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Purpose: Little is known about how disease risk score (DRS) development should proceed under different 
pharmacoepidemiologic follow-up strategies. In an analysis of dabigatran vs. warfarin and risk of major 
bleeding, we compared the results of DRS adjustment when models were developed under “intention-to-
treat” (ITT) and “as-treated” (AT) approaches.
Methods: We assessed DRS model discrimination, calibration, and ability to induce prognostic balance 
via the “dry run analysis”. AT treatment effects stratified on each DRS were compared with each other 
and with a propensity score (PS) stratified reference estimate. Bootstrap resampling of the historical 
cohort at 10 percent–90 percent sample size was performed to assess the impact of sample size on DRS 
estimation.
Results: Historically-derived DRS models fit under AT showed greater decrements in discrimination and 
calibration than those fit under ITT when applied to the concurrent study population. Prognostic balance 
was approximately equal across DRS models (–6 percent to –7 percent “pseudo-bias” on the hazard 
ratio scale). Hazard ratios were between 0.76 and 0.78 with all methods of DRS adjustment, while the 
PS stratified hazard ratio was 0.83. In resampling, AT DRS models showed more overfitting and worse 
prognostic balance, and led to hazard ratios further from the reference estimate than did ITT DRSs, 
across sample sizes.
Conclusions: In a study of anticoagulant safety, DRSs developed under an AT principle showed signs of 
overfitting and reduced confounding control. More research is needed to determine if development of 
DRSs under ITT is a viable solution to overfitting in other settings.
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Introduction
Disease risk scores (DRSs) have a long history in the confounding control literature [1] and are increasingly being used 
for confounding adjustment in pharmacoepidemiological studies [2–10]. Unlike the more commonly-used propensity 
score (PS), which models the probability of treatment conditional on confounders, the DRS, or prognostic score, models 
the expected outcome under the comparator treatment conditional on the confounders. When PS modeling is difficult, 
such as in studies with small numbers in one treatment group, DRS modeling can provide an alternative dimension-
reduction method when the number of confounders is large [3–4].

Hansen developed the theoretical framework for DRSs, showing that their ability to reduce or remove confounding 
is based on the ability to induce “prognostic balance”, an independence between the outcome that would be observed 
under the comparator treatment and the confounders, conditional on the DRS [11]. In contrast, conditioning on the 
PS induces “propensity balance”, an independence between the study treatment and confounders. Hansen compares 
prognostic and propensity balance to the type of balance that is obtained in laboratory research and clinical trials, 
respectively. The prognostic balance that results from conditioning on the DRS mimics the tight control of experimen-
tal conditions, while the propensity balance that results from conditioning on the PS mimics randomization [2].

Considerable thought has been given to methods for DRS development, including questions of the appropriate 
time period (i.e., use of historical or concurrent data) and treatment group (i.e., use of the total population or of the 
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comparator population only) for estimation [7] and how to select variables to enter the model [12]. However, little 
attention has been given to the question of how DRS development should proceed under different models of follow-up 
for the study outcome.

Commonly, pharmacoepidemiological studies employ one of two follow-up strategies: “intention-to-treat” (ITT) or “as-
treated” (AT). The ITT strategy follows patients from therapeutic initiation to the occurrence of an outcome event or loss 
to follow-up, treating treatment status as fixed at baseline and ignoring post-initiation adherence. In contrast, the AT 
strategy follows patients until outcome event occurrence, loss to follow-up, or discontinuation of the initial treatment, 
whichever comes first. This terminology differs from that used in the clinical trial literature, where the approach we 
describe as AT would often be described as “per-protocol” [13], however we retain the ITT/AT nomenclature for consist-
ency with previous pharmacoepidemiological studies.

The choice of ITT or AT follow-up for the study outcome is generally dictated by the research question at hand, but 
it should be noted that these strategies yield treatment effect estimates representing different causal contrasts, which 
are subject to different sources of bias [13]. The choice of which approach to use when developing a DRS is less studied, 
but investigators will likely mirror the approach used for the main outcome analysis. However, should the investigator 
decide to estimate a so-called “as-treated effect”, the follow-up of patients for DRS development under the same AT strat-
egy may introduce practical issues that arise due to a reduction in the number of observed outcome events that are cur-
rently not well understood. In this paper, we explore the issue of overfitting DRS models fit under AT follow-up, propose 
a potential practical solution, and assess its performance in the setting of comparative safety of oral anticoagulants.

