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Abstract: Coronary atherosclerosis is one of the major factors causing cardiovascular diseases.
However, identifying the tipping point (predisease state of disease) and detecting early-warning signals
of human coronary atherosclerosis for individual patients are still great challenges. The landscape
dynamic network biomarkers (l-DNB) methodology is based on the theory of dynamic network
biomarkers (DNBs), and can use only one-sample omics data to identify the tipping point of
complex diseases, such as coronary atherosclerosis. Based on the l-DNB methodology, by using the
metabolomics data of plasma of patients with coronary atherosclerosis at different stages, we accurately
detected the early-warning signals of each patient. Moreover, we also discovered a group of dynamic
network biomarkers (DNBs) which play key roles in driving the progression of the disease. Our study
provides a new insight into the individualized early diagnosis of coronary atherosclerosis and may
contribute to the development of personalized medicine.

Keywords: single-sample network; landscape dynamic network biomarkers (l-DNB); tipping point;
coronary atherosclerosis; myocardial infarction

1. Introduction

Cardiovascular diseases (CVDs) are the leading cause of mortality in the world, accounting for
almost one-third of deaths worldwide [1]. Among the deaths caused by CVDs, ischemic heart disease
accounted for 42.5%, and the primary cause is coronary atherosclerosis [1,2]. Coronary atherosclerosis
begins with intimal hyperplasia near the bifurcation of the coronary artery, and then causes stenosis or
obstruction of the vascular lumen, eventually leading to fatal cardiovascular events such as myocardial
infarction [3,4]. Clinically, visual stenosis of 50–70% by coronary angiography was defined as the critical
lesion of coronary atherosclerosis, which is a common pathological phenotype of the disease [5,6].
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Although the degree of coronary stenosis in patients with critical lesions is similar, the prognosis varies
greatly. Some patients remained in a stable state for a long time, while others deteriorated rapidly,
leading to major adverse cardiovascular events. Therefore, it is extremely important to develop novel
methods and biomarkers to make risk stratification more accurate and identify patients at high risk of
adverse events as early as possible.

In recent years, systems biology approaches have been widely applied in the studies of
cardiovascular-related diseases [7–10]. The progression of coronary atherosclerosis is a chronic
and nonlinear process, which involves complicated dynamic regulations in biomolecular networks.
For human coronary atherosclerosis, the progression process can be generally divided into
three stages—normal state, predisease state (i.e., tipping point) and disease state (major adverse
cardiovascular events, e.g., myocardial infarction). The system will rapidly deteriorate into an
irreversible disease state just after the tipping point. Therefore, for early prediction and prevention of
adverse cardiovascular events, it is critical to identify the predisease state of the coronary atherosclerosis,
especially accurate to the individual level.

Based on the dynamic evolution characteristics of complex disease, we developed the theory of
dynamic network biomarkers (DNBs) to identify the tipping point and leading molecular networks
during the progression of a complex disease [11], which has been successfully applied in many
diseases [12,13]. However, to detect the tipping point of each patient, the original DNB method
requires multiple samples, which are not available generally for individual patients in clinical practices.
In addition, it is not trivial to computationally determine DNB members and DNB module size.
To solve those problems, the landscape DNB (l-DNB) method was developed to identify the tipping
point of diseases from a single sample [14]. Based on the three criteria of traditional DNB theory and
single-sample network, the l-DNB method can evaluate the local DNB score for molecule by molecule
in a sample, and then compile all of the local DNB scores into a landscape of this sample. Therefore,
the l-DNB method can be applied to identify the tipping point of human coronary atherosclerosis at
the individual level.

