmon across AML subgroups would be of great value. S100 proteins
ight have the potential to predict prognosis in, for instance, the
tients who fall in the relatively large AML category with intermediate
sk or to aid as suitable targets for tailored antileukemic treatment.

he S100 Protein Family

tructure and Function
The S100 protein family is restricted to vertebrates and comprises
functionally expressed proteins. Additionally, the related S100

sed type protein (SFTP) family contains seven members. The
00A subgroup (S100A1-S100A16, where S100A15 has been
named into S100A7A as it proved to be a paralog of S100A7 [12]),
gether with the SFTP family, is encoded on chromosome 1q21 in
e so-called epidermal differentiation complex, a hotspot for
nomic rearrangements [13,14]. The remaining four members are
read throughout the genome: S100B is encoded on chromosome
; S100G is encoded on the X chromosome; S100P is encoded on
romosome 4; and, finally, S100Z is located to chromosome 5 [15].
S100 proteins exist as monomers, homo- and heterodimers, and
ultimers; the various forms employ distinct functions, e.g.,
tracellular functions appear to be conducted by oligomers [16]. The
otein family, with exception of S100A10 [15], binds Ca2+ — and
me members additionally can bind Zn2+, Cu2+, and Mn2+ [17] —
hen high levels of calcium are available, which is in contrast to
nstitutively expressed Ca2+-binding proteins like calmodulin [18].
ach S100 protein contains two Ca2+-binding helix-loop-helix motifs,
-called EF-hands [19]. The C-terminal, canonical EF-hand contains
amino acids and has a 10-50 times higher Ca2+-binding affinity than
e 14–amino acid containing N-terminal, S100-specific pseudo–EF-
nd [20]. Between these two EF-hands is a hinge spanning 10-12
ino acids [20], which is replaced by multiple tandem repeats in the
TP family [21]. Upon binding of Ca2+, the proteins undergo
nformational changes, which expose hydrophobic amino acids in the
st helix of the C-terminal EF-hand and in the hinge region, which in
ccession interact with hydrophobic patches of the target protein
3,22]. The affinity towards calcium is increased up to 300 times
ring this process [23,24]. Since the hydrophobic interaction is
sential for ligand recognition, the hydrophobic patches of S100
oteins are the regions with the lowest sequence similarities among its
embers [20].
Most S100 proteins are Ca2+ sensors and will bind targets, and
us translate the changes in intracellular calcium concentrations into
sponse, after influx of Ca2+ through voltage-gated or receptor-
ediated channels [22]. Others, like S100G [15], are Ca2+ buffers
d control calcium homeostasis, but the boundaries between these
o groups appear to be more blurred than initially assumed [22].
S100 proteins have a wide variation of functions; the reasons for that
e: 1) tissue-, cell-, and time-dependent expression [13,22]; 2)
merization and oligomerization with different partners [16]; 3)
nding of different metal ions and with varying affinities [16]; 4)
sttranslationalmodifications [13]; and 5) employment of intracellular
nctions, extracellular functions, or both [22]. Among important
tracellular functions are the regulation of cell proliferation, cell
fferentiation, and apoptosis [15], in addition to targeting enzymes,
bunits of the cytoskeleton like F-actin and myosin, nucleic acids, and
anscription factors [16,25]. Outside the cells, the S100 family
teracts with a variety of receptors, with the most important being G-
otein–coupled receptors, scavenger receptors such as CD36 [15], toll-
e receptor 4 (TLR4) [26], and the S100 general receptor for advanced
ycation end products (RAGE) [16]. The latter, in turn, induces the
rmation of reactive oxygen species (ROS) and activates MAPK
thways, NFκB and Stat3, the PI3K-Akt-mTOR pathway, and small
TPases [16,27]. S100 proteins also act as cytokines or damage-
sociated molecular patterns (DAMPs or alarmins) themselves [28] as
ey are involved in processes such as induction of cytokines and growth
ctors, activation of both the innate and adaptive immune system,
emotaxis and cell migration, and tissue development and repair
5,25]. Figure 1 highlights the S100 downstream signaling pathways
ith most impact on tumorigenesis but also anticancerous effects such
cell differentiation.
With regard to all these diverse functions, of which many are
sential in cancer development and progression, and the fact that
00 proteins are prone to genetic rearrangements at 1q21, it may not
me as a surprise that S100 proteins frequently are dysregulated in
ncer [13].

