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Abstract: The potential of using residual softwood fibers from the pulp and paper industry for
producing eco-friendly, zero-formaldehyde fiberboard panels, bonded with calcium lignosulfonate
(CLS) as a lignin-based, formaldehyde free adhesive, was investigated in this work. Fiberboard panels
were manufactured in the laboratory by applying CLS addition content ranging from 8% to 14%
(on the dry fibers). The physical and mechanical properties of the developed composites, i.e., water
absorption (WA), thickness swelling (TS), modulus of elasticity (MOE), bending strength (MOR), as
well as the free formaldehyde emission, were evaluated according to the European norms. In general,
only the composites, developed with 14% CLS content, exhibited MOE and MOR values, comparable
with the standard requirements for medium-density fiberboards (MDF) for use in dry conditions. All
laboratory-produced composites demonstrated significantly deteriorated moisture-related properties,
i.e., WA (24 h) and TS (24 h), which is a major drawback. Noticeably, the fiberboards produced had
a close-to-zero formaldehyde content, reaching the super E0 class (≤1.5 mg/100 g), with values,
ranging from 0.8 mg/100 g to 1.1 mg/100 g, i.e., equivalent to formaldehyde emission of natural
wood. The amount of CLS adhesive had no significant effect on formaldehyde content.

Keywords: wood-based panels; fiberboards; recycled fibers; bioadhesives; calcium lignosulfonate;
zero-formaldehyde emission

1. Introduction

The resource efficiency optimization, and the transition to circular, low-carbon bioe-
conomy, have posed new requirements and actions towards a greater, more sustainable
use of natural raw materials by sustainably increasing the primary production and conver-
sion of waste into high-value added products. Cascading use of lignocellulosic resources,
defined as “the efficient utilization of resources by using residues and recycled materials
for material use to extend total biomass availability within a given system”, is one of the
leading principles for achieving this goal.

The wood-based panel industry, with its wide variety of products for a number of
end-uses, such as construction and furniture manufacturing, is one of the fastest growing
industries worldwide, characterized by a clear upward trend for many years [1–3]. In 2019,
the annual global production of wood-based composites was estimated to be 357 million
m3, which represents an increase of 268% compared to 1980 [4]. The possibilities to reduce
the increased consumption of wood raw materials include recycling of waste wood-based
panels at the end of their life cycle [5–10], utilization of alternative raw materials [11–15],
and use of waste lignocellulosic materials [16–18].

Global pulp, paper, and paperboard production is also increasing, and in 2019, it was
estimated to approximately 202 million tons, and 404 million tons, respectively, with USA
and China being the major producers [4]. Consequently, pulp and paper facilities generate
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substantial amounts of non-hazardous sludge and solid waste, requiring further waste
management or utilization as by-products [19,20]. Currently, the main methods of disposal
of the primary sludge are landfilling or burning for energy generation. However, due to
the stricter environmental legislation and increased landfilling costs in the EU, the industry
is searching for alternative waste management methods.

Most of the suspended solids are removed during primary mechanical wastewater
treatment, and the resulting liquid sludge contains large quantities of residual wood fibers
as the main organic components [19,21], thus representing a potential feedstock for man-
ufacturing wood-based panels [22–24]. The residual fibers are significantly different in
composition, even between factories using the same pulp and paper production technolo-
gies [25]. In addition, another distinct disadvantage for their wider utilization as a raw
material is the significantly reduced lignin content [26].