Under AT, both the total accrued person-time and number of outcome events observed will be lower than in the ITT 
approach, and the extent of this decrease will depend on the extent and timing of treatment discontinuation. This 
in turn has implications for the development of DRS models, since model dimensionality, or correspondingly model 
goodness of fit, will be affected by the number of events available [14]. Therefore, if the desired final analysis is to be 
performed under AT, it is possible that one may be unable to obtain robust estimates of DRS model coefficients using 
an AT approach due to low event counts. This is likely problematic in pharmacoepidemiological studies, which gener-
ally rely on proxy adjustment for a large number of confounders defined in secondary data sources [15] and may deal 
in infrequent clinical outcomes.

One potential solution to this problem is to develop the DRS under an ITT strategy, allowing events occurring after the 
discontinuation of treatment to be included. This may solve the issue of event scarcity, but at a cost of misspecification 
of the true target of estimation: the patient-specific expected outcome that would occur while taking the comparator 
treatment, conditional on the confounders. While an ITT DRS may not represent the correct DRS with which to adjust 
an AT treatment effect, such a DRS may facilitate better confounding control than an overfit AT DRS, or a robust AT DRS 
that omits relevant confounders. That is, a good estimate of the risk among initiators of the comparator treatment may 
be better than a bad estimate of the risk among current users of the comparator treatment.

In order to inform DRS practice in a comparative safety and effectiveness setting, we sought to compare the ability of 
DRS models developed under ITT and AT approaches to control confounding in a comparison of dabigatran vs. warfarin 
for the risk of major bleeding events. More specifically, we sought to: (a) describe how different follow-up strategies 
impact the discrimination and calibration of DRS models, (b) assess DRS models for prognostic balance after fitting 
under various follow-up strategies, (c) determine the impact of follow-up strategy choice on DRS-based confounding 
control, and (d) use resampling to explore the impact of sample size on DRS-based confounding control. Finally, in light 
of these results, we describe the assumptions inherent in choosing different follow-up strategies for DRS development.

Methods
Study population
We identified all new users of dabigatran and warfarin in the Truven Marketscan Commercial Database between Octo-
ber 2010 (the month of dabigatran’s approval in the US) and December 2013. At the time of initiation, eligible patients 
were required to: (a) have been continuously enrolled in their health plan for at least 365 days, (b) be 18 years of age 
or older, (c) have documented evidence of atrial fibrillation, (d) have a CHA2DS2-VASc score of at least 1, and (e) have no 
recorded dispensing of an oral anticoagulant in the preceding 365 days. Patients were excluded if they: (a) were miss-
ing information on age and sex, (b) initiated both warfarin and dabigatran on the same date, (c) had a recorded nurs-
ing home stay within the 365 days before initiation, or (d) had documented evidence of valvular disease. We refer to 
this cohort as the “concurrent cohort”. We additionally enumerated a cohort of individuals initiating warfarin between 
January 2009 and September 2010 for disease risk score estimation, which we refer to as the “historical cohort”. All 
inclusion/exclusion criteria for this group were the same as those for the concurrent cohort. Follow-up for both cohorts 
ended in December of 2013.

In both the concurrent and historical cohorts, we used claims from the 365 days preceding initiation to define 69 
confounders measuring various aspects of demographics, comorbidity, concomitant and historical medication use and 
health care utilization. Clinical risk scores including the HAS-BLED [16], CHA2DS2-VASc [17], and CHADS2 [18] were 
likewise defined with limited adaptations for use with claims data and included as covariates. Counting multi-level cat-
egorical variables (and the categorization of continuous measures such as days hospitalized), these covariates accounted 
for 91 total model terms.
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Cohort follow-up
The outcome of interest was the occurrence of any major bleeding event, excluding hemorrhagic stroke. In both the concur-
rent and historical cohorts, we followed patients under two broad strategies. Under ITT, patients were followed from the day 
after treatment initiation until the occurrence of a major bleeding event, study termination (December 31, 2013), or end of 
enrollment, whichever came first. Under AT, patients were additionally censored upon discontinuation of the index treat-
ment (either due to switching treatments or stopping). We also followed patients under three time-limited ITT approaches, 
censoring patients at 180, 365, and 730 days of follow-up respectively. Figure 1 outlines the general follow-up strategy.