100 Proteins in Tumorigenesis
There is now consensus that cancer results from the interaction
tween tumor cells (the seed) and themicroenvironment (the soil). This
teraction drives processes necessary for cancer progression, such as
mor cell growth, angiogenesis, and tumor invasion. Cross talk between
mor cells and stromal elements, e.g., through cytokine secretion, may
so stimulate cancer cell growth but in addition remodels the stromal
che towards a tumor-promoting environment [29]. Furthermore,
mor cells can attract immune cells, e.g., leukocytes, which secrete
owth factors and cytokines that either might support the tumor niche
inhibit functionally competent immune cells [29]. The processes
volved inmetastasis are similar to those of primary tumors, and both are
ten preceded by chronic inflammation [29]. Regarding AML, one may
e the term “niche-driven oncogenesis” as remodeling of the
esenchymal niche can induce cytogenetic alterations in hematopoietic
em cells (HSCs), eventually resulting in AML [30].
S100 proteins contribute to tumorigenesis and metastasis in various
ays. Members of the S100 family can provide a local inflammatory
vironment for cancer development and progression [20]. S100B
regulation in malignant gliomas, for instance, induces CCL2
pression and subsequently enhances infiltration of tumor-associated
acrophages, which are important components in inflammation [31].
s soluble mediators, S100 proteins themselves are involved in the cross
lk between tumor cells and the stroma. They can also function as
emoattractants. An example for this behavior is S100A4: tumor cells
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Figure 1. Important S100 signaling pathways. Most S100 proteins signal via the RAGE receptor, whereas a small selection also signals via
TLR4. The pathways sum up the most important downstream signaling effects of S100A8 and S100A9, the most thoroughly studied S100
proteins. S100A8 can induce autophagy via RAGE, while S100A9may induce cell differentiation via TLR4/Erk-signaling. Additionally, many
S100 members can bind p53; the figure highlights the three proteins that are recognized inhibitors of the tumor suppressor.
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duce the secretion of this mediator from stromal fibroblasts [28].
00A4 then modifies the tumor microenvironment through its
nction as chemoattractant which leads to macrophage and T-cell
filtration into the tumor niche [29]. Furthermore, S100 proteins can
hibit their tumorigenic effect through receptor binding and
wnstream signaling [29]. The RAGE receptor for instance is
pressed on many cells in the tumor environment, e.g., endothelial
lls and fibroblasts [27].
Dysregulation of S100 proteins is a common feature in cancer, and
most cancers, the protein expression is upregulated [13]. It appears
if every type of cancer has its specific S100 profile, and the latter
ay also vary among different stages and subtypes within a
alignancy [13]. S100 profiling for cancer is further complicated
the fact that S100 protein overexpression also is associated with
rious noncancerous conditions, such as cardiovascular, neurolog-
al, and inflammatory diseases [13]. In some cancers, individual
00 proteins even appear to act as tumor suppressors [32,33].
In recent years, reviews on the role of the S100 protein family in
rious types of cancers, e.g., breast [34,35], pancreatic [27],
lorectal [22], and lung cancer [36], have been published. This
view aims to address the role of S100 proteins in hematological
alignancies, with a special focus on AML.

100 Proteins in AML
his chapter focuses on those members of the S100 and SFTP
milies which have been studied in AML and in three related
alignancies: 1) chronic myeloid leukemia (CML) which in blast
isis resembles AML; 2) ALL, the other common form of acute
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Table 1. Observed Effects of S100 Protein Family Member Up- or Downregulation in Leukemias

Mediator * ALL AML APL CML MDS
S100A4 ↑ In pediatric AML [40]; down-

regulates p53 and apoptosis, 

reduces chemosensitivity [38]

Downregulates p53 and

apoptosis, reduces

chemosensitivity [38]

S100A6 ↑ MLL/AF4: inhibits p53 and 

TNFα-induced apoptosis [50]

prevents graft vs. leukemia

effect [49]

Reported in AML [47, 48]

S100A8 ↑ At diagnosis and relapse, induces

autophagy [56, 57]; high white 

blood count, shortened overall

survival, prevalent in FAB 

M4/M5 [54]; drug resistance [57]

Induces autophagy [56];

reduces treatment 

response,

worse outcome [64]

S100A9 ↓ Differentiation arrest,

reduces apoptosis,

due to PML/RARA [65]

↑ Blast differentiation if low

S100A8 levels [55]

S100A8/A9 ↓ Downregulated in AML [76]

(dimeric or
tetrameric)

↑
MLL/AF4: resistance towards

corticosteroids [73]

Increases during progression,

blast mobilization [55]; high

LSC frequency [74]; most

upregulated genes in AML, drug 

resistance [75]; GvHD [77]

In MDS-MSCs: upregulates

p53 and TLR4; represents

a high-risk subset among

low-risk patients [30]

S100A10 ↑ Protects blasts from cytotoxic agents by osteoblast homing [82]
Coagulopathy [80, 81](tetrameric) Early relapse [82]

S100B ↑ Prevents sympathetic nerve

injury, pro longed survival [97]

S100P ↑ Favorable, induces differentiation

[98-100]; enhances survival during 

stress, drug resistance, favors

secondary AML development 

[101]

Favorable, induces

differentiation  [98, 

100]

Hornerin ↑ t(1;2): MDS to AML

transformation [102]

* Up- or downregulated as compared to healthy controls.
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ukemia; and 3) MDS, which resembles a preleukemic state where
proximately 30% of the patients progress to AML. It is likely that
00 protein features in these malignancies will be comparable to the
fects in AML. We will also include the effect of S100 protein
pression on stromal cells, which interact with leukemic cells in the
ne marrow niche. The most prominent effects on different types of
ukemia are summarized in Table 1.

100A2
The effect of this mediator has, to our knowledge, not been studied
leukemia. However, it is an intriguing protein as it has been
scribed both as tumor suppressor and as initiator of tumorigenesis
d metastasis dependent on the cancer type. Its function as
emoattractant and its contradictory role as either inhibitor or
ducer of p53 depending on the studied system [20,37] might also
of importance in hematological malignancies.