Traditional synthetic adhesives, used in the production of wood-based panels, are
usually made from petroleum-derived components, based on urea, formaldehyde, phenol,
melamine, etc. [27–30]. Nowadays, approximately 95% of the total adhesives used for man-
ufacturing wood composites, are formaldehyde-based resins [31], with urea-formaldehyde
resins being the most predominant type, with an estimated global consumption of 11 mil-
lion tons/year [32–34]. Despite their numerous advantages of conventional synthetic
thermosetting adhesives, such as excellent adhesion properties and water resistance,
ease of handling, low curing temperature, short press times, relative cost-effectiveness,
etc. [33,35–39], they have a major drawback, connected to the hazardous emission of free
formaldehyde and other volatile organic compounds (VOC) from the finished wood-based
panels [40–42], associated with environmental problems and a number of serious human
health hazards, such as such as eye, skin, and nervous system irritation, skin sensitization,
nausea, and even cancer [43–45]. In 2004, formaldehyde was reclassified as “carcinogenic
to humans” (Group 1) by the International Agency for Research on Cancer [46]. This has
led to the adoption of stricter legislative regulations on formaldehyde emission values
from wood-based panels, which have gradually been lowered over time, resulting in in-
creased consumer environmental awareness [47] and greater industrial interest towards
the development of less toxic, eco-friendly wood-based composites, where the traditional
thermosetting resins have been partly or completely replaced by renewable, bio-based
adhesives [48–56], or by adding different organic [57–59] and inorganic [40,44,48,60–63]
compounds to adhesives systems as formaldehyde scavengers. Another possible solution
to avoid the negative effect of formaldehyde release from wood-based panels is to use iso-
cyanate adhesives, namely polymeric 4,4‘-diphenyl methane diisocyanate (pMDI), where
no formaldehyde is added [33,64]. However, the relatively higher cost of pMDIs compared
to the common formaldehyde-based adhesives and the need to adjust the glue lines [65]
are the main limiting factors for their wider application as wood adhesives.

While the wood-based panel industry, mainly for reasons of supply, is still dominated
by the traditional oil-derived adhesives, both in these fields as well as in the strongly
upcoming field of bio-based adhesives, there has been almost incredible progress as well
as developments dictated by the intellectual ferment induced by a number of outside
constraints. These are the stricter government regulations to reduce and even eliminate
formaldehyde and other materials that are to some extent toxic, consumer awareness and
the consequent drive of industry to favor more environment-friendly materials and, finally,
the drive of industry to decrease or even eliminate their dependence on petrochemicals,
due to the real or imagined future decrease of oil reserves with its consequent increase in
the price of raw materials for purely traditionally manufactured wood binders [66–68].

Recent developments in the field of sustainable, bio-based adhesives include the
use of different renewable biomass feedstocks, such as proteins [69–73], starch [74,75],
tannins [76–78], and lignin [17,79–84]. The development of alternative value-added wood
composites that use waste materials or recycled materials is becoming beneficial due to over
exploitation of natural resources. Nowadays, the products manufactured from recycled
materials or by-products are especially paid attention in the view-point of environmental
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problems [85–89]. In this context, a good and representative example is the utilization
of waste polystyrene as a binder in wood composites manufacture. This approach of
retraining wood or wastes of wood and polystyrene obtained from packing remove from
service permits to produce economic and environment respectful composites. Waste
polystyrene poses serious environmental risks, especially in developing countries where
disposal facilities are lacking and its management is a serious problem because it is easy
to recycle. Its application as a binder in order to produce value-added wood composites
avoids the environmental problems that formaldehyde adhesives cause. Masri et al. [90]
successfully produced particleboards from date palm and expanded polystyrene (EPS)
wastes and reported that the bending strength and stress reached acceptable values of 0.78
GPa and 2.84 MPa, coupled with good fiber-matrix interface adhesion. Akinyemi et al. [91]
presented the results of the experimental study on the production of particle boards from
wastes of wood and expanded polystyrene foam. This study demonstrated that wood
and expanded polystyrene foam wastes are sustainable materials for producing composite
wood-based panels that are still durable in a moist environment. Polystyrene has been also
applied in the manufacture of lightweight gypsum-based composites [92].

Lignin is a highly-branched, polyaromatic macromolecule and the second most abun-
dant organic material on earth after cellulose [93,94]. The structure of lignin is composed of
different units and repeated structures, depending on the plant species, growing conditions,
and duration, and the extraction method applied to separate lignin from hemicellulose and
cellulose [95]. Currently, lignin is regarded as a waste or a by-product from the production
of pulp, paper, and ethanol with an approximate annual production of 100 million tons
worldwide [96], of which less than 2% is used for value-added applications, such as surfac-
tants, adhesives, polymer reinforcement materials, dispersants, etc., while the rest is burnt
for heat and energy [51,96,97]. Lignin contains different functional groups, i.e., hydroxyl,
methoxyl, and carbonyl groups, which allow its chemical modification, applied to increase
its reactivity. The polyphenolic structure of lignin is the main reason for its application
in the composition of adhesives, mostly as a partial substitution of phenol (C6H6O) in
phenol-formaldehyde resins [98].

