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Abstract: Although PM2.5 measurements of low-cost particulate matter sensors (LCPMS) generally
show moderate and strong correlations with those from research-grade air monitors, the data quality
of LCPMS has not been fully assessed in urban environments with different road traffic conditions.
We examined the linear relationships between PM2.5 measurements taken by an LCPMS (Dylos
DC1700) and two research grade monitors, a personal environmental monitor (PEM) and the GRIMM
11R, in three different urban environments, and compared the accuracy (slope) and bias of these
environments. PM2.5 measurements were carried out at three locations in Houston, Texas (Clinton
Drive largely with diesel trucks, US-59 mostly with gasoline vehicles, and a residential home with no
major sources of traffic emissions nearby). The slopes of the regressions of the PEM on Dylos and
Grimm measurements varied by location (e.g., PEM/Dylos slope at Clinton Drive = 0.98 (R2 = 0.77),
at US-59 = 0.63 (R2 = 0.42), and at the residence = 0.29 (R2 = 0.31)). Although the regression slopes and
coefficients differed across the three urban environments, the mean percent bias was not significantly
different. Using the correct slope for LCPMS measurements is key for accurately estimating ambient
PM2.5 mass in urban environments.

Keywords: low-cost sensors; road traffic; particulate matter (PM); PM monitoring; PM sensor calibration

1. Introduction

Exposure to fine particulate matter (PM2.5) has been associated with several adverse
health outcomes [1–3]. These health outcomes include increased hospitalizations, morbidity,
and mortality from respiratory effects (infections, exacerbations of asthma, and chronic
obstructive pulmonary disease) [4–8], and cardiovascular effects (ischemic heart disease,
stroke) [4–6,8,9]. Due to the severity of these adverse health outcomes associated with
PM2.5 exposures, monitoring PM2.5 for exposure assessment within communities has
become a subject of interest among environmental scientists, governmental organizations,
and interested private citizens. Recently, it has been suggested that the application of
low-cost air sensors could improve the understanding of current indoor and ambient
exposures to air pollutants, including PM2.5 [10–13]. Low-cost air sensors are portable and
lightweight [11,13]. Furthermore, the direct reading capabilities of these sensors allow for
instantaneous readings to obtain fine temporal resolution of the data that can be used for
the evaluation of short-term exposure to air pollutants. For example, in the city of Houston
(land area: 1651 km2), Texas (TX), only seven continuous air monitoring stations (CAMS)
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are currently operated for PM2.5 measurements by the Texas Commission on Environmental
Quality (TCEQ) and U.S. Environmental Protection Agency (U.S. EPA). Low-cost particulate
matter sensors (LCPMS) deployed in multiple locations can supplement the sparse ambient
air PM2.5 data in cities such as Houston. Thus, finer scaled spatial data from LCPMS
networks can result in more representative measurements and exposure assessments. The
affordable LCPMS have also enabled individuals and private organizations to assess their
own PM2.5 exposure with limited resources (e.g., budget or staff) [10,14].

Despite the advantage of using LCPMS for airborne PM2.5 monitoring, the data quality
of measured LCPMS is open to question in comparison to the CAMS data. The LCPMS
measurements must be validated before widespread use, in comparison with measurements
from currently validated methods such as gravimetric methods. To this end, studies in
the last decade have examined the validity of commercially available LCPMS [15–22].
While these studies found moderate to strong correlation (r range: 0.66–0.99) between the
LCPMS and widely used research-grade monitors [12,15,19,23], the linear relationship (e.g.,
regression slopes) between the LCPMS and the research grade monitors can be affected in
different environments [15,19].