Disease risk score development
All DRSs were estimated within the historical cohort of warfarin initiators. While estimation of DRSs within the full 
concurrent cohort [3], or among only warfarin initiators in the concurrent cohort, have been proposed, historical esti-
mation has several advantages, including the reduced potential for overfitting [2, 7] and for bias amplification [19]. Due 
to patients’ variable lengths of follow-up, we chose to fit Cox proportional hazards models to estimate DRSs, including 
terms for the 91 main effects of the covariates. Five separate models were fit, following patients for occurrence of the 
major bleeding outcome under each of the five follow-up strategies: AT, 6-month ITT, 1-year ITT, 2-year ITT, and full ITT. 
Using the coefficients from these five models, we defined DRSs on the linear predictor scale for patients in both the 
concurrent and historical cohorts.

Disease risk score assessment
The discriminatory ability of the DRS models was assessed by the concordance index described by Harrell [20]. In sur-
vival analysis, the “C-index” is, informally, the proportion of all pairs of subjects in which the subject with the higher 
predicted survival actually survived longer, excluding pairs in which both subjects are censored or one is censored 
before the other fails. Model calibration was assessed by calibration plots constructed with the modified Greenwood-
Nam-D’Agostino (G-N-D) method comparing unadjusted Kaplan-Meier risk estimates, to the DRS model average pre-
dicted risk at 180 days, within deciles of the DRS linear predictor [21]. For all models, discrimination and calibration 
were assessed in both the historical and concurrent cohorts with the AT outcome serving as the reference.

We also utilized the “dry run analysis” framework proposed by Hansen to assess the ability of a DRS model to induce 
prognostic balance [11, 22]. The dry run procedure involves sampling the untreated (i.e., concurrent warfarin) popula-
tion based on their PS to form “pseudo-treated” and “pseudo-untreated” groups of untreated individuals with differences 
in covariate distributions similar to those of the actual treated and untreated groups. An effect of “pseudo-treatment” 

Figure 1: Follow-up of patients in the study population. Schematic representation of follow-up in the study 
population, showing historical warfarin initiators A and B, concurrent warfarin initiators C and D, and concurrent 
dabigatran initiators E and F. Arrows indicate the duration of observation, becoming dashed when a patient 
discontinues their index treatment. Events are represented by an “X”, and censoring by a “|”. The disease risk score 
model is fit among patients  A and B only. Note that under “as-treated” follow-up observation stops at discontinuation, 
and thus only patients B, D, and F have events that are observed.
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can then be estimated comparing these groups, conditional on the DRS. If the DRS induces prognostic balance and the 
propensity score is correctly specified then this treatment effect must be null since both groups are actually untreated. 
Hansen therefore argues for using the divergence of this estimate from its null value, which he terms the “pseudo-bias”, 
as a diagnostic for DRSs that can be performed without reference to the planned, full cohort treatment effect estimate. 
More information on the dry run approach can be found in Appendix 1.

Treatment effect estimation
In order to compare rates of major bleeding between concurrent dabigatran and warfarin users, we estimated AT hazard 
ratios using Cox proportional hazards models, with stratification on deciles of the five DRSs. No DRS trimming was per-
formed. Throughout, we used as a reference estimate the AT hazard ratio comparing dabigatran to warfarin initiators, 
stratified on deciles of the PS. The same set of covariates were included in the PS and DRS models, with the exception 
of two variables (history of acute renal disease and number of prothrombin tests ordered) omitted from the PS model 
for extreme negative associations with dabigatran initiation.