The different technological processes, used in the pulp and paper industry to ob-
tain lignin, include mechanical, chemical, and enzymatic methods, which subsequently
produce different types of technical lignin, e.g., hydrolytic lignin obtained by enzymatic
hydrolysis process [99], organosolv lignin by organosolv treatment [100], alkali lignin,
derived by the Kraft process [101], and lignosulfonates, obtained by the sulfite pulping
process [101]. Lignosulfonates (LS), produced by the reaction of sulfurous acid (H2SO3)
and a sulfite (SO3

2−) or bisulfite salts (HSO3
2−), comprising ammonium, sodium, calcium,

or magnesium at varied pH levels [102], are available in large quantities, with an esti-
mated global annual production of 1 million tons [103]. Due to the availability of sulfonate
group, LS are water soluble. The relatively high molecular weight of LS, ranging from
1000–150,000 g·mol−1 [103], is another important factor affecting the performance of LS in
adhesive applications. Therefore, additional chemical modification of LS, such as hydrox-
ymethylation, can be applied to increase their reactivity [102,103]. The major drawbacks for
the wider industrial application of LS in the composition of wood adhesives is the increased
hydrophilicity of finished wood-based panels and longer press times [17,81,89], which
can be resolved by using suitable cross-linkers [79,104] or by optimizing the production
parameters [105].

The aim of this research work was to investigate the potential of producing eco-
friendly fiberboard composites from residual wood fibers from the pulp and paper industry,
bonded with formaldehyde-free adhesive, namely calcium lignosulfonate, complying with
the European standards.

2. Materials and Methods

Residual fiber mass, a mixture of the softwood species Scots pine (Pinus silvestris L.)
and Norway spruce (Picea abies Karst.), oven-dried to 11% moisture content, was used in
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this work. The industrial waste fibers were supplied by the Bulgarian pulp and paper
factory Mondi Stambolyiski EAD. The fiber mass, comprised of untreated, broken wood
fibers and fine cellulose fibrils, had a bulk density of 28.49 kg·m−3. The residual fibers had
lengths from 520 to 1150 µm and a reduced lignin content of approx. 7% (factory data).

Calcium lignosulfonate (CLS) at 8%, 10%, 12%, and 14% (based on the dry weight of
fibers) was used as a binder. The CLS (lignosulfonic acid calcium salt, CAS No. 8061-52-7)
additive used was in the form of amorphous yellow-brownish water-soluble powder with
the following characteristics: total solids content: 93%; calcium content: 6%; reduced
sugars: 7%; ash content: 6%; acidic factor in 10% solution: pH = 4.3 ± 0.8; % volatiles by
weight: 4–7 (water); bulk density: 0.55 g/mL. CLS was used as a water solution at 40%
working concentration.

Commercially available urea-formaldehyde (UF) resin with a solids content of 64%,
density of 1.29–1.31 g.cm−3 at 20 ◦C, pH value of 8.5, and a molar ratio (MR) of 1.16, was
provided by the factory Kastamonu Bulgaria AD (Gorno Sahrane, Bulgaria).

Since the waste fibers were separated in a moist condition and contained a great
number of cellulosic fibrils, they had to undergo a preliminary treatment before manu-
facturing the fiberboard composites. The pretreatment of waste fibers was performed by
using a laboratory hammer mill (prototype, University of Forestry, Sofia, Bulgaria), shown
in Figure 1.
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the commercially produced fiberboard panels. The UF resin was used at 50% working 
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sented in Table 1. 

  

Figure 1. Prototype hammer mill used for preliminary treatment of residual wood fibers: (a) overview of prototype hammer
mill; (b) hammer mill sieves, size 6 mm and 3 mm; (c) residual fibers after pretreatment.

After the initial treatment, the bulk density of residual fibers was decreased to
17.47 kg.m−3.