In this study, we applied the local DNB score of molecules in each sample by using metabolomics
data from different stages of coronary atherosclerosis patients. We not only identified the tipping
point of the disease, but also predicted the criticality (i.e., early warning signals) of each patient and
exactly identified the patients at high risk of adverse cardiovascular events verified by the follow-up
information of these patients over the years. Furthermore, we also discovered a group of molecular
network biomarkers. Evaluating them as a network by second-order statistics (e.g., correlation and
deviation of these molecules) but not by the traditional first-order statistics (e.g., their average values)
to assess the disease status, will provide new insights into the discovery of novel network biomarkers.

2. Methods

2.1. Patient Information and Study Design

Patients in this study received selective coronary angiography between June 2011 and March
2015 in Fuwai Hospital (Chinese Academy of Medical Sciences, Beijing, China). We excluded the
patients with rheumatic heart disease, cardiomyopathy and other organic heart diseases, and also
excluded the patients with severe liver and renal dysfunction, severe infectious diseases, malignant
tumors, immune system diseases, connective tissue diseases, hyperthyroidism, Cushing syndrome and
other metabolic diseases. Informed consent was obtained from all study participants. This study was
performed complying with the Declaration of Helsinki and was approved by the Ethics Committee of
Fuwai Hospital.

Forty-eight patients were divided into three groups according to their coronary angiographic
results. Nineteen patients with stenosis of coronary arteries < 20% were regarded as the control group
(i.e., reference samples). Among them, about 90% of people had no coronary stenosis diagnosed by
coronary angiography. Fifteen age- and sex-matched patients with stenosis of the coronary arteries
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between 50% and 70% were sorted into the group of Stage A. In group of Stage B, 14 patients were
diagnosed with acute myocardial infarction (AMI). The follow-up information of the patients was
collected in August 2019. One patient (ID: XJ608) in Stage A group received revascularization in
September 2018 due to cardiovascular disease. The study design is shown in Figure 1a.

Genes 2019, 10, x FOR PEER REVIEW 3 of 13 

 

diagnosed with acute myocardial infarction (AMI). The follow-up information of the patients was 

collected in August 2019. One patient (ID: XJ608) in Stage A group received revascularization in 

September 2018 due to cardiovascular disease. The study design is shown in Figure 1a.  

 

Figure 1. (a) The schematic diagram of study design; (b) partial least squares discriminant analysis 

(PLSDA) of global plasma metabolomics profile. 

2.2. Serum Collection and Preparation 

Fasting plasma samples (4 mL) were collected before coronary angiography in heparinized tubes 

and centrifuged within one hour of collection (4 °C, 10 min at 2300 rpm). The plasma sample was 

then separated into aliquots and immediately frozen at −80 °C for metabolomics analysis.  

A total of 400 μL of extraction solvent (V methanol: V acetonitrile = 1:1) was added to 100 μL of 

plasma thawed at 4 °C, followed by incubation for 1 h at −20 °C to precipitate proteins. The mixture 

was then centrifuged at 12,000 rpm for 15 min at 4 °C, and the supernatant (425 μL) was transferred 

into a new eppendorf tube. After drying and re-dissolution in acetonitrile:water (1:1), 60 μL of 

supernatant was transferred into a 2 mL glass vial for liquid chromatograph-mass spectrometer (LC-

MS). Quality control samples were prepared by pooling 10 μL supernatant from each sample.  

2.3. Metabolomics Study 

The metabolomics of plasma was performed on a UHPLC system (1290, Agilent Technologies, 

Santa Clara, CA, USA) with a UPLC BEH Amide column (1.7 μm 2.1 ×* 100 mm, Waters) coupled to 

TripleTOF 6600 (Q-TOF, AB Sciex). MS raw data files (wiff) were converted to the mzXML format by 

using ProteoWizard software. Retention time alignment, peak discrimination, data filtering, 

alignment and matching were carried out by using R package XCMS (version 3.2), which generated 

a data matrix that consisted of the retention time (RT), mass-to-charge ratio (m/z) values, and peak 

intensity. Then, CAMERA R package was used for peak annotation. An in-house MS2 database was 

applied to identify the metabolites. We obtained 1918 annotated metabolites and 1016 unknown 

analytes in the positive and negative ion model, and chose the annotated metabolites for subsequent 

analysis. 