The physical characteristics of ambient PM in urban environments are determined
by various emission sources close to the location. For example, PM near major roadways
contains submicron sizes of carbonaceous aerosols emitted from vehicle exhausts [24,25].
On the other hand, PM near steel plants is composed of metal aerosols with larger particle
sizes from metal grinding and cutting processes [26]. Since most LCPMS count the number
of particles in the air passing through the sensor, the reported concentrations of PM are de-
pendent on the physical size and chemical characteristics of the aerosol [12,15,19]. Although
the association between an LCPMS (Dylos air quality monitor) and a research-grade direct
reading instrument (i.e., TSI Sidepak AM-510) has been assessed in indoor environments
with various emission sources [27], few studies have investigated the association between
LCPMS and research-grade direct reading instruments (DRI) under real-world ambient
environments affected by varying traffic conditions. To be used as a supplementary PM
measurement, it is important to determine whether the quality of the LCPMS data is reliable
in urban environments with different traffic conditions. Therefore, the main objective of this
study was to investigate the role of urban environments with different traffic conditions on
the linear relationship between PM2.5 measurements taken by an LCPMS (Dylos DC1700)
and gravimetric method as well as a research-grade DRI (GRIMM 11R). The field campaign
was performed with a sampling duration of 3 h at three different locations in Houston, TX:
(1) near a major road with large volume of heavy-duty diesel vehicles (HDDV); (2) near a
major road with mostly gasoline vehicles; and (3) at a residential location with no major
traffic related PM sources.

2. Materials and Methods
2.1. Equipment

The Dylos DC1700 air quality monitor (Dylos) (Dylos Corporation, Riverside, CA,
USA) is a relatively inexpensive (<USD 500) and portable air monitoring sensor. The
instrument uses a light scattering method to measure the number of particles in two size
bins: >0.5 µm and >2.5 µm. The Dylos was selected due to the availability of research data
from previous studies for comparison with this study.

The Grimm Mini Laser Aerosol Spectrometer 11R (Grimm) (GRIMM 11R) (Grimm
Aerosol Technik GmbH & Co. KG, Ainring, Germany) was selected to compare with the
Dylos measurements. The GRIMM 11R counts particles in the size range from 0.25 µm to
32 µm using a light scattering method. PM2.5 mass concentrations were obtained using
Grimm Software 1178 V8-1 Rev IV. The cost of the Grimm 11R (USD 20,000) was about
40 times greater than the Dylos DC1700.

The Personal Environmental Monitor (PEM) Impactor (SKC Inc., Eighty-Four, PA,
USA) was also used to compare with the Dylos data. The 37 mm polytetrafluoroethylene
(PTFE) filter was placed in the PEM to collect PM2.5. The SKC Leland Legacy pump (SKC
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Inc., Eighty-Four, PA, USA) was used to pull air at 10 L/min. Unlike the Dylos and Grimm,
PEM is a gravimetric method to measure time-integrated PM2.5 mass. In this study, the
sampling time was 3 h at each location. The total cost of the PEM and the pump was about
USD 1900.

The Thermo Orion Cahn-35 Microbalance (Thermo Electron Corporation, Beverly, MA,
USA) was used to weigh the filters from the PEM. The accuracy of the gravimetric analysis
as 0.0012% with a weight range and sensitivity of 250 mg/1.0.

The HOBO Data Logger U12-012 (Onset Computer Corporation, Bourne, MA, USA)
was used to monitor ambient air temperature. The HOBO measures temperatures are in the
range from −20 to 70 ◦C. The accuracy of HOBO temperature measurements is documented
by the manufacturers as ±0.35 ◦C from 0 to 50 ◦C.

2.2. Sampling Locations

To determine the effect of traffic volumes on the linear relationship between PM2.5
measurements taken by the Dylos DC1700 (Dylos) and other research-grade instruments
(PEM and GRIMM 11R), we simultaneously deployed a Dylos, a PEM, a Grimm 11R, and a
HOBO at each sampling location (Figure 1a).

1. Clinton Drive, Houston, Texas (major road with a higher percentage of traffic emis-
sions from heavy-duty diesel vehicles (HDDV)). Clinton Drive is located in the eastern
part of the Houston metropolis in Texas (Figure 1b). In this study, the traffic on this
road was made up of a higher number of HDDV (28%), emitting diesel particles.
All samplers were deployed near the fence line of the Clinton CAMS, about twenty
meters from Clinton Drive.

2. US-59 Highway, Houston, Texas (major highway with traffic emissions mainly from
gasoline vehicles (GV)). The US-59 highway in Houston, Texas runs from southwest
to northeast in Houston (Figure 1c). The proportion of HDDVs among total traffic
counts was 3% in this study. All samplers were deployed about 50 m from the road
on a side street (Eastside Street).