100A4
The protein was originally named “metastatin,” highlighting its
portance in metastasis. S100A4 is infamous in cancer, as its
pression is widely accepted to be a marker for poor prognosis
5,20,29] and resistance towards treatment [27,38]. It exerts its
ometastatic function by being a negative regulator of p53, positive
gulator of cell migration, and stimulator of angiogenesis [20,29].
owever, S100A4 appears to only have minor effect on tumor
itiation and progression [39].
S100A4 has been studied in both AML and CML. An early study
owed that S100A4 mRNA expression in 52 pediatric AML patients
as three-fold higher than in healthy controls [40]. Another group
oposed a possible mechanism for why the expression of the
pressor of retinoic acid signaling (PRAME) is a positive prognostic
ctor in leukemias as opposed to solid tumors [41]. PRAME is
erexpressed in, among others, AML [42,43], while it is very low in
rmal CD34+ cells [40], and high expression is correlated with both
creased overall and event-free survival [44,45] and reduced risk for
lapse [41]. High PRAME expression downregulates S100A4 and
bsequently increases p53 activity and apoptosis in the AML cell line
G-1. Knockdown of PRAME, on the other hand, rescued S100A4,
us sequestering and disabling of p53 in K562 (CML cell line in
ast crisis). It was also shown that S100A4 expression has influence
chemosensitivity in CML [38]: K562, which showed low

nstitutive expression of S100A4, was more chemosensitive towards
hydroperoxy-cyclophosphamide than KU812, which expresses
gher S100A4 levels. Furthermore, the treatment itself increased
00A4 levels in the cell lines [38].
S100A4 might also exert an effect on leukemic cells through the bone
arrow niche because the protein is expressed by the tumor stroma
3,36]. Among the expressing cells are also mesenchymal stem cells
SCs), and S100A4 might be involved in MSC differentiation and
oliferation [39].

100A6
This is another member of the S100 family whose upregulation is
ked with cell proliferation and tumorigenesis [15,20] in many
ncers, but also low expression is occasionally observed [46]. One
teresting mechanism is the relationship between S100A6 and the
mor suppressor p53. The latter indirectly regulates S100A6
pression, and it is therefore speculated that insufficient suppression
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mutated p53 is a reason for S100A6 overexpression and increased
oliferation in cancer. On the other hand, S100A6 appears to
otect wild-type p53 from degradation and thus contribute to
optosis [46].
In hematological malignancies, increased levels of the protein have
en reported in AML [47,48]. The effect of S100A6 expression has
oroughly been studied in acute leukemias with rearrangements in
e mixed-lineage leukemia (MLL) gene [49–52]. Chromosomal
errations in 11q23 are common in acute leukemias and especially
infants and leukemia secondary to treatment with DNA

poisomerase II inhibitors [49,51]. The prognosis of MLL
arrangements is highly dependent on the chromosomal partner,
d more than 70 have been identified so far [49]. In their studies,
amai and coworkers have concentrated on the MLL/AF4 fusion
ne, t(4;11)(q21;q23), which is the most prevalent translocation in
LL, accounting for more than 50% of infant and about 7% of adult
LL. The prognosis for t(4;11) is poor, even following allogeneic
em cell transplantation (allo-SCT), and thus represents the largest
allenge in childhood ALL [49–51]. In their studies, the group
entified the various roles of S100A6 in the malignancy. First, t(4;11)
quires a “second hit” to initiate leukemia; especially mutations in the
t3 tyrosine kinase domain (Flt3-TKD) are potent second hits.
ompared to only t(4;11), S100A6 expression is increased 13-fold
hen t(4;11) is combined with Flt3-KTD. Knockdown of S100A6 on
e other hand inhibited leukemic proliferation [52]. Second, high
00A6 expression can inhibit TNFα-induced apoptosis through its
hibition of p53 acetylation and subsequent repressed upregulation of
e caspase 8-caspase 3 apoptotic pathway. This effect was exclusively
served in cell lines with t(4;11). The results were confirmed in mouse
odels of t(4;11) lymphoma [50]. Third, the S100A6-targeting drug
mlexanox rescued p53-caspase 3 initiated apoptosis upon TNFα
eatment in t(4;11) cell lines. In mice, the inhibitor could counteract
ukemic infiltration in t(4;11) B-cell leukemia and inhibited the
regulation of S100A6 [51]. Finally, knockdown of S100A6 in
urine models showed to induce graft versus leukemia (GvL) effect
ter allo-SCTwhich is mainly mediated by TNFα; thus, the absence of
e GvL effect might explain why prognosis is poor in t(4;11) ALL even
llowing allo-SCT [49]. Inhibition of S100A6 might therefore be a
omising strategy for patients with MLL genetic rearrangements or
gh constitutive S100A6 levels.However, S100A6 is almost exclusively
pressed in proliferating cells [22,36]. Therefore, quiescent cells in the
ne marrow might escape S100A6 inhibition and ultimately lead to
lapse.

00A7/S100A7A
S100A7 is among the proteins that in some cancers are reported to
tumor suppressors, while they appear to be involved in metastasis
other cancers [20]. These two proteins may play a role in AML as
ey are chemotactic for granulocytes, monocytes, macrophages, and
mphocytes [15,20] and induce the secretion of proinflammatory
tokines [28].