The partial least square discriminant analysis (PLSDA) of the metabolomics data was conducted 

by the mixOmics R package.  

2.4. l-DNB Analysis 

The l-DNB method we used for detecting the individual early-warning signals in complex 

disease was reported previously [14] with slight modification in this study. 

Briefly, the DNB identification using the l-DNB method was based on the three criteria of 

previous DNB theory [11]. As shown in Figure 2a, when a biological system approaches the 

predisease state from a normal state, a group of biomolecules (i.e., DNB module) satisfies the 

following three statistical conditions [13,15–17]: 

1. The deviation of each molecule inside the module (𝑆𝐷𝑖𝑛, standard deviation) fluctuate strongly; 

Figure 1. (a) The schematic diagram of study design; (b) partial least squares discriminant analysis
(PLSDA) of global plasma metabolomics profile.

2.2. Serum Collection and Preparation

Fasting plasma samples (4 mL) were collected before coronary angiography in heparinized tubes
and centrifuged within one hour of collection (4 ◦C, 10 min at 2300 rpm). The plasma sample was then
separated into aliquots and immediately frozen at −80 ◦C for metabolomics analysis.

A total of 400 µL of extraction solvent (V methanol: V acetonitrile = 1:1) was added to 100 µL of
plasma thawed at 4 ◦C, followed by incubation for 1 h at −20 ◦C to precipitate proteins. The mixture
was then centrifuged at 12,000 rpm for 15 min at 4 ◦C, and the supernatant (425 µL) was transferred into
a new eppendorf tube. After drying and re-dissolution in acetonitrile:water (1:1), 60 µL of supernatant
was transferred into a 2 mL glass vial for liquid chromatograph-mass spectrometer (LC-MS). Quality
control samples were prepared by pooling 10 µL supernatant from each sample.

2.3. Metabolomics Study

The metabolomics of plasma was performed on a UHPLC system (1290, Agilent Technologies,
Santa Clara, CA, USA) with a UPLC BEH Amide column (1.7 µm 2.1 ×* 100 mm, Waters) coupled to
TripleTOF 6600 (Q-TOF, AB Sciex, Foster City, CA, USA). MS raw data files (wiff) were converted to
the mzXML format by using ProteoWizard software (AB Sciex, Foster City, CA, USA). Retention time
alignment, peak discrimination, data filtering, alignment and matching were carried out by using R
package XCMS (version 3.2), which generated a data matrix that consisted of the retention time (RT),
mass-to-charge ratio (m/z) values, and peak intensity. Then, CAMERA R package was used for peak
annotation. An in-house MS2 database was applied to identify the metabolites. We obtained 1918
annotated metabolites and 1016 unknown analytes in the positive and negative ion model, and chose
the annotated metabolites for subsequent analysis.

The partial least square discriminant analysis (PLSDA) of the metabolomics data was conducted
by the mixOmics R package.

2.4. l-DNB Analysis

The l-DNB method we used for detecting the individual early-warning signals in complex disease
was reported previously [14] with slight modification in this study.

Briefly, the DNB identification using the l-DNB method was based on the three criteria of previous
DNB theory [11]. As shown in Figure 2a, when a biological system approaches the predisease state
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from a normal state, a group of biomolecules (i.e., DNB module) satisfies the following three statistical
conditions [13,15–17]:

1. The deviation of each molecule inside the module (SDin, standard deviation) fluctuate strongly;
2. The correlation among molecules inside the module (PCCin, Pearson correlation coefficients in

absolute values) dramatically increases; and
3. The correlation of the molecules between the inside and outside of this module (PCCout, Pearson

correlation coefficients in absolute values) dramatically decreases.
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Figure 2. (a) The schematic diagram for the dynamical progression of human coronary atherosclerosis.
The process of disease development can be divided into three states—normal state, predisease state
and disease state. The system is stable and ordered at a normal state. With evolution of the disease,
the system reaches the predisease state (i.e., tipping point), which has no substantial changes in
pathological phenotype compared with the normal state, and it is reversible between the predisease
state and normal state. However, when the system crosses the tipping point, it deteriorates rapidly,
eventually leading to the major cardiovascular events. (b) The flowchart of the landscape dynamic
network biomarkers (l-DNB) method to identify DNB molecules from a single sample.