3. Residential home (residential location with no major sources of PM), which was
located in a suburban area of Houston, Texas (Figure 1d). There were no significant
sources of PM near the sample location. The closest major roadway from the residence
was about 6400 m away, and there were no factories or industrial facilities close to the
residence. All samplers were deployed in the backyard of the residence.
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Figure 1. Map showing sampling locations. (a) All 3 sampling locations; (b) Clinton drive sampling
location (Latitude: 29.7340345, Longitude: −95.2581138); (c) US—59 sampling location (Latitude:
29.731556, Longitude: −95.424426); (d) Residence sampling location (Latitude: 29.6854160, Longitude:
−95.6937728). C = Clinton Drive; U = US-59; R = Residence. Map source: Google Maps.

2.3. Study Design

One Dylos DC1700 (Dylos) was collocated with one PM2.5 PEM, one GRIMM 11-R
(Grimm), and a HOBO data logger (HOBO) at all three locations. The Dylos, PEM, and
Grimm measured ambient PM2.5 for 3 h over 20 days at each location. Sampling was
conducted at one location each day, alternating between the three sampling locations.
Samples were collected from October 2019 through January 2020. The HOBO was also
deployed to record temperature during the 3 h sampling periods. The HOBO, Dylos, and
Grimm were programmed to record data at 1 min intervals. Samples were collected in the
mornings (8 a.m.–1 p.m.) on weekdays (Monday to Friday) and weekends (Saturday and
Sunday). Samples were not collected when weather conditions were not conducive for
sampling (e.g., on rainy days). A total of 53 valid sampling campaigns, 40 sample days on
weekdays, and 13 sample days on weekends were obtained.

To estimate the ratio of HDDV to gasoline vehicles on the two major roads (US-59 and
Clinton Drive), the number of each type of vehicle passing was counted using video recording
during the sampling periods. Vehicles passing by were counted for a 10 min period in every
hour. The total number of vehicles counted per hour was then multiplied by 6.

Prior to this study, the Dylos, Grimm, and HOBO were previously calibrated by the
manufacturer. The PTFE filters were pre-weighed using the Cahn-35 microbalance (Thermo
Electron Corporation, Beverly, MA, USA) in a weighing room at the University of Texas
Health Science Center at the Houston (UTHealth) School of Public Health. The batteries for
the SKC Leland pumps (SKC Inc., Eighty-Four, PA, USA), the Dylos DC1700, and the Grimm
11R were fully charged before the deployment. On each day of sampling, the Leland legacy
pump was calibrated at 10 L/min using the BIOS Dry-Cal DC-lite (BIOS International Corp.,
Butler, NJ, USA) at the sampling locations. The clocks on the Dylos, Grimm, and HOBO
were all synchronized with the internet clock on a laptop. The information on the sampling
date, time, location, sample ID, pump ID, filters’ pre-weight, and pump pre-flow rates was
recorded. The instruments were placed side by side on a portable folding table, which was
about 1 m above the ground level (Figure 2). All the sampling instruments were turned
on simultaneously, and the start time was recorded. After three hours, all the instruments
were turned off, and the stop time was recorded. After sampling, the post-flow rate for
PEM was measured using the Dry Cal DC-Lite. All the collected filters were transferred
to the UTHealth School of Public Health for gravimetric analysis. The post-weight and



Int. J. Environ. Res. Public Health 2022, 19, 1086 5 of 14

the post-flow rate were recorded. The data logged on the Dylos, the Grimm 11R, and the
HOBO data logger were downloaded onto a laptop computer.
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Figure 2. Sampling setup at US-59 sampling location.

2.4. Data Analysis

To obtain PM2.5 particle number concentrations from the Dylos, the number counts for
particles > 2.5 µm were subtracted from the number counts for particles > 0.5 µm. The 3 h
mean particle count concentrations for the Dylos and 3 h mean mass concentration for the
Grimm for each sampling day were calculated using 1 min raw data from both instruments.
To obtain the 3 h integrated PEM PM2.5 mass concentration for each sampling day, the total
mass (post weight–pre weight) of PM2.5 on each filter was divided by the total volume of air
(average flow rate × sampling duration, approximately 3 h) on the same sample day. The
mean of the 3 h temperature was also calculated from the 1 min interval data from the HOBO.
All the data were analyzed using STATA15 (StataCorp LLC., College Station, TX, USA).