Resampling study
To assess the impact of sample size on DRS development, we resampled the historical cohort 1,000 times each at 6 
sample sizes: 10 percent, 25 percent, 50 percent, 75 percent, and 90 percent of its full sample size. All sampling was 
done with replacement. In each resampled historical cohort, we fit the five aforementioned DRS models in the manner 
described above, using the same covariates and methodology. Coefficients from these models were used to define DRSs 
on the linear predictor scale in both the given resampled historical cohort, and in the concurrent cohort (which was 
not resampled). For each DRS model in each resampled cohort, we recorded: (a) the number of major bleeding events 
in the resampled historical cohort, (b) the model C-Index as assessed in the resampled historical cohort, (c) the model 
C-Index for each treatment group as assessed in the concurrent cohort, and (d) the estimated AT hazard ratio stratified 
on deciles of the given DRS in the concurrent cohort. We also estimated a dry run “pseudo-bias” for each DRS in each 
resampled cohort using the dry run approach described in Appendix 1. In this case, only a single dry-run “pseudo-bias” 
was estimated per resampled historical cohort, since performing a large number of dry run resamples for every resam-
pled DRS model would be computationally prohibitive.

Results
Patient characteristics and event rates
There were 79,265 patients followed for a total of 66,109 person-years in the concurrent cohort, of whom 22,809 
(28 percent) initiated dabigatran. Among historical initiators of warfarin, there were 3,936 major bleeding events (48 
events per 1,000 person-years) observed, which was reduced to 1,059 (48 events per 1,000 person-years) after AT restric-
tions were applied (Table 1). The incidence of major bleeding events was consistently higher among concurrent initia-
tors of warfarin than among concurrent initiators of dabigatran or historical initiators of warfarin. Table 2 shows the 
distribution of selected covariates among dabigatran and warfarin initiators in the concurrent and historical cohorts. 
Dabigatran initiators tended to be younger than warfarin initiators, with lower HASBLED and CHA2DS2-VASc scores, less 
renal dysfunction, less coronary artery disease and less upper GI bleeding. Warfarin initiators in the concurrent period 
tended to be older and less healthy than those in the historical period.

Discrimination
All DRS models showed moderate discriminatory ability among the historical warfarin initiators that comprised the 
DRS development cohort (C-index 0.653–0.678, Table 3). When the DRS was applied in the concurrent cohort, C-indi-
ces were consistently higher among dabigatran initiators than among warfarin initiators. The DRS model “optimism” 
(the difference between the discriminatory ability measured in the historical warfarin initiators and the concurrent 
warfarin initiators, was lowest for the model developed under ITT and highest for the model developed under AT.

Table 1: Incidence of major bleeding under different follow-up approaches, by treatment initiation and period.

Historical cohort Concurrent cohort

Warfarin Warfarin Dabigatran

Follow-up Events IR Events IR Events IR

AT 1,059 61 1,438 78 430 48

ITT (6-Month) 1,167 65 1,774 79 457 47

ITT (1-Year) 1,933 57 2,505 70 690 43

ITT (2-Year) 3,075 51 2,930 64 803 40

ITT(All) 3,936 48 2,944 64 803 40

Abbreviations: IR, incidence rate per 1,000 person-years; AT, as-treated; ITT, intention-to-treat.
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Calibration
Among historical warfarin initiators, DRS model-predicted 180–day risk was close to observed risk in the models 
developed under all strategies, indicating acceptable calibration with nominally insignificant G-N-D tests throughout 
(Figure 2). When assessed in the concurrent cohort, there was evidence of overestimation of risk, particularly in the 
upper two deciles of the DRS, across all models, and all G-N-D tests were highly significant at the 0.001 level. This over-
estimation was more severe among concurrent warfarin initiators than among concurrent dabigatran initiators, and 
was greater for the model developed under AT than the model developed under ITT.

Pseudo-bias
The “pseudo-bias” from the dry run analysis was between –6 percent and –7 percent for all DRS models, with confidence 
intervals overlapping the null value (0 percent), indicating that some downward bias is likely to remain when condition-
ing on any of the five DRSs.