00A8 and S100A9
Of the S100 protein family, these two members have been most
oroughly studied in AML. The homodimers are less abundant than
e heterodimer S100A8/A9 due to lower stability of the former.
owever, the two individual proteins appear to play quite contradictory
les in AML; thus, this chapter will discuss S100A8, S100A9, and the
terodimer separately.
00A8
S100A8 is a marker for myeloid cell differentiation as it is expressed
normal CD34− bone marrow cells but not by immature

yelocytes/blasts [53,54]. At proinflammatory conditions or during
idative stress, S100A8 can be induced in macrophages, dendritic
lls (DCs), microvascular endothelial cells, and fibroblasts [15]. In
neral, S100A8 appears to play a role in leukemogenesis as a
gulator of myelopoiesis, where the protein contributes to
aintaining the undifferentiated phenotype [55].
In both childhood and adult AML studies (31 and 189 patients,
spectively), S100A8 bone marrow mRNA levels were significantly
gher at diagnosis and relapse as compared to healthy controls or
tients in complete remission and, thus, indicated the clinical status
the disease [56,57].
The role of S100A8 has been studied by proteomics in childhood
ML with a normal or rare/noninformative karyotype, defined as
termediate risk. High S100A8 levels correlated with white blood
unt and shorter overall survival [54]. In a larger patient cohort,
00A8 levels were also linked with cells with morphological signs of
fferentiation as patients classified as FAB M4/M5 (monocytic
fferentiation) had significantly higher levels than FAB M0/M1 (no/
inimal differentiation) [57]. Further, overall survival in patients
ith a normal karyotype resembled that of adverse or favorable
togenetics depending on high or low S100A8 mRNA expression
vels, respectively. Finally, HL-60 cells with low initial S100A8 levels
owed increased expression after treatment with etoposide in a dose-
pendent matter, which interfered with the effect of the drug [57].
This drug-resistant effect of S100A8 appears to be caused by autophagy
the metabolic process in which intracellular aggregates, misfolded

oteins, or damaged organelles are degraded by lysosomes in response to
llular stress [58]. Autophagy is recognized as important for therapy-
lated resistance in hematologicalmalignancies [59–62] as it is induced by
NA-damaging agents, radiotherapy, and molecular targeting [56]. In
pernatants from HL-60 and K562, S100A8 was increased after
eatment with vincristine, adrenomedullin, and As2O3. When S100A8
pression was inhibited, chemosensitivity and apoptosis were increased,
hile autophagy was reduced. The authors showed that S100A8-induced
OS production is essential for autophagy in AML (Figure 1) through
sruption of the interaction between Bcl-2 and Beclin1 [56]. In a follow-
study, S100A8 mRNA overexpression in leukemic cell lines indicated
be linked with drug resistance and increased basal autophagy [63].
Finally, S100A8 appears to be negatively correlated with both
eatment and sustained long-term major molecular response also in
ML in a study with 37 patients and might therefore be a marker for
gressiveness, i.e., progression towards blast crisis [64].

00A9
Like S100A8, also S100A9 is a marker of myeloid differentiation
d is increased in granulocytes and monocytes [65,66]. But unlike
00A8 which signals via RAGE, S100A9 mainly signals via TLR4
5] and can also associate with CD147/basigin [67,68]. The
ceptors lead to the induction of proinflammatory cytokines such as
-6, CXCL8, and TNFα, and matrix metalloproteinases [13,15,25].
00A9 is widely acknowledged to be involved in tumorigenesis, as it
chemotoactic for leukocytes and inhibits differentiation of
acrophages and DCs [28,69]. However, recent studies show
vergent effects for S100A9 in AML.
In APL, the FAB M3 AML subtype, S100A9 shows the lowest
ne transcribes among all FAB classes [65]. S100A9 levels are
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versely correlated with expression levels of PML/RARA, the fusion
ne, which defines APL. Upon treatment with all-trans retinoic acid
TRA) and, to a lesser degree, with As2O3, S100A9 expression levels
crease. Furthermore, higher S100A9 mRNA levels correlated with
gher expression of PU.1, an important transcription factor for
yeloid differentiation [65]. The results were confirmed in the APL
ll line NB4, where higher levels of S100A9 induced apoptosis
rough reduced Bcl-2 levels and cleavage of caspase 3, and leukemic
ll growth suppression. Thus, at least in APL, higher S100A9 levels
e linked with myeloid differentiation, leukemia growth suppression,
d increased treatment response [65].
Also in non-APL AML, high S100A9 levels were correlated with
yeloid differentiation, but this ability was dependent on S100A8
pression levels [55]. S100A9 had to exceed S100A8 concentrations
at least 10-fold; otherwise, S100A8 blocked differentiation. The
thors argue that the differentiation potential is mediated by TLR4
cause the downstream kinases Erk1/2 and JNK are known to be
portant for granulocyte and monocyte differentiation [55].
owever, treatment with exogenous S100A9 induced leukemia cell
fferentiation only in FAB M4/M5 patients, which according to
RNA data also showed the highest basal levels of S100A8, S100A9,
d TLR4 [55]. Thus, the S100A9-TLR4-MAPK/Erk axis might be
potential target for overcoming differentiation arrest in cells
esenting a monocytic phenotype (Figure 1).