A descriptive analysis was performed using 3 h mean PM2.5 concentrations and
ambient temperature across three sampling locations. Simple linear regression analysis was
conducted using overall data and location-specific data, separately. The effect of sampling
location (as a proxy of different traffic emission sources) on the linear relationship between
the Dylos DC1700 and PEM measurements was assessed with the linear regression model
from Equation (1) below. Before the regression analysis was carried out, a natural log
transformation of the data was carried out to fit the data close to a Gaussian distribution.

Y = β0 + β1 X1 + β2 X2 + β3 X3 + β4 (X1 × X2) + β5 (X1 × X3) (1)

where

Y = natural log of the 3 h PM2.5 mass concentration measured by the PEM or Grimm;
X1 = natural log of the 3 h PM0.5–2.5 particle number concentration measured by the Dylos;
X2 = binary dummy variable coded as 1 for US-59 and zero (0) for the other two locations
(Clinton Drive and the residence); and
X3 = binary dummy variable coded as 1 for the residence and zero (0) for all other locations
(Clinton Drive and US-59).
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In Equation (1), the Clinton Drive location, coded as zero for both X2 and X3, is
the reference sampling location to which all the other locations (US-59 and Residence)
were compared.

Two interaction terms (X1 × X2 and X1 × X3) were introduced into a linear regression
to test for the difference in slopes across sampling locations. The null hypothesis for
the model that the difference between the slope at Clinton Drive and the slope at US-59
(represented by the β4 coefficient) equal to zero was tested. Similarly, a null hypothesis
was tested whereby the difference between the slope at Clinton Drive and the slope at the
residence (represented by the β5 coefficient) was equal to zero.

To test for the difference between US-59 and the residence, the coding for the variables
in the regression analysis from Equation (1) was slightly modified. The residence location
was recoded as zero for both X2 and X3 (the reference sampling location). The X3 was
recoded as (1) for Clinton and (0) for all other locations, while the X2 variable remained
coded as (1) for US-59 and (0) for all other locations. The X1 variable remained the same.
The β4 coefficient for this modified model was tested for the difference between the slopes
of US-59 and the residence.

Further analysis was carried out to determine the effect of other covariates such as
temperature and the ratio of heavy-duty trucks to gasoline cars (HDDV%) on the linear
relationship between the Dylos and the each of the research grade instruments.

The agreement (or bias) between the Dylos DC1700 measurements and the research-
grade instruments across sampling locations was assessed by calculating the mean absolute
relative error. To estimate the absolute relative error, the Dylos number concentration
measurements were first converted to mass concentration measurements using fitted
regression line equations from a linear regression of (i) the PEM on the Dylos measurements
and (ii) the Grimm on the Dylos measurements. This conversion was carried out using
two methods.

1. General equation (GE) method: A single fitted regression line equation from the linear
regression of the total combined data was obtained and used to convert the Dylos
PM2.5 measurements from all three locations.

2. Sampling location equation (SLE) method: A different regression line was constructed,
stratified by each sampling location. Three fitted regression equations, one for each
sampling location (Clinton, US-59, and the residence), were used to convert the Dylos
PM2.5 measurements.

After obtaining the converted Dylos mass concentrations, the absolute relative error
was calculated for each day of sampling with Equation (2) below. The mean absolute
relative error (MARE) was then estimated by calculating the average of all the absolute
relative errors for all the sampling days. The data were then grouped by the sampling
location, and the MARE for each location was calculated. With the equal variance structure,
an analysis of variance (ANOVA) test with Bonferroni correction was used to compare
the difference of the MAREs between the Dylos–Grimm at the three locations. For the
Dylos–PEM comparison, because the equal variance between groups assumption was
unmet, two-sample t-tests were used to compare the difference between the MAREs across
the three locations.

|(Dylos PM2.5 − PEM (or Grimm) PM2.5)|/(PEM (or Grimm) PM2.5) (2)

where

Dylos PM2.5 = converted PM2.5 mass concentrations from the 3 h mean Dylos count mea-
surements collected over a single sample duration; and
PEM or Grimm PM2.5 = 3 h integrated PM2.5 mass concentration collected by the PEM or
Grimm over a single sample duration.