(1) Construction of SSNs

In order to calculate the DNB at individual level, we need to construct a single-sample network
(SSN) for the given samples first. The theoretical principle of the SSN method has been reported
before [18]. Briefly, based on a group of reference samples (n samples), a reference network can be
constructed by the correlations between molecules using the abundance data of this group. The PCC
between molecules x and y in the data of the n reference samples (i.e., samples in control group) can be
calculated as

PCCn(x, y) =
∑n

i (xi − xn)(yi − yn)√∑n
i=1 (xi − xn)

2
√∑n

i=1 (yi − yn)
2

, (1)
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where xi and yi are the values of molecules x and y in the ith reference sample among the n reference
samples, respectively. And xn and yn are the respective average values for molecules x and y in the n
reference samples.

When one new sample d is added to the n reference samples, the PCC between molecules x and y
in the data of (n+1) samples (one new sample + the original n reference samples) can be calculated as

PCCn+1(x, y) =

∑n+1
i (xi − xn+1)(yi − yn+1)√∑n+1

i=1 (xi − xn+1)
2
√∑n+1

i=1 (yi − yn+1)
2

, (2)

where xi and yi are the values of molecules x and y in the ith sample among the (n + 1) samples,
respectively. And xn+1 and yn+1 are the respective average values for molecules x and y in the
(n + 1) samples.

The influence of the new sample d is mainly reflected in the changes of PCC. Therefore,
the differential PCC between molecules x and y for sample d against the n reference samples, is
defined as

sPCCn(x, y) = PCCn+1(x, y) − PCCn(x, y). (3)

The sPCCn(x, y) follows the volcano distribution [18], which approximates a normal distribution when
n is large enough. Thus, we can use a statistical hypothesis test (Z-test or U-test) to evaluate whether
the molecules x and y are significantly correlated at the single-sample level. If the p-value < 0.05, x and
y are considered to have significant correlation.

(2) Calculating the local DNB score for each molecule in a single sample

Based on the sample-specific network, we defined the target molecule and its first-order neighbors
as a local module. According to the three statistical conditions of DNB theory, the local DNB score for
each molecule in sample d can be defined as follows:

Is(x) = sADin
sPCCin
sPCCout

, (4)

where Is(x) is the score of the local module of molecule x in the single sample d. The variables in the
equation are calculated as follows:

Corresponding to the SDin in DNB theory, we define the single-sample Abundance Deviation
(sAD) as follows:

sAD(xd) = |xd − x|, (5)

where xd is the abundance of molecule x in the new sample d and x is the average abundance of
molecule x in the n reference samples. Then, we infer the following relational expression:

sADin =
1

1 + nxd

sAD(xd) +
∑

ydεNxd

sAD(yd)

, (6)

which represents the average differential deviation in abundance of all (1 + nxd) molecules in the local
module of molecule x for sample d against the n reference samples. Furthermore, Nxd is a molecule set
with nxd molecules, which is the first-order neighbors of the molecule x.

Next, we calculated the correlation between molecules within the module and the correlations
between inside and outside of the module, which were named as sPCCin and sPCCout, respectively.
The PCCin is defined as

sPCCin =
1

nxd

∑
ydεNxd

sPCCn(xd, yd), (7)
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where sPCCin is the average value of sPCCn between molecule xd and all its first-order neighbors, Nxd.
Furthermore,

sPCCout =
1

nxdmxd

∑
ydεNxd

zdεMxd

sPCCn(yd, zd), (8)

where sPCCout is the average of sPCCn between the first-order neighbors and second-order neighbors of
molecule xd. Mxd is a molecule set with mxd molecules, which is the number of second-order neighbors
of molecule xd. All the above modules and molecules are based on SSN.