100A8/A9
Since the mRNA levels of the individual partners of the
terodimer calprotectin appear to have opposing effects in AML,
might not come as a surprise that the studies of the heterodimer
ow conflicting results. First, S100A8/A9 is overexpressed in many
ncers [55] and associated with inflammation as it is an activator of
onocytes and macrophages, and leads to neutrophil infiltration
0]. Through the characteristics of its individual partners, S100A8/
9 can signal via both TLR4 and RAGE and promotes tumor
velopment and invasiveness both by increasing cell growth,
cluding leukemic cell proliferation, via RAGE and by excretion of
oinflammatory cytokines via TLR4-NFκB [15]. Interestingly,
00A8/A9 is also associated with an anti-inflammatory effect,
duced cancer growth, and apoptosis. The tetradimer can induce the
tter by sequestering Zn2+, which is antiapoptotic [70]. The tumor-
omoting effects appear in most cancers to be valid only for low
00A8/A9 levels [71]; at high concentrations, several cells
acrophages, bone marrow cells, lymphocytes, and fibroblasts) are
hibited, and apoptosis is induced [22,25,72].
In the already mentioned MLL/AF4 ALL, S100A8/A9 overexpres-
on was associated with failure to induce free cytostatic Ca2+ and
ith corticosteroid resistance [73]. In AML, S100A8/A9 mRNA
vels increase during AML progression and show correlation with
obilization of leukemia cells from the bone marrow into peripheral
ood [55]. Furthermore, S100A8 and S100A9 were the most
regulated genes in patients with the highest frequencies of leukemic
em cells [74], indicative of an adverse prognosis. A recent study
owed that the mRNA levels of S100A8/A9 are the most
erexpressed as compared to healthy controls [75]. High levels
ere linked with resistance towards the novel drugs quizartinib (Flt3
hibitor) and especially venetoclax (Bcl-2 inhibitor), which resulted
the absence of free cytosolic Ca2+ and inhibition of apoptosis in cell
e studies [75]. Another study came to opposite conclusions:
00A8 and especially S100A9 were among the most downregulated
nes as compared with healthy controls [76]. However, the latter
udy focused on FAB M1/M2 (little or granulocytic differentiation)
tients who present with lower S100A8/A9 basal levels than blasts
ith monocytic differentiation [55], and S100A9 could then be used
distinctively differentiate FAB M1 from FAB M2 [76].

evertheless, the authors were able to reproduce their results, i.e.,
nsequently downregulated S100A8/A9 in AML, analyzing micro-
rays (GDS acquisitions: 1059, 2251, and 3057) deposited online
6].
S100A8/A9 and, to some extent, also S100A7 and S100A12 are
rthermore among theDAMPswhich are associatedwith development
graft versus host disease (GvHD) after allo-SCT, a potentially lethal
mplication in which donor T-cells attack host tissues. But it remains
clear whether elevated S100 protein levels in monocytes after allo-
T initiate GvHD or whether their increase rather results from release

omnecrotic/apoptotic cells after establishment ofGvHD [77,78]. As a
mark, these elevated S100A8/A9 levels were not detected in blood
mples but in saliva and stool [77,79].
The role of the DAMPs S100A8 and S100A9 has also been studied
the tumor environment of the preleukemic conditions

hwachman-Diamond syndrome (SDS) and MDS [30]. In SDS,
wnregulation of the affected Sbds gene in MSCs leads to
regulation of both p53 and S100A8/A9, with the subsequent
tivation of TLR4-MAPK/NKκB. S100A8/A9 upregulation was
fficient to induce genotoxic stress in HSCs [30], increasing the
opensity for AML progression. Also in MDS, S100A8/A9 MSC
pression was correlated with p53 and TLR4 upregulation.
urthermore, in a cohort consisting of low-risk MDS patients, high
00A8/A9 levels resulted in approximately doubled (corresponding
almost 30%) risk for AML transformation, as well as the time
terval for AML development was significantly reduced [30]. It
peared as if the MSC expression level of S100A8/A9 in these
ndromes was more important than that of myeloid cells. In
dition, the protein expression was observed in a specific subset of
D271+ MSCs, which in the bone marrow are in direct contact with
D34+ HSCs; thus, spatial proximity to the source of S100A8/A9
ems to be of importance [30].