Int. J. Environ. Res. Public Health 2022, 19, 1086 7 of 14

3. Results
3.1. Statistical Summary

A total of 53 valid sampling days was obtained from the Dylos DC1700 after excluding
seven outliers in this study. Outliers were identified as data points with residuals greater
than two standard deviations. The mean and standard deviation (SD) of the particle
count for the Dylos was 1439 ± 1053 particles/0.01 ft3 (Range: 158–4394 particles/0.01 ft3).
The means and SDs of the PEM and the Grimm 11-R were 24.4 ± 24.4 µg/m3 (Range:
5.1–137.8 µg/m3) and 13.7 ± 10.7 µg/m3 (Range: 1.9–47.6 µg/m3), respectively. The
mean ambient air temperature during the entire study period was 25.0 ± 6.5 ◦C (range:
10.9–37.3 ◦C).

The descriptive statistics by sampling locations are summarized in Table 1. The
mean PM2.5 count concentration from the Dylos did not differ by sampling location
(ANOVA p-value = 0.33). The mean particle count at the Clinton Drive, US-59, and res-
idence locations were 1737 ± 1178 particles/0.01 ft3, 1235 ± 854 particles/0.01 ft3, and
1332 ± 1082 particles/0.01 ft3, respectively. The mean PM2.5 mass concentration from the
PEM (ANOVA p-value = 0.01) and the Grimm (ANOVA p-value = 0.03) differed by sam-
pling location. The mean mass concentration from the PEM was 39.93 ± 36.81 µg/m3 at
Clinton Drive, 18.9 ± 9.9 µg/m3 at US-59, and 15.2 ± 5.6 µg/m3 at the residence. The
3 h mean mass concentration from the Grimm was 19.0 ± 14.7 µg/m3 at Clinton Drive,
10.4 ± 5.2 µg/m3 at US-59, and 11.6 ± 7.8 µg/m3 at the residence. The 3 h mean tempera-
ture was 27.3 ± 5.2 ◦C, 21.3 ± 5.9 ◦C, and 26.3 ± 7.1 ◦C at the Clinton, US-59, and residence
locations, respectively.

Table 1. Summary of data obtained from the Dylos, Grimm, and HOBO by location.

Location Instrument Measurement Sampling Days Mean ± SD a Median Min, 25% b, 75% c, Max

Clinton Drive

PEM PM mass (µg/m3) 18 39.9 ± 36.8 21.9 7.4, 12.5, 52.5, 137.8
Grimm 11R PM mass (µg/m3) 18 19.0 ± 14.7 12.5 2.6, 8.0, 30.2, 47.6

Dylos 1700 PM number
(particles/0.01 ft3) 18 1737 ± 1178 137.6 246, 920, 2680, 4394

HOBO Temp (◦C) 18 27.3 ± 5.2 28.0 13.4, 24.3, 30.6, 37.0

US-59

PEM PM mass (µg/m3) 17 18.9 ± 9.9 21.3 5.1, 10.0, 27.0, 40.1
Grimm 11R PM mass (µg/m3) 17 10.4 ± 5.2 8.2 3.2, 6.9, 14.3, 21.5

Dylos 1700 PM number
(particles/0.01 ft3) 17 1235 ± 854 95.7 289, 957, 1529, 3844

HOBO Temp (◦C) 17 21.3 ± 5.9 22.1 10.9,17.3, 25.5, 32.6

Residence

PEM PM mass (µg/m3) 18 15.2 ± 5.6 15.7 7.2, 10.2, 19.5, 28.8
Grimm 11R PM mass (µg/m3) 18 11.6 ± 7.8 9.4 1.9, 7.4, 13.7, 36.2

Dylos 1700 PM number
(particles/0.01 ft3) 18 1332 ± 1082 95.4 158, 723, 1560, 4144

HOBO Temp (◦C) 17 * 26.3 ± 7.1 26.6 12.7, 26.6, 30.9, 37.3

a SD = standard deviation, b 25% = 25th percentile, c 75% = 75th percentile; * temperature data for 1 out of the
18 sampling days was missing due to technical issues with HOBO.