Measures of association
The crude AT hazard ratio was 0.64 (95 percent CI 0.57, 0.71). With stratification on deciles of the DRS, the AT hazard ratios 
were 0.76 (95 percent CI: 0.68, 0.85) for the AT DRS, 0.78 (95 percent CI: 0.70, 0.87) for the 6-month ITT DRS, 0.77 (95 
percent CI: 0.69, 0.86) for the 1-year ITT DRS, 0.76 (95 percent CI: 0.68, 0.85) for the 2-year ITT DRS, and 0.77 (95 percent 
CI: 0.69, 0.86) for the unlimited ITT DRS. In contrast, the reference AT hazard ratio from an analysis with stratification on 
deciles of the PS, was 0.83 (95 percent CI: 0.74, 0.93).

Table 2: Selected baseline characteristics by treatment initiation and period.

Historical cohort Concurrent cohort

Warfarin 
(N = 39,209)

Warfarin 
(N = 56,456)

Dabigatran 
(N = 22,809)

Age, mean (sd) 69.1 (12.4) 71.1 (12.1) 67.3 (12.2)

Male sex, n (%) 23,747 (61) 34,227 (61) 14,600 (64)

Census region, n (%)

Northeast 6,659 (17) 7,974 (14) 3,495 (15)

South 11,720 (30) 14,361 (25) 7,414 (33)

Midwest 13,076 (33) 12,992 (23) 4,555 (20)

West 7,754 (20) 21129 (37) 7,345 (32)

HASBLED Score, mean (sd) 2.27 (1.01) 2.48 (1.10) 2.18 (1.02)

CHA2DS2-VASc score, mean (sd) 3.22 (1.59) 3.56 (1.67) 2.91 (1.57)

Renal dysfunction, n (%) 4,775 (12) 10,385 (18) 2,146 (9)

Coronary artery disease, n (%) 12,342 (32) 19,717 (35) 6,768 (30)

Upper GI bleed, n (%) 243 (0.6) 345 (0.6) 62 (0.3)

Table 3: Discrimination and prognostic balance of disease risk score models, by period and treatment status.

C-Index Pseudo-bias

Historical cohort Concurrent cohort

Follow-up Warfarin Warfarin Dabigatran All Optimism Estimate 95% CI

AT 0.678 0.622 0.660 0.638 0.056 –6% –16% 5%

ITT (6-Month) 0.677 0.630 0.676 0.649 0.047 –6% –15% 5%

ITT (1-Year) 0.666 0.624 0.674 0.643 0.042 –6% –16% 4%

ITT (2-Year) 0.658 0.621 0.677 0.641 0.037 –7% –17% 4%

ITT (All) 0.653 0.619 0.683 0.641 0.034 –6% –15% 4%

Abbreviations: DRS, disease risk score; AT, as-treated; ITT, intention-to-treat; HR, hazard ratio; CI, confidence interval.
Footnotes:
a) DRS model optimism is the difference between the C-Index for the model in the historical cohort and the C-Index for the model 

among warfarin initiators in the concurrent cohort. All C-indices were estimated within the AT follow-up experience.
b) The dry run “pseudo-bias” is the ability of a DRS to induce prognostic balance. These are presented on the scale of percent bias in 

the hazard ratio. Values closer to 0% indicate better prognostic balance.
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Resampling smaller historical cohorts
Across DRS follow-up approaches in the resampling study, DRS model optimism decreased predictably with increas-
ing events-per-variable (Table 4), and was greater for models developed under AT than those developed under ITT. 
Dry run “pseudo-biases” ranged between –19 percent and –8 percent and decreased with increasing sample size. 
“Pseudo-bias” values were also consistently closer to the null value of 0 percent bias for the ITT DRS than for the AT 
DRS, with time-limited ITT DRS values falling in between. Likewise, across historical cohort sample sizes, stratifica-
tion on the ITT DRS led to more adjustment away from the crude estimate and toward the reference estimate than 
did stratification on the AT DRS (Figure 3). For the time-limited ITT DRS approaches, the amount of adjustment 
toward the reference estimate was between that of the AT DRS and the full ITT DRS, with longer follow-up leading 
to more adjustment.

Discussion
As-treated follow-up, which restricts observation to person-time accrued by subjects while continuously receiving 
their initial treatment, is a common strategy in comparative effectiveness and safety research of medical products. 
However, such limited follow-up may be problematic for the development of robust DRS models, which rely on 
large numbers of outcome events to accommodate many covariates. Developing DRS models under an ITT approach 
allows investigators to take advantage of more study outcomes in the historical cohort, potentially permitting more 
confounders to be adjusted for and reducing overfitting. The comparison of DRS models fit using a variety of follow-
up strategies based on the dry-run analysis may be a viable approach to identify the model likely to control the most 
confounding, though this requires the estimation of a valid PS.