Fiberboard panels were manufactured with dimensions 400 mm × 400 mm, a thickness
of 6 mm, and a target density of 750 kg.m−3. Four addition levels (8%, 10%, 12%, and 14%)
of CLS as a binder, based on the dry fibers, were applied.

A control panel was produced with 10% UF resin content, based on the weight of dry
fibers, and without CLS (panel REF10). This UF resin addition level (10%) is typical for
the commercially produced fiberboard panels. The UF resin was used at 50% working
concentration.

The manufacturing parameters of the laboratory-produced fiberboard panels are
presented in Table 1.
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Table 1. Manufacturing parameters of fiberboard panels, produced from residual softwood fibers,
bonded with CLS.

Panel Type Adhesive Type Density
(kg·m−3)

UF Resin
Content

(%)

Calcium
Lignosulfonate

Content
(%)

Type A CLS 750 0 8
Type B CLS 750 0 10
Type C CLS 750 0 12
Type D CLS 750 0 14
REF10 UF 750 10 0

Waste softwood fibers were mixed with the CLS additive in a high-speed glue blender
with needle-shaped paddles (prototype, University of Forestry, BG) at 850 min−1. The
CLS or UF resin was sprayed in the laboratory blender through a 1.5 mm nozzle, followed
by injecting a paraffin emulsion. The hot pressing process was carried out using a single
opening hydraulic press (PMC ST 100, Italy). The press temperature was 200 ◦C. The
following four-stage pressing regime was applied: In the first stage, the pressure was
increased to 4 MPa (15% of the press cycle); in the second stage, it was gradually decreased
to 1.2 MPa (15% of the press time); in the third stage, the pressure was decreased to
0.8 MPa (60% of the press time). The fourth pressing period was performed at a pressure
of 1.5 MPa (10% of the press time). The press factor applied was 60 s.mm−1. Following
the hot pressing, the fiberboard panels were conditioned for 7 days at 20 ± 2 ◦C and 65%
relative humidity.

The physical and mechanical properties of the laboratory-produced panels (Figure 2)
were determined in accordance with the European Standards EN 310, EN 317, EN 319, and
EN 323 [106–109]. A precision laboratory balance Kern (Kern & Sohn GmbH, Balingen,
Germany) with an accuracy of 0.01 g was used to determine the mass of the test samples.
The dimensions of the test specimen were measured using digital calipers with an accuracy
of 0.01 mm. The dimension stability (water absorption and thickness swelling) was mea-
sured after 24 h of immersion in water by the weight method [107]. The test samples were
sanded before carrying out the tests. The mechanical properties (bending strength and
modulus of elasticity) of the fiberboard panels were measured using a universal testing
machine Zwick/Roell Z010 (Zwick/Roell GmbH, Ulm, Germany). For each property, eight
test samples were used for testing.
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Figure 2. Fiberboard panels from residual softwood fibers from the pulp and paper industry, bonded with CLS; 750 kg·m−3

target density, 6 mm thickness, and four addition levels of ammonium lignosulfonate (8%, 10%, 12%, and 14%), and a
control fiberboard panel (REF10), bonded with UF resin.

The formaldehyde content of the laboratory-produced panels was measured in the
factory laboratory of Kronospan Bulgaria EOOD (Veliko Tarnovo, Bulgaria) on four test
specimens in accordance with the standard perforator method EN 124,650 [110].

Variational and statistical analysis of the results was performed by using the spe-
cialized software QstatLab 6.0. One-way analysis of variance (ANOVA) was carried out
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to discern significant difference at 95% level of confidence, using SAS software program
(version 9.2, 2010) (SAS, Cary, NC, USA). Grouping was then made between treatments
using Duncan’s multiple range test.

3. Results and Discussion
3.1. Physical and Mechanical Properties

The density of the laboratory-produced panels varied from 739 to 767 kg·m−3, rather
close to the targeted value. The difference in this main characteristic of the fiberboards was
significantly below 5%; thus, it did not have a significant effect on the other physical and
mechanical properties of the panels.