3.2. Effect of Road Traffic as a Proxy of PM2.5 Emission Source on the Linear Relationship between
Dylos and Research Grade Instruments (PEM and Grimm 11R)

Dylos vs. PEM. The slope for the overall combined log-transformed data was 0.70
(R2 = 0.52). The slope comparing the Dylos to the PEM measurements was 0.98 (R2 = 0.77),
0.63 (R2 = 0.42), and 0.29 (R2 = 0.31) at the Clinton Drive, US-59, and the residence, respec-
tively (Figure 3).

We assessed the significance of the coefficient of the interaction terms β4 (Clinton
Drive vs. US-59) and β5 (Clinton Drive vs. Residence) from Equation (1). While the
β4 coefficient (−0.36) was not significantly different (p = 0.89) between Clinton and US-
59, the β5 coefficient (−0.69) was statistically different between Clinton and the residence
(p < 0.01). There was no significant difference between the slopes of US-59 and the residence
(Coefficient = 0.33, p = 0.13).
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Similarly, we assessed the significance of the coefficient of interaction terms β4 (Clin-
ton vs. US-59) and β5 (Clinton vs. residence) for the Dylos–Grimm regression, β4
(coefficient = −0.37, p < 0.01), and β5 (coefficient = −0.33, p < 0.01). The coefficient of
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the interaction term (−0.03) comparing US-59 to the residence was not statistically different
(p = 0.80).

3.3. Effect of Temperature and Truck Ratio (HDDV%) on the Linear Relationship between Dylos
and Research Grade Instruments (PEM and Grimm 11R)

For the PEM, the coefficient for temperature (0.023) in the final model was significant,
indicating an increase of 1.26 µg/m3 in PEM mass concentration measurements with a
10 ◦C rise in temperature. The effect of truck ratio was not significant on the relationship
between Dylos and PEM. A similar finding was obtained with the Grimm and Dylos. The
coefficient for temperature (0.030) indicated an increase of 1.35 µg/m3 in Grimm mass
concentration measurements with a 10 ◦C rise in temperature. The slopes at three sampling
locations and the difference in slopes by location between without temperature (Model 1)
and with temperature (Model 2) are summarized in Table 2. For PEM, ambient temperature
increased regression slope for US-59 (0.63 to 0.82), whereas it did not change the slopes
for other locations. Similarly, we found that the regression slope for Grimm was incresed
from 0.73 (Model 1) to 0.84 (Model 2) for US-59, while they were not significantly changed
between Model 1 and Model 2 for other locations.

Table 2. Comparison of slopes obtained from regression models.

PEM Model 1 a Model 2 b

Slope

Total 0.70 0.68
Clinton 0.98 0.93
US-59 0.63 0.82

Residence 0.29 0.28

Slope difference
Clinton vs. US-59 −0.35 (p = 0.10) −0.12 (p = 0.54)

Clinton vs. Residence −0.69 (p < 0.01) −0.59 (p < 0.01)
US-59 vs. Residence 0.33 (p = 0.13) 0.47 (p = 0.03)

R2 0.68 0.74

GRIMM Model 1 Model 2

Slope

Total 0.91 0.89
Clinton 1.10 1.03
US-59 0.73 0.84

Residence 0.76 0.77

Slope difference
Clinton vs. US-59 −0.37 (p = 0.03) −0.20 (p = 0.05)

Clinton vs. Residence −0.34 (p = 0.02) −0.25 (p = 0.01)
US-59 vs. Residence −0.03 (p = 0.80) −0.05 (p = 0.62)

R2 0.90 0.94
a Model 1: model including log-transformed dylos count and sampling location as varaibles, b Model 2: model
including log-transofrmed dylos count, sampling location, and ambient temperature as varaibles.

3.4. Agreement between the Dylos and the Reference Grade Instruments (PEM and Grimm 11R)

The bias between the Dylos and the PEM PM2.5 measurements was about two times
greater than the bias between the Dylos and the Grimm (Table 3). Using the GE method, for
instance, the MARE between the Dylos and PEM measurements for the combined data was
42 ± 35%, whereas the MARE between the Dylos and Grimm measurements was 22 ± 16%.