100A10
This particular S100 family member has mutations in its EF-hands
ndering it Ca2+-independent and thus permanently activated
5,17]. It exerts its main biological function in a heterotetrameric
mplex together with annexin 2 [17,20,80].
In AML, S100A10 is associated with coagulopathy in FAB M3
tients [80,81]. Approximately 5% of APL patients die early due to
vere bleedings, and up to 90% of patients suffer from coagulopathy
diagnosis [81]. The S100A10/annexin 2 heterotetramer is elevated
APL cells; at the cell surface, the tetramer increases the affinities of
okinase and especially tissue plasminogen activators (uPa and tPa)
r their substrate plasminogen, which thereafter is converted to active
asmin. The latter leads to hyperfibrinolysis, i.e., plasmin-mediated
gradation of the extracellular matrix, which in turn can cause
tensive bleeding [80,81]. As much as 90% of the observed plasmin
ncentration seems to be due to S100A10 [80]. The fusion gene
ML/RARA induces increased levels of annexin 2 but not of
00A10. However, the concentrations of both proteins increase,
dicating posttranslational regulation of S100A10 by elevated
nexin 2 levels [81]. Depletion of S100A10 or downregulation of
ML/RARA by ATRA in NB4 cells had approximately the same effect
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d reduced both plasmin formation and fibrinolysis [80]. In
dition, in nine patients with de novo APL, either treatment with
TRA or with an S100A10 antibody before APL therapy reduced
ast invasiveness [81]. Thus, downregulation of S100A10 might be
e reason why the risk of death from severe bleeding immediately
clines after the first dose of ATRA in APL patients.
S100A10 further seems to play a role in protecting acute leukemia
lls from cytotoxic agents. Annexin 2 leads to homing to the bone
arrow and adhesion of HSCs to osteoblasts [82]. The latter are known
protect primary ALL and AML blasts from chemotherapy [83]. In
is respect, elevated S100A10 mRNA levels were identified in
ildhood B-cell ALL, and increased levels also correlated with early
lapse [82]. Thus, inhibition of annexin 2, S100A10, or the formation
the heterotetramer might be a means of overcoming treatment

sistance and early relapse in a patient subset.

00A12
S100A12 is expressed by a variety of myeloid cells and induces
emotaxis of leukocytes, but not lymphocytes, after binding to RAGE
0,84]. It is associated with chronic inflammation through sustained
cruitment ofmonocytes and neutrophils andmight therefore also play
role in hematological malignancies. S100A12 expression can be
duced by lipopolysaccharide (LPS) and TNFα, and—when it acts as
cytokine — its effects are comparable to those of CCL2, CCL3,
CL4, and CCL5 [84], i.e., cytokines that commonly are increased in
ML and of which CCL5 has been linked with cancer progression in,
g., lymphoma [85].

00A13
This protein has not been extensively studied in leukemia. However,
e S100A6 inhibitor Amlexanox additionally targets S100A13 [51].
uring stress, S100A13 induces the excretion of, among others, acidic
roblast growth factor (aFGF) and contributes to cancer hallmarks as
giogenesis, cell differentiation, and tumor growth [15,51]. Since
mlexanox inhibits the heat-shock protein (HSP)–induced release of
00A13 [86] and HSPs are commonly expressed in AML and their
pression additionally increased when the blasts undergo apoptosis
7,88], the downstream effects of S100A13 might contribute to
ukemogenesis or to maintaining the disease.

00A16
S100A16 might exert an indirect effect on AML. As with many other
00 proteins, also S100A16 is upregulated in several types of cancer [15].
might play a role in the bone marrow niche because S100A16 inhibits
teogenic differentiation of MSCs in expense of adipogenesis [89]. Both
SCs and osteoblasts have shown to protect AML blasts from
emotherapy [83,90], but also bone marrow adipocytes appear to exert
fects on leukemic cells: adipocytes provide energy and have shown to
otect both ALL and CML blasts from chemotherapy [91–93].
owever, AML itself causes MSCs to differentiate towards osteoblasts
ther than to adipocytes [94]. Thus, high S100A16 levels in the bone
arrow niche might alter the cross talk between the MSC progeny and
ML cells, but more research is necessary in order to uncover if this
teration will result in improved or worsened prognosis.

00B
This S100 protein is mainly linked with neurological disorders and
for instance upregulated in brain metastasis [36]. However, it is also
metastatic marker in other cancers and is then one of the S100
oteins with contradictory prognostic impact depending on the
ncer type. In breast cancer, high S100B levels are correlated with
tter outcome in the endocrine-resistant negative subtype [95],
hereas increased posttreatment levels in the endocrine-resistant
sitive subtype are linked with reduced survival [96].
S100B is further expressed by DCs and lymphocytes and leads to
crease in cell proliferation and migration, while inhibiting apoptosis
d differentiation [15]. In AML, S100B expression in bone marrow
ural tissues seems to be of importance because sympathetic nerve
jury is closely related to hematological diseases [97]. S100B is a
arker for nonmyelated Schwann cells, which are part of the healthy
ne marrow niche, where they facilitate HSC hibernation. Damage
these cells can lead to AML progression. In concurrence with that,
evated S100B mRNA levels in AML showed a correlation trend
wards prolonged patient survival [97].