Water absorption (WA) and thickness swelling (TS) are important physical properties,
strongly associated with the dimensional stability of wood-based panels [27,28,111]. Both
properties were determined after 24 h immersion in water. A graphical representation of
the WA (24 h) of the laboratory-made fiberboard panels is presented in Figure 3. WA is
not a standardized physical property; nevertheless, the WA after 24 h of fiberboard panels,
varied from 223% to 123%, i.e., a significant increase from approximately 148% in panel
Type A (8% CLS) to 37% in panel Type D (14% CLS), compared with the WA of the control
panel (REF10), was found. Therefore, CLS, as a lignin-based, formaldehyde-free adhesive,
will require a further chemical modification to increase its adhesion efficiency [17,79,112].
Increasing the CLS content from 8% to 14% resulted in a gradual decrease of WA of the
samples of approximately 49%.
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Figure 3. Water absorption (24 h) of fiberboard panels produced: type A—8% CLS; type B—10% CLS; type C—12% CLS;
type D—14% CLS, and REF10—10% UF resin. (Error bar represents the standard deviation).

Comparable WA values of approximately 170% were achieved by [17,81] for eco-
friendly composites, comprised of recycled industrial wood fibers bonded with 15% content
of magnesium lignosulfonate (MLS) as a binder, and veneered with beech veneers, also
glued with MLS.

A graphical representation of the TS values (24 h) of the laboratory-produced fiber-
board panels is shown in Figure 4.
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As seen in Figure 4, the laboratory-produced fiberboard panels, composed of industrial
waste fibers bonded with CLS adhesive, exhibited very high TS values, ranging from 123%
to 74%, i.e., the values obtained were from 4.1 to 2.5 higher than the minimum limit to MDF
panels for use in dry conditions (30%), required by the standard EN 622-5 [113]. Even the
control panel (REF10), manufactured from residual wood fibers bonded with 10% UF resin,
had TS values, 1.6 times higher than the standard requirements. These very high TS values
may be attributed to the significantly reduced lignin content of residual fibers [17,81] and
the characteristics of the CLS used as a bio-based adhesive [97,98]. The most significant
improvement of TS values was determined when the CLS content was increased from 8%
to 10%.

In terms of mechanical properties, the modulus of elasticity (MOE) and bending
strength (MOR) were tested.

A graphical representation of the mean MOE values of the laboratory-fabricated
fiberboard panels is presented in Figure 5.
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The fiberboard panels, bonded with CLS as an eco-friendly adhesive, exhibited MOE
values, ranging from 1089 to 2453 N.mm−2. The increased CLS addition from 8% to 14%
resulted in improved MOE values by 125%. Similar results were reported by [17] in their
research on the development of eco-friendly composites produced from recycled wood
fibers bonded with 15% MLS as a binder. None of the experimental fiberboard panels met
the European standard requirements EN 622-5 [113] for MDF panels used in dry conditions
(≥2700 N.mm−2). The control fiberboard panel (REF10), fabricated with recycled fibers
bonded with 10% UF resin, had 1.1 times higher MOE values than the panel, produced
with 14% CLS as a binder (panel type D).

Finally, a graphical representation of the average MOR values of the laboratory-
fabricated fiberboard panels is shown in Figure 6.
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The fiberboard panels exhibited MOR values, ranging from 10 to 24 N.mm−2. The
increased CLS content from 8% to 14% resulted in improved MOR values by 2.4 times.
The most significant improvement by 60% was determined when the CLS content was
increased from 8% to 10%. The panels bonded with 14% CLS (panel type D), met the
standard requirement for MDF panels used in dry conditions (23 N.mm−2) [113]. The
maximum MOR value obtained in this work (24.8 N.mm−2), was determined for the control
panel (REF10), bonded with 10% UF resin. The fiberboard panel, bonded with the highest
addition level of CLS (14%), reached MOR values, relatively close to the control panel with
a difference of 4% only. Antov et al. [98] concluded that MDF panels, complying with the
European standard requirements, can be successfully produced with a very low phenol-
formaldehyde (PF) gluing factor of 3.5% (based on the dry fibers) and CLS addition levels,
varied from 5% to 15%. In the same research, the maximum MOR values (35.2 N.mm−2)
were determined in MDF panels, fabricated with 5% PF resin and 5% CLS additive. This
can be explained by the presence of phenolic and aliphatic hydroxyl groups in CLS, which
increase the reactivity of lignin towards synthetic thermosetting resins [114].