Figure 2: Calibration of DRS models at 180 days. Calibration plots showing Kaplan-Meier predicted risk vs. DRS 
model predicted risk within deciles of the DRS. Calibration is shown at 180 days among historical warfarin initiators, 
concurrent warfarin initiators, concurrent dabigatran initiators, and the entire concurrent population in columns 
1–3, and for the five DRS models (AT, 6-month ITT, 1-year ITT, 2-year ITT, and unlimited ITT) in rows 1–5, respectively. 
Each point represents a sample decile of the DRS. Dashed lines represent a slope of 1, or exact calibration. P-values 
and chi-squared test statistics for the Greenwood-Nam-D’Agostino test of the null hypothesis of “no lack of fit” are 
given at the top of each pane.
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In an example comparative safety study of two oral anticoagulants, we found that issues of DRS model overfitting 
were more acute when the DRS was developed under AT than when it was developed under ITT, but that these differ-
ences did not necessarily lead to appreciably worse confounding control in the analysis using the full historical cohort. 
However, results from our resampling study suggest that substituting DRSs developed under various ITT strategies for 
those developed under AT may be advantageous when the number of outcomes in the development cohort is small, 

Table 4: Disease risk score discrimination and prognostic balance in the resampling study.

Follow-up Sizea Eventsb
C-Index Pseudo biasg

Historical cohort Concurrent cohort

Warfarinc Warfarind Dabigatrane Allf Estimate 95% Empirical CI

AT (All) 10% 105 0.787 0.524 0.538 0.531 –19% –28% –9%

25% 265 0.729 0.568 0.590 0.579 –15% –25% –4%

50% 529 0.707 0.593 0.621 0.606 –13% –23% –1%

75% 794 0.698 0.602 0.633 0.616 –11% –22% 1%

90% 954 0.695 0.605 0.636 0.619 –11% –21% 2%

ITT (6m) 10% 116 0.765 0.540 0.556 0.547 –18% –27% –8%

25% 292 0.718 0.583 0.612 0.596 –14% –24% –3%

50% 584 0.701 0.606 0.640 0.621 –11% –22% 0%

75% 874 0.693 0.613 0.651 0.629 –9% –21% 2%

90% 1,050 0.690 0.616 0.656 0.633 –9% –20% 3%

ITT (1y) 10% 193 0.736 0.552 0.576 0.562 –17% –26% –6%

25%  483 0.698 0.590 0.626 0.605 –13% –23% –1%

50%  965 0.684 0.607 0.649 0.624 –10% –22% 1%

75%  1,450 0.678 0.613 0.657 0.630 –9% –21% 3%

90% 1,739 0.676 0.615 0.660 0.632 –9% –19% 3%

ITT (2y) 10% 307 0.708 0.568 0.600 0.580 –16% –26% –5%

25% 769 0.680 0.597 0.640 0.613 –12% –22% –1%

50% 1,537 0.671 0.609 0.658 0.627 –10% –20% 1%

75% 2,305 0.667 0.613 0.665 0.632 –9% –20% 3%

90% 2,768 0.665 0.614 0.667 0.633 –9% –19% 3%

ITT (All) 10% 393 0.694 0.573 0.612 0.587 –15% –25% –3%

25% 984 0.671 0.598 0.649 0.616 –11% –22% 0%

50% 1,967 0.664 0.608 0.666 0.629 –9% –20% 2%

75% 2,951 0.660 0.612 0.672 0.633 –8% –19% 3%

90% 3,543 0.659 0.613 0.673 0.634 –8% –18% 4%

a The size of the resampled historical cohorts is given as a percentage of the full historical cohort sample size (N = 39,209 warfarin 
initiators).

b Number of events refers to the number of events corresponding to the follow-up strategy used for disease risk score development 
(column 1). This has been averaged across the 1,000 resampled cohorts of each size.