Table 3 also summarizes the MARE using the SLE method. For Dylos to PEM PM2.5
measurements, the MAREs were greater at Clinton (37%) and US-59 (37%) than at the resi-
dence (27%). However, the MAREs across sampling locations were not statistically different
from each other (p-values = 0.89 (Clinton vs. US-59), 0.22 (Clinton vs. the residence), and
0.39 (US-59 vs. the residence). The MAREs using the SLE method between the Dylos and
Grimm at all locations were similar (Clinton: 14%, US-59: 19%, and the residence: 19%),
and the p values for all comparisons were 1.0.
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Table 3. Mean absolute relative error between Dylos and research grade instruments by location.

Location Dylos vs. PEM
(Mean (%) ± SD)

Dylos vs. Grimm
(Mean (%) ± SD)

PEM vs. Grimm
(Mean (%) ± SD)

a GE b SLE a GE b SLE a GE b SLE
Clinton (n = 18) 38 ± 22 37 ± 33 19 ± 13 14 ± 13 36 ± 23 35 ± 36
US-59 (n = 17) 38 ± 45 37 ± 43 24 ± 17 19 ± 13 32 ±35 31 ± 33

Residence (n = 18) 51 ± 35 27 ± 21 22 ± 19 19 ± 16 42 ± 39 25 ± 21
c Combined (n = 53) 42 ± 35 34 ± 33 22 ± 16 17 ± 14 37 ± 33 30 ± 30

a Absolute relative error estimated from a single regression line equation of total combined data. GE = general
equation; b absolute relative error estimated from 3 regression line equations of data after grouping by sampling
location. SLE = sampling location equation; c absolute error for all sampling locations combined.

Figure 5 shows temporal trends between the instruments on weekdays (Monday
through Friday) and weekends (Saturday and Sunday). The 3 h mean PM2.5 concentrations
from all three instruments show similar temporal trends across different sampling days.
The peak 3 h mean PM2.5 concentrations were much larger on weekdays compared to
weekends. The MARE (estimated using the SLE) between the Dylos and PEM PM2.5 was
similar on weekdays (32 ± 32%) and weekends (36 ± 30%). The MARE between the Dylos
and the Grimm was also similar on weekdays (18 ± 14%) and weekends (15 ± 12%).
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4. Discussion

The effects of different types of road traffic on the linear relationship between the Dylos
DC1700 and the two research-grade instruments (PEM and Grimm 11R) were assessed at
three specific locations with varying traffic types. The agreement (or bias) between the
Dylos and the research-grade instruments was also examined. Environments with different
traffic characteristics significantly changed the regression slopes between the Dylos DC1700
and the other instruments. However, the agreement (or bias) between the instruments was
not significantly affected by traffic conditions.

The 3 h integrated PM2.5 mass concentration measured by the PEM at the Clinton
Drive location (HDDV% = 28 ± 11%) was at least two times higher than those at the US-59
highway (HDDV% = 3.3 ± 0.7%) and the residence (no HDDV). Although both the Clinton
Drive and the US-59 locations were in close proximity to busy roadways, one possible
explanation for the higher concentration of PM2.5 at Clinton Drive than the US-59 may
be associated with more resuspension of PM2.5 at Clinton Drive. Askariyeh et al. (2020)
observed that PM2.5 previously deposited on roadways was heavily resuspended due to
the movement of heavy-duty vehicles (i.e., trucks) over the road. Estimated traffic-related
PM2.5 increased up to 208% on roadways, as resuspended particles were included in the
model [28]. A larger proportion of heavy vehicles on a road is also a factor increasing the
rate of resuspended particles [28]. Hence, the elevated PM2.5 concentration at the Clinton
Drive may be explained by the higher percentage of heavy-duty trucks in this study.

The regression of the log-transformed PEM over the log-transformed Dylos PM2.5
concentrations for the overall combined data showed positive and moderate to strong
correlation (r = 0.72). Previous studies showed a similar correlation between a DRI and
gravimetric samplers (Kim et al., 2004: r = 0.68 and Zhu et al., 2011: r = 0.63) [29,30]. We also
found that the correlation (r = 0.95) between the Dylos and the Grimm 11-R was stronger
than that between the Dylos and the PEM. The higher correlation between the Dylos and
Grimm is probably due to the similar light scattering method used by both samplers as
opposed to the gravimetric method used by the PEM. Previous studies observed a strong
correlation between an LCPMS and other direct reading instruments (Han et al., 2017:
r = 0.88 and Northcross et al., 2013: r = (0.90–0.99) [19,23].