It is worth noting that we only considered the molecules that have at least three first-order
neighbors and one second-order neighbor in the network topology. The first-order neighbors and the
second-order neighbors are disjoint molecular sets. Additionally, when calculating the DNB scores of
the control group, we used the same reference network as the Stage A and B groups.

2.5. Pathway Enrichment of l-DNB Molecules and Related Genes

The pathway enrichment analysis for l-DNB molecules was performed by MetaboAnalystR 3.0
R package. The canonical pathway analysis of the l-DNB molecule-related genes was carried out by
Ingenuity Pathway Analysis (IPA) software (QIAGEN® Bioinformatics, Germantown, MD, USA).

2.6. Heatmap of Local DNB Molecule Related Genes

The heatmap of local DNB molecule-related genes was conducted by the gplots R package.
The gene expression data used in the heatmap were RNA-Seq data of peripheral blood mononuclear
cells from the patients that received selective coronary angiography between June 2011 and March 2015
in Fuwai Hospital. Twenty-four samples (8 samples per group by random sampling) were sequenced
on an Illumina platform with paired end 150 bp. The clean data filtered from raw data were aligned to
the Human reference genome ENSEMBL GRCh38.p13 using HISAT2 program, and then assembled
and quantified by using StingTie software. The average log2 fold change value between groups was
analyzed by DESeq2 R package.

2.7. Statistical Analysis

Continuous data were expressed as mean ± SD and compared using the ANOVA test. Categorical
data were expressed as count (percentage) and compared using the chi-square or Fisher exact test.
p-Value < 0.05 was considered statistically significant. The statistical result of global DNB scores from
all samples is presented as mean ± SEM using GraphPad Prism 5.0 software (GraphPad Software Inc.,
San Diego, CA, USA) (Figure 3a). The bar plots and line chart of statistical results in this study are
displayed by GraphPad Prism 5.0 software as well (Figure 3b,c).
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Figure 3. (a) The statistical results of the global DNB scores in each group indicated that the tipping
point of coronary atherosclerosis is at Stage A. (b) The proportion of the predicted high-risk patients
(global DNB score > 1.0) in each group (upper panel). Furthermore, the IDs of these patients in each
group were listed below. The true positive rate (TPR) is 86.67% and false positive rate (FPR) is 21.21%.
(c) The ranking of the patient (XJ608) in sampling 100 times. (d) The pathway enrichment of DNB
molecule candidates. The color is used to distinguish different groups.

3. Results

3.1. Global Plasma Metabolomics Profile of Coronary Atherosclerosis Patients

To detect the early-warning signals during the progression of human coronary atherosclerosis,
the plasma was collected from patients with different pathological states. As shown in Figure 1a,
according to the coronary angiography results of patients, the samples were generally divided into three
groups—control group (the stenosis of coronary artery is less than 20%), Stage A group (the stenosis
of coronary artery is between 50% and 70%) and Stage B group (diagnosed as AMI). The baseline
characteristics are shown in Table 1. There was no significant difference among the three groups in
baseline characteristics. To get the global metabolomics profile during the progression of coronary
atherosclerosis, these 48 plasma samples were detected on Ultra High-Performance Liquid Tandem
Chromatography Quadrupole Time of Flight Mass Spectrometry (UHPLC-QTOFMS). After a series
of data preprocessing (Figure 1a), we finally identified about 1900 annotated metabolites by relative
quantification, including both positive and negative ion models. Through the partial least squares
discriminant analysis (PLSDA) result of metabolomics data (Figure 1b), we found that Stage A group
was quite different from the other two groups in terms of metabolites, which indicated that there might
exist a tipping point during the nonlinear process of coronary atherosclerosis progression.
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Table 1. Baseline Characteristics.