c C-index among the AT experience of warfarin initiators in the resampled historical cohorts. This has been averaged across the 1,000 
resampled cohorts of each size.

d C-index among the AT experience of warfarin initiators in the concurrent cohort. This has been averaged across the 1,000 DRS 
models fit in the resampled cohorts of each size.

e C-index among the AT experience of dabigatran initiators in the concurrent cohort. This has been averaged across the 1,000 DRS 
models fit in the resampled cohorts of each size.

f C-index among the AT experience of all initiators in the concurrent cohort. This has been averaged across the 1,000 DRS models fit 
in the resampled cohorts of each size.

g Pseudo-bias estimated with the dry-run analysis is a measure of prognostic balance. Here it is presented in terms of the percent 
bias in the hazard ratio. This has been averaged across the 1,000 DRS models fit in the resampled historical cohorts of each size. 
Confidence intervals are 95% empirical intervals based on the 2.5th and 97.5th percentile.
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since ITT DRSs generally had less “pseudo-bias” than AT DRSs in dry run analyses, and since ITT DRS-adjusted estimates 
were consistently closer to the reference estimate than AT-adjusted estimates. However, these differences were small, 
and additional investigation should consider whether these results hold in alternate contexts.

Interestingly, we found that DRS models fit among historical warfarin initiators showed better discrimination and 
calibration among concurrent dabigatran initiators than among concurrent warfarin initiators. This may indicate chan-
neling of sicker patients to warfarin once dabigatran became available, leading to a higher prevalence of unmeasured 
risk factors or contraindications, such as frailty, among concurrent warfarin initiators and thus better fit among dabi-
gatran initiators. The consequences of such channeling on historical development of DRSs warrants further attention.

Throughout our empirical assessment, all methods of DRS adjustment were biased toward the crude by between 6 
percent and 9 percent compared to the reference PS-stratified estimate. While there are several reasons PS- and DRS-
adjusted treatment effect estimates might differ, the consistent direction of bias observed here suggests that DRS 
methods were subject to more residual confounding than PS methods. This is consistent with previous studies of DRS 
development in the anticoagulant setting [23]. More empirical research is needed to determine the comparability of PS 
and DRS-based confounding control in settings where both are possible.

This study may be limited by reliance on results from a single empirical assessment. It is possible that the use of ITT 
DRSs to adjust AT effect estimates may lead to substantially less confounding control than was observed here in settings 
with different mechanisms of treatment discontinuation. Likewise, it should be noted that the reference PS-stratified 
treatment effect is not known to be true, and thus may not provide the ideal benchmark against which to compare 
DRS-adjusted estimates. However, previous clinical trials [24] and observational studies [25–28] indicate similar effects 
of dabigatran vs. warfarin on the risk of major bleeding events.

We advise serious consideration of the assumptions inherent in DRS adjustment before choosing the method of 
DRS development. In choosing to control confounding of an AT contrast with a DRS developed under ITT, we must 
assume that the ITT DRS ranks patients in roughly the same order as a correctly specified, robust AT DRS would. An 
example of when this assumption may not be tenable is if some covariates exert broadly differential effects when 
adherent or non-adherent to the comparator treatment. For example, if diabetes is not itself a risk factor for bleed-
ing, but diabetics may be at a higher risk of warfarin-related bleeding, then the DRS model coefficient for diabetes 
may be null under ITT but positive under AT. This may adversely affect confounding control with the ITT DRS if many 
patients have diabetes, diabetes dramatically increases the risk of warfarin-related bleeding, and many patients dis-
continue warfarin soon after initiation, since the comparative ranking of patients with respect to bleeding risk may 
be completely altered.