00P
As many other S100 proteins, also high S100P levels are associated
ith cell growth, carcinogenesis, and metastasis [20,22,27]. However,
e for S100B, elevated S100P levels appear to be favorable in AML.
S100P is transiently expressed during early leukocyte differentiation
d is probably essential in this process [98]. In agreement with that,
00P shows low expression in K562 [38] and in AML blasts, whereas
gh levels are connected with a favorable prognosis [99]. S100P has
ainly been studied in association with cytokinins in the treatment of
ML. Cytokinins are purine derivatives that act as hormones in plants
t which also exert antiproliferative effects in cancer cells and induce
anulocyte differentiation in myeloid leukemias through activation of
APK [98]. Different kinds of cytokinins and their derivatives
opentenyladenosine, cotylenin A, methyljasmonate, and 4,5-didehy-
ojasmonate) had in cell line studies (AML:HL-60, THP-1; APL:NB4;
mphoma: U937) approximately the same effects with regard to
anulocytic/monocytic differentiation as ATRA and vitamin D3
8,100]. But the similar effects were mediated through different
echanisms, as S100P was the most upregulated gene only after
eatmentwith cytokinins [98,100]. Thus, induction of S100P expression
ight be a possiblemeans to counteract the differentiation arrest in AML.
On the other hand, S100P has been proposed to play a role in the
llular defense mechanism and to enhance survival under stress [101].
reatment-related MDS — and further transformation to AML — is
en after cytotoxic therapy with bifunctional alkylating agents that
rm DNA interstrand cross-links. When HL-60 was exposed to this
pe of alkylating agents at a low dosage, thus facilitating recovery of cell
owth, S100P showed the highest increase in mRNA levels [101]. The
evated levels led to cell cycle arrest at the G2/M transition point, and it
ok about 10 days to resume cell growth. Furthermore, the cells were
en resistant to reexposure of the drug [101]. Thus, S100P might be
volved in processes leading to survival of cells with DNA interstrand
oss-links, which later on might initiate hematological malignancies.
owever, it must be pointed out that not all tested cell lines responded
the same way as HL-60 [101]. Hence, dosage of the alkylating agents
pears to be of major importance.

00Z
S100Z is downregulated in several cancers [15]. It interacts with
00P and is, together with its partner, highly upregulated by
kylating agents, with the highest levels reported in leukocytes and
leen [101]. S100Z might therefore play a role in the S100P-
ediated effects on cell survival during stress.
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ornerin
Of the seven SFTPs, hornerin is the one which to the highest
gree appears to be involved in other processes than epidermal
aturation and skin/mucosa cancers.
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The relation between hornerin and AML was demonstrated in a
se study. This particular patient presented with the rare
romosomal alteration t(1;2)(q21;q37) and had recently progressed
om MDS [102]. Thus, the translocation was situated at 1q21 where
ost S100 proteins and the SFTP family are encoded. Chromosomal
terations, including duplications and translocations in 1q21-25,
hich result in gene degeneration or fusion genes that interfere with
rmal proliferation and differentiation, are frequently detected in
matological malignancies. In this case, the translocation did not
terrupt the hornerin open reading frame but resulted in its aberrant
pression in bone marrow cells. Additional 5 out of 90 patients
ffering from hematological diseases showed elevated hornerin
RNA levels [102]. The authors speculate 1) that S100 fusion genes
ay be involved in neoplasia, 2) that translocations have an effect
milar to activation of an oncogene, and 3) that hornerin activation
as responsible for disease progression for the t(1;2) patient [102].
he latter notion is supported by studies on breast and liver cancer,
here hornerin expression levels increased from the preinvasive phase
the invasive carcinoma [21] or were correlated with poor outcome
hepatocellular carcinoma [103], respectively.
100 Proteins as Biomarkers in AML: Potential and
itfalls
ike in many other cancers as well as noncancerous conditions, the
pression of S100 proteins appears to be altered in AML.
verexpression of S100A4, A6, A8, A9, A10, and A12 and
wnregulation of S100P seem to maintain the leukemic phenotype.
ore extensive studies will have to be conducted in order to
termine whether one single member of this family or rather a panel
them will be best to predict factors such as prognosis, disease
ogression, and treatment response.
At least two caveats arise from this review. First, S100 protein
pression levels have been determined with different techniques, and
e latter were conducted on samples obtained from various sources.
ene expression, both by microarray and PCR techniques, has been
easured in both peripheral blood blasts and bone marrow cells.
urthermore, protein expression was detected usingWestern blotting,
gure 2. High S100 protein expression is associated with
creased patient survival. (A) Only patients who received intensive
duction therapy were included in the cluster; the mRNA levels
ere median normalized and log(10) transformed prior to
supervised clustering using the program JExpress. Patients
uld be divided into two main subgroups according to low
atients L1-L12) and high (patients H1-H10)/intermediate (patients
-I6) mRNA expression levels. The upper/low expression subgroup
owed especially low (blue color) S100A8/A9 expression,
hereas the group below, characterized by high expression,
owed especially elevated (red color) levels for S100A12 and
100P. Patients with long-term survival (N2.5 years) are indicated
the right. The S100A4 and A10 values represent the mean value
two probes for these genes. B) Kaplan-Meier (calculated by

PSS version 25) comparison of patients with low S100 protein
pression (L1-L12) versus patients with median or high levels, i.e.,
e two subgroups obtained in the cluster. In this patient cohort,
evated levels of S100 proteins are correlated with prolonged
tient survival (log-rank test). Because the plot takes into account
l eight differently expressed S100 proteins, the improved patient
rvival might be due to the impact of a single S100member, to the
hole panel of these eight proteins, or to a group of co-expressed
nes, which remain to be identified yet.