Slopes from the linear regression equations obtained from collocated measurements of
the Dylos and research-grade instruments are often used to estimate correction factors in
the conversion of Dylos particle count concentration (particles count/0.01 ft3) to mass con-
centration (µg/m3). Converting the Dylos counts to mass concentration enables equivalent
comparison between the Dylos measurements, other research-grade instruments, and the
national air quality standards. The slope of simple linear regression of the log transformed
PEM and Dylos data for the overall data was 0.70, whereas the slope of the log transformed
Grimm11R and Dylos was 0.91. Using the linear regression equations in this study, the
estimated Dylos PM2.5 for a particle count of 10,000 particles/0.01 ft3, for instance, was
82.9 µg/m3 using the PEM model and 76.8 µg/m3 using the Grimm 11R model. The results
of this study overestimated PM2.5 approximately 20–30 percent compared to the PM2.5 for
a 10,000 particle/0.01 ft3 in previous studies: 62.1 µg/m3 [22] or 67.8 µg/m3 [23].

Additionally, the slope of the Dylos–PEM varied by location. The discrepancies in
regression slopes may be explained by the heterogeneous characteristics of aerosols at the
different sampling locations. The PM2.5 at Clinton Drive was composed of a relatively
higher percent of diesel particle emissions (HDDV = 28%) compared to US-59 (HDDV = 3%)
and the residential location (no HDDV). The PM2.5 at the residence consisted of particles
from suburban background sources with no significant traffic sources nearby. Given the
different slopes by locations, sampling location specific conversion factors (SLE slopes) can
be helpful in improving the accuracy of the estimated PM2.5 mass concentration from the
Dylos PM2.5 count measurements (and other LCPMS) at locations where the characteristics
of PM2.5 differ.

The effects of temperature and truck ratio on the linear relationship between the
Dylos and the other research grade instruments were examined using the regression model



Int. J. Environ. Res. Public Health 2022, 19, 1086 12 of 14

(Model 2). The effect of truck ratio (ratio of heavy-duty trucks to regular gas vehicles) was
not significant. Although temperature was a significant factor in both the Dylos–PEM and
Dylos–Grimm linear relationship, the effect size of temperature was minimal compared to
the location variable. The inclusion of temperature in the regression model modified less
than 10 percent of the overall slope and the slopes at each specific sampling location. Only
one exception was the difference between the US-59 and residence slopes which became
statistically significant for the Dylos–PEM relationship.

The mean percentage bias as MARE between the Dylos and the PEM (42%) with the
combined data in this study was similar to a previous study (40%) [29]. Further analysis of
the MARE by sampling location showed that the mean percent bias did not significantly
differ by sampling location. The results suggest that, in urban environments similar to
Houston, TX, the bias (or precision) was consistent between the converted Dylos PM2.5
mass and the PM2.5 measured from the research-grade instruments.

The limitations of this study include the ambient PM2.5 at the sampling locations not
being fully characterized for their composition aerosols. Chemical characterization of the
PM2.5 at the sampling locations would help show how chemical constituents in PM2.5 affect
the relationship between the LCPMS and research-grade instruments. Further, a longer
sampling period (i.e., >30 days) at each location would be preferable to the 18 days of
sampling in this study, as this would have provided a larger sample size to make stronger
statistical conclusions. This knowledge would enable better conclusions about the results
of the study.

5. Conclusions

The Dylos had a moderate to strong correlation with both the PEM and the Grimm.
The slopes of the linear regression comparing the Dylos to both the PEM and the Grimm
varied by about 30 percent across sampling locations. This finding suggests that calibration
at each specific sampling location with different traffic characteristics is key to determine the
PM2.5 mass concentrations using an LCPMS. On average, the bias between the converted
Dylos measurements and the PEM measurements was about two times higher than the
bias between the Dylos and the Grimm measurements. The biases between the Dylos
and both research-grade instruments remained similar across different sampling locations
and PM concentration levels. Overall, the LCPMS, after proper calibration, could provide
supplementary PM2.5 data to evaluate air pollution in urban environments with different
traffic characteristics.
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