Control
n = 19

Stage A
n = 15

Stage B
n = 14 p-Value

Age (years) 58.53 ± 8.64 61.38 ± 9.68 61.50 ± 9.35 0.563

Female 9 (47.4%) 7 (43.8%) 7 (50%) 0.942

BMI (kg/m2) 27.22 ± 7.95 25.12 ± 4.46 25.99 ± 2.49 0.558

SBP (mmHg) 126.32 ± 12.11 126.13 ± 13.29 123.86 ± 16.43 0.863

DBP (mmHg) 78.95 ± 11.97 73.44 ± 7.69 75.50 ± 11.33 0.305

Diabetes mellitus 3 (15.8%) 2 (12.5%) 5 (35.7%) 0.236

Hypertension 11 (57.9%) 12 (75%) 10 (71.4%) 0.521

Dyslipidemia 10 (52.6%) 12 (75%) 12 (85.7%) 0.207

Family history of CAD 3 (15.8%) 6 (37.5%) 4 (28.6%) 0.343

Premature CAD 2 (10.5%) 4 (25%) 1 (7.1%) 0.316

Cerebrovascular disease 0 (0.0%) 1 (6.3%) 4 (28.6%) 0.061

Peripheral vascular disease 3 (15.8%) 3 (18.8%) 1 (7.1%) 0.638

BMI: body mass index; SBP: systolic blood pressure; DBP: diastolic blood pressure; CAD: coronary artery disease.

3.2. The Tipping Point of Each Individual during the Progression of Human Coronary Atherosclerosis by l-DNB

The metabolomics profile and previous evidence suggested that the progression of human
coronary atherosclerosis is a nonlinear process, and there exists a tipping point during the disease
development. The traditional methods based on differentially expressed genes are limited by their
static characteristics, which fails to distinguish the predisease state from the normal state. Thus, we turn
to the DNB theory (Figure 2a), which was developed for identifying the tipping point of complex
diseases and discovering the critical networks [11,15,19]. When the system approaches the tipping
point, a dominant group of molecules, named DNBs, satisfies the three statistical conditions (i.e.,
strong fluctuation, high correlation of internal molecules and low correlation with external molecules)
(See Methods—l-DNB analysis). Based on these, it is available for us to identify the tipping point
of human coronary atherosclerosis and discover the potential network biomarkers. However, even
with the same pathological phenotype, there are great differences among individuals. Moreover,
the DNB method identifies the tipping point of the whole system by using multiple samples, which is
unavailable for personal prediction.

To solve these problems, the new method, l-DNB, was developed (Figure 2b). First, by using the
metabolomics data, we constructed a single-sample network (SSN) for given samples based on the
reference samples (samples in the control group). Next, according to the three criteria of DNB theory,
we calculated the local DNB score of each molecule in each sample. Finally, the molecules in each
sample were sorted by their local DNB score, and the global DNB score for each sample was the mean
value of all local DNB scores in this sample. The detailed information of the calculation can be found
in Methods.

According to the above calculation, we obtained a landscape of local DNB molecule scores for
each sample. As shown in Figure 3a, the average value of global DNB scores in the Stage A group
was significantly higher than that in other two groups, which means that the tipping point of human
coronary atherosclerosis is at Stage A. This result coincides with the critical stage defined in clinical
medicine. Then, we defined the person with a global DNB score greater than 1.0 as the patient at high
risk of adverse cardiovascular events. We found that most of the patients (13 out of 15 persons) in the
Stage A group were accurately predicted to be the high-risk patients, which means the true positive
rate (TPR) is 86.76% (Figure 3b). Meanwhile, the predicted high-risk patients in the Control group and
Stage B group were only five and two persons, respectively. Thus, the false positive rate (FPR) is only
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21.21%. The global DNB score of each sample can be found in Table S1. These results demonstrated
that the l-DNB method can accurately identify the patient who is at the critical state (tipping point).