im
an
pr
P
po
w
m
60
[1
pr
co
ca
se
m
up
su
bi
ha
S1
Pa
at
w

A
su
in
re
in
w
S1
be
w
w
pr
th
in
le
(P
w
di
an
of
ph

as
di
sp
in
m
re
si
of
si
ca
a
ex
cl
ex
th

ca
th
br
w
S1
T
sp
in
in
m
fr
bi
pr

C
S1
A
un
fa
sa
ob
so
to
th
ot

E
T
E
sa

A
A
Ø
ed

R

Neoplasia Vol. 20, No. 12, 2018 S100 Proteins in Acute Myeloid Leukemia Brenner and Bruserud 1183
munostaining, ELISA, flow cytometry, or proteomic techniques,
d samples comprised peripheral blood cells, bone marrow cells,
imary cell culture supernatants, serum, plasma, saliva, and stool.
rotein expression is regulated both posttranscriptionally and
sttranslationally, and proteins are further prone to modifications
hich alter their function. Even though there is a correlation between
RNA and protein levels, this connection is not strong, and about
% of protein concentrations are not reflected by the mRNA levels
04,105]. An example is the deviation between S100A10 gene versus
otein expression levels [81]; thus, one should be careful when
mparing protein with gene expression levels. Also, sample source
n influence expression levels. A recent example is osteopontin: high
rum/plasma osteopontin levels are a recognized negative prognostic
arker in AML [106,107]; however, osteopontin seems to be
regulated in cell culture supernatants of patients with prolonged
rvival [108]. Therefore, when implementing S100 proteins as
ological markers in AML, sample source and selected method will
ve to be standardized. Second, the expression levels of several of the
00 proteins are correlated with cell maturation/differentiation.
rticularly, S100A8 and A9 are associated with FAB M4/M5. Thus,
some occasions, upregulated S100 proteins will not be correlated
ith pathology but simply reflect the AML phenotype.
In a recent study, we observed that mRNA levels for S100A6, A8,
9, and A11 were upregulated in AML patients with high cell culture
pernatant concentrations of specific proteases and protease inhibitors,
cluding CD147/basigin— a S100A9 receptor— and the S100A10-
lated uPa [109]. Like S100A9, basigin was found to be overexpressed
FABM4/M5 patients and the more mature CD34− cell fraction and
as additionally correlated with an upregulation of S100A4 and the
00A9 receptor TLR4 [109]. Interestingly, there was a large overlap
tween the patients with high cellular expression of proteases and those
ith a high cytokine excretion profile, where the latter had been linked
ith improved survival [110]. Therefore, we analyzed whether S100
otein mRNA expression also was correlated with survival. Even
ough only 28 of the patients from the microarray study qualified for
clusion in the analysis, the 12 patients with low S100 protein mRNA
vels (Figure 2A; previously unpublished data) had a significantly
b .0001, log-rank test) shorter survival compared to the patients

ith higher levels (Figure 2B). Eight of the S100 proteins were
fferentially expressed among patients; of these, low levels of S100A8
d A9 seem to correlate with an adverse phenotype, whereas high levels
S100A12 and S100P appear to be linked with a more favorable
enotype (Figure 2A).
To summarize, it might be advisable to use a panel of S100 proteins
biomarkers instead of single members for several reasons. First, a
stinctive S100 protein profile is, in many cancers, stage and subtype
ecific. Furthermore, the profile at diagnosis at its best can provide
formation about prognosis and/or treatment options, whereas
onitoring of the protein profile can yield insight into treatment
sponse [13]. Second, even though there exist strong candidates for
ngle biomarkers, such as S100A4, A8, A9, and S100P, the expression
single proteins is prone to bias due to specific AML subgroups or the
multaneous presence of an AML-unrelated malignancy, which both
n lead to dysregulation of specific S100 members. Third, sampling of
protein profile also takes into account that S100 proteins may be co-
pressed. Remarkably, even though most of the S100 family members
uster together and have a high degree of sequence similarity, the
pression of S100 proteins is commonly not synchronized [111]. On
e contrary, there is evidence that S100 protein dysregulation during
ncer is regulated by promoter hypo- or hypermethylation [111]. In
is respect, co-expression of S100A14 and A16 has been observed in
east cancer and resulted in increased tumor invasion and thus
orsened prognosis [112]. Furthermore, nuclear co-expression of
00A4 and p53 was seen in colorectal cancer. In combination with
P53 wt, the cells underwent apoptosis. The authors therefore
eculated that S100A4 might select for cancer-promoting mutations
TP53 [113]. Finally, as long as the role of particular S100 members
AML remains unclear and not all aspects of their impact on other
olecules or pathways, such as the above-mentioned p53 which
equently is dysregulated in AML [114], are resolved, a panel of
omarkers offers the best possibility to capture those candidate
oteins, which define AML.

onclusion
00 proteins are frequently dysregulated in malignancies, including
ML. More studies on the effect of S100 proteins in AML have to be
dertaken in order to determine which members of the protein
mily have the highest impact on leukemogenesis and from which
mple source gene and/or protein expression levels should be
tained. Furthermore, since disease heterogeneity apparently blurs
me of the effects, which single mediators exert, it might be necessary
concentrate the studies, at least at first, on patient subsets sharing
e same morphology (e.g., FAB classes), cytogenetic aberrations, or
her common features.
thical Approval
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