Higher MOR and MOE values of the developed fiberboard panels could be achieved
by covering their surfaces with veneers, melamine, high-pressure laminate, etc.

3.2. Formaldehyde Content

The results for the formaldehyde content of the laboratory-produced fiberboard panels,
measured according the standard EN ISO 12460-5 (known as the perforator method) [110],
are presented in Table 2.
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Table 2. Formaldehyde content of fiberboard panels, produced from residual softwood fibers bonded
with CLS, according EN ISO 12460-5.

HDF Type Adhesive UF Resin
Content (%)

Calcium
Lignosulfonate

Content (%)

Formaldehyde
Content

(mg/100 g)

Type A CLS 0 8 1.1 (± 0.1) 1 A 2

Type B CLS 0 10 1.0 (± 0.1) A 2

Type C CLS 0 12 0.9 (± 0.1) A 2

Type D CLS 0 14 0.8 (± 0.1) A 2

REF10 UF 10 0 6.8 (± 0.1) B 2

1 Standard deviation. 2 Groupings based on Duncan’s multiple range test, at 95% level of confidence.

It is clearly revealed from the data depicted in Table 2 that all types of panels bonded
with CLS adhesive, namely type A to D, has low formaldehyde content and can be con-
sidered as zero formaldehyde content [30,104]. It is further reveled, that these values are
significantly different with the value of the reference panel (REF10). Closer inspection of
the data presented in Table 2, shows that the amount of CLS adhesive has no significant
effect on formaldehyde content.

All laboratory-made fiberboard panels exhibited formaldehyde content values, fulfill-
ing the requirements of the super E0 emission category (≤1.5 mg/100 g). The lowest free
formaldehyde content of 0.8 ± 0.1 mg/100 g was determined for panel Type D, bonded
with 14% CLS. The reference panel (REF10), manufactured from waste fibers bonded with
10% UF resin only, can be classified under the E1 emission grade (≤8 mg/100 g). The
results achieved are in accordance with our previous studies, where using different types
of lignosulfonates in adhesive formulations for wood-based panels resulted in remarkably
low formaldehyde content of the finished composites [17,81,82,98]. This might be attributed
to the high amount of reactive phenolic and hydroxyl groups in CLS, which increase its
reactivity towards formaldehyde [97,98,114]. Taking into consideration that natural wood
releases low, but still detectable amount of formaldehyde, caused by its main polymeric
constituents (cellulose, hemicellulose, and lignin) and extractives of approximately 0.5 to
2 mg/100 g [115–117], allows for defining the produced fiberboard panels, bonded with
CLS as markedly low-emission wood-based panels.

4. Conclusions

Eco-friendly fiberboard panels with acceptable physical and mechanical properties
in accordance with the European standards, with the exception of TS, and extremely low
formaldehyde content, may be manufactured from residual wood fibers from the pulp and
paper industry, bonded with CLS as a formaldehyde-free, lignin-based adhesive, applied at
the content of 8% to 14%, based on the dry fibers. The laboratory-fabricated panels, bonded
with 14% CLS, exhibited MOR and MOE values, comparable with the minimum standard
requirements for MDF panels used in dry conditions [113]. The formaldehyde content of
the fiberboard panels bonded with various amount of CLS adhesive, tested in accordance
with the perforator method [110], was remarkably low and significantly different with
the value of the reference panel (REF10), ranging from 0.8 mg/100 g to 1.1 mg/100 g,
i.e., equal to formaldehyde release of natural wood, which allowed for their classification
as eco-friendly wood-based panels. It is also found that the amount of CLS adhesive has
no significant effect on formaldehyde content. According to their mechanical properties,
the developed eco-friendly composites may be used in dry conditions for non-load bearing
applications or as decorative panels.

Nevertheless, the significantly deteriorated dimensional stability, i.e., WA and TS,
evaluated after 24 h immersion in water, represents the main drawback of the laboratory-
produced fiberboard panels. Future studies on using CLS in wood adhesive applications
should be aimed at optimizing the production parameters, improving the CLS composition
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by adding appropriate cross-linkers, and extensively investigating the interaction processes
between lignocellulosic fibers and lignosulfonate additives.
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