Although the patients in the Stage A group received the corresponding treatment after the coronary
angiography, the patient (ID: XJ608) still underwent major cardiovascular events according to the
follow-up information collected in August 2019. Therefore, taking the XJ608 patient for example
to test the effectiveness and accuracy of our analysis results, we evaluated the composition of local
DNB molecules and the robustness of prediction. First, we respectively selected the top five (or
top 10, top 15, top 20, . . . , top 500, i.e., total 100 times) local DNB molecules to calculate the global
DNB score of each sample. In this way, every sample had 100 global DNB scores corresponding to
different molecular sample sizes. Then, we compared the global DNB score of “XJ608” patient with
the corresponding global DNB scores of other samples, and finally got the ranking distribution of
“XJ608” in 100 times of such sampling. The statistic result of the sample “XJ608” ranking showed
that the probability of sample “XJ608” ranking in the top three relative to all samples is 0.52 and the
probability of ranking in top five is 0.91 (Figure 3c), which implied that XJ608 patient had a high risk of
morbidity. This result further confirms that the l-DNB method can personalize the tipping point of
coronary atherosclerosis accurately.

To further investigate the mechanism of molecule networking that drives the system as it
approaches the tipping point, we selected the molecules with local DNB scores in the top 50 from
each sample of the Stage A group, and these molecules were also included in at least three samples of
the Stage A group. Through the pathway enrichment analysis of these DNB molecules (Figure 3d),
we found that these molecules were mainly enriched in pathways related to lipid metabolism, fatty
acid metabolism and amino acid metabolism, which implied that these enriched metabolic pathways
played important roles at the tipping point of human coronary atherosclerosis.

Among the DNB molecules mentioned above, 16 l-DNB molecules were candidate molecules
(top 50) in at least half of the Stage A samples (Figure 4a). In addition, these molecules include many
phospholipids and fatty acids. Therefore, we extracted the related genes involved in the metabolism of
these molecules using the KEGG database, and obtained their dynamic expression in the three stages
using the RNA-Seq data of peripheral blood mononuclear cells in coronary atherosclerotic patients
(Table S2). Through the dynamic expression of the l-DNB molecule-related genes, we found that most
of the genes reversed their expression trend after the tipping point (Figure 4b). Moreover, the canonical
pathway enrichment results of these genes showed that most of the enriched pathways were activated
before the tipping point (Stage A group compared with the Control group), except one pathway
(antioxidant Action of Vitamin C) that was suppressed (Figure 4c). After the tipping point (Stage
A group compared with Stage B group), the states of these pathways were reversed. These results
suggested that lipid metabolism-related genes and molecules played the key roles in driving the
coronary atherosclerosis approaching the tipping point.
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Figure 4. (a) The list of l-DNB candidate molecules with frequencies exceeding 50% in Stage A samples.
(b) The dynamic expression of the l-DNB candidate molecule-related genes before and after the tipping
point. Before the tipping point—the average log2 fold change of Stage A group relative to Control
group. After the tipping point—the average log2 fold change of Stage A group relative to Stage B
group. (c) The canonical pathway analysis of the l-DNB candidate molecule related genes. The top 10
enriched pathways are shown.

4. Discussion

The progression of human coronary atherosclerosis is a nonlinear dynamic process, which is
influenced by many factors, such as heredity, environment and living habits, etc. [20,21]. Due to
the complexity of the disease, patients at a high risk of adverse cardiovascular events cannot be
effectively identified by the degree of vascular stenosis [22]. Therefore, we must develop new methods
for the prediction and diagnosis of an individual patient. The DNB method is able to detect the
critical states during disease progression or biological processes, and its effectiveness has been studied
in many papers from both experimental and computational viewpoints [12,13,23–25], e.g., cell fate
decision [23,24], immune checkpoint blockade [25], pulmonary metastasis [13] and steatohepatitis
transition [12].

In this study, using an untargeted metabolomics approach, we not only accurately identified the
tipping point during the progression of human coronary atherosclerosis, but also precisely assessed
the risk of adverse events on individual patients by using the l-DNB method.

The metabolomics profiles of plasma enable us to systematically study the mechanism of molecular
dynamics in pathogenesis under noninvasive conditions, which are widely used to identify novel
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biomarkers in the cardiovascular field [26,27]. Using the plasma metabolomics data at different stages,
we identified that the tipping point during the progression of human coronary atherosclerosis is at
Stage A, which corresponds to the critical stage defined in clinical medicine [5,6]. More importantly,
we accurately identified the early-warning signals for individual patients by their global DNB scores
with the TPR of prediction 86.67%, and the FPR only 21.21%. Due to limited sample size, there was
only one patient (ID: XJ608) who underwent a major cardiovascular event after medication in the
Stage A group. However, in the ranking of patients that were predicted to be at high risk of adverse
events, the probability that the XJ608 patient ranked in the top five in 100 times of sampling was 0.91.
This result also strongly proves that the l-DNB method can accurately personalize the early-warning
signals of coronary atherosclerotic patients.

Meanwhile, we discovered a group of DNB molecules that may play driving roles in the molecular
regulatory networks during the progression of coronary atherosclerosis. Many of them have been
reported to be involved in lipid metabolism and fatty acid metabolism, which validates our results.
Phosphatidylglycerol (PG) and phosphatidylethanolamine (PE), the subclasses of glycerophospholipids,
have been reported to be observed in plasma lipoproteins and atherosclerotic plaques [28]. Depending
on the species of the bound fatty acids, different kinds of glycerophospholipids play different roles in
biological processes [28,29]. Although some kinds of PEs have been reported to be closely involved in
the progression of atherosclerosis [30,31], the functions of other kinds of PEs remain concealed. Current
studies demonstrate that PGs are the important participants in the signal transduction and stress
response [32], but their roles in atherosclerotic progression are still unclear. In our result, PG (16:1/16:1)
and PG (18:3/20:4) are DNB molecule candidates in 14 samples of the Stage A group (15 samples in
total), which reveals the importance of PGs in the progression of coronary atherosclerosis, and their
specific molecular mechanisms need to be further studied. Palmitic acid, a molecule involved in
fatty acid metabolism, has been reported to be intimately related to cardiovascular disease [29,33,34].
The metabolic dynamic changes caused by palmitic acid intake can influence the levels of total
cholesterol and low-density lipoprotein (LDL) cholesterol, which show a strong positive correlation
with the development of coronary heart disease [35–37]. Our study revealed that palmitic acid is an
important DNB molecule, and its dynamic fluctuation as well as the participating regulatory network
can drive the progression of coronary atherosclerosis. However, the underlying molecular mechanism
needs to be further investigated. More importantly, for the first time, we took these metabolites as a
network biomarker (by using their second-order statistics for disease prediction, e.g., correlation and
deviation of these molecules). Although these metabolites have been studied separately, taking them
as a network (evaluating them as a network, e.g., not by the traditional first-order statistics but by the
second-order statistics) to assess the disease status will provide new insights into the discovery of
novel network biomarkers.

In conclusion, based on the l-DNB method, our study identified the tipping point of human
coronary atherosclerosis at Stage A, which was consistent with the clinically defined critical stage.
More importantly, we detected the early-warning signal of each patient and accurately identified the
patients at high-risk of adverse events. These not only provide a new noninvasive method for the
early prediction of adverse cardiovascular events, but also contribute to the realization of personalized
diagnosis. Furthermore, we also discovered a group of DNB molecules that play driving roles in the
development of the disease, which provide a new insight into the molecular network mechanisms of
human coronary atherosclerosis.
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