Figure 3: AT hazard ratios stratified by deciles of five DRSs, averaged across 1,000 models fit to resampled 
cohorts from 10%–100% sample size. Estimated as-treated (AT) hazard ratio (HR) vs. sample size, averaged across 
estimates stratified on deciles of DRS from models fit to 1,000 resampled cohorts at 10%, 25%, 50%, 75%, 90%, and 
100% of the full historical cohort sample size. For reference, the crude AT HR and PS-stratified AT HR are presented 
below and above the plotted curves, respectively.
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In any analysis that censors patients based on treatment discontinuation, consideration of informative censoring is 
important. If treatment discontinuation, and thus censoring, is prognostic for the study outcome, a Cox proportional 
hazards model will produce biased estimates of the survival function [29]. The direction of this bias will correspond to 
the direction of the correlation between censoring and failure, and the degree of bias will correspond to the prevalence 
of censoring. This in itself will not adversely affect DRS-based confounding control since subjects will still be ranked 
appropriately, but if censoring is differential with respect to the confounders, the model coefficients themselves may 
be biased in ways that change the ranks [30]. Therefore, we might assume that development of a DRS model under 
AT follow-up will yield the worst confounding control when censoring is informative, common, and differential with 
respect to important confounders. In practice, censoring patients upon discontinuation of treatment may also induce 
selection bias in the treatment effect estimate. While methods to address selection bias exist [20, 21], we did not make 
use of them in this example study. This should not be problematic, as all hazard ratios were estimated in the same AT 
population and therefore are subject to the same degree of selection bias, with differing amounts of residual confound-
ing attributable to method of DRS adjustment.

Additional research is needed to explore alternate methods of DRS development and use for the purpose of 
confounding control. Potential alternate strategies for increasing DRS power might include obtaining additional 
historical data from increasingly early time periods, broadening cohort eligibility criteria to include similar patients 
who did not initiate the comparator treatment, or reducing the dimensionality of the DRS model in a principled 
manner. As with altering the follow-up approach for DRS development, each of these strategies also carries dis-
advantages. For example, developing DRSs in a historical cohort followed from long before introduction of the 
treatment of interest increases the likelihood of secular changes in covariate measurement (e.g., due to coding 
practices). Broadening eligibility for the DRS development cohort may increase the quantity of available events, but 
may also allow the inclusion of patients who failed to initiate the comparator treatment due to unmeasured con-
traindications. Likewise, reducing a DRS model’s dimensionality may require the omission of important confound-
ers. Likewise, methods of DRS adjustment other than stratification, including regression adjustment with smooth 
functional forms and matching, as well as use of the DRS as a probability as opposed to a linear predictor, warrant 
further attention.

In conclusion, development of the DRS without censoring patients based on discontinuation may be a reasonable 
approach to reduce overfitting and enhance confounding control when DRS adjustment of AT effects is desired. This 
example may motivate further study in alternate contexts, which can help establish general recommendations for DRS 
development.

Additional Files
The additional files for this article can be found as follows:
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Acknowledgements
Sebastian Schneeweiss is consultant to WHISCON, LLC and to Aetion, Inc., a software manufacturer of which he also 
owns equity. He is principal investigator of investigator-initiated grants to the Brigham and Women’s Hospital from 
Bayer, Genentech and Boehringer Ingelheim unrelated to the topic of this study. He does not receive personal fees 
from biopharmaceutical companies. Robert J. Glynn has received salary support from grants from AstraZeneca, Kowa, 
Pfizer, and Novartis Pharmaceuticals Corporation to Brigham and Women’s Hospital. Joshua J. Gagne has received salary 
support from grants from Novartis Pharmaceuticals Corporation and Eli Lilly and Company to Brigham and Women’s 
Hospital and is a consultant to Aetion, Inc. and Optum Inc.

Competing Interests
The authors have no competing interests to declare.

References
 1. Miettinen, OS. Stratification by a multivariate confounder score. Am J Epidemiol. 1976; 104: 609–620. DOI: 

https://doi.org/10.1093/oxfordjournals.aje.a112339
 2. Hansen, BB. The prognostic analogue of the propensity score. Biometrika. 2008; 95: 481–488. DOI: https://doi.

org/10.1093/biomet/asn004
 3. Arbogast, PG and Ray, WA. Use of disease risk scores in pharmacoepidemiologic studies. Stat Methods Med Res. 

2009; 18: 67–80. DOI: https://doi.org/10.1177/0962280208092347
 4. Arbogast, PG and Ray, WA. Performance of Disease Risk Scores, Propensity Scores, and Traditional Multivariable 

Outcome Regression in the Presence of Multiple Confounders. Am J Epidemiol. 2011; 174: 613–620. DOI: https://
doi.org/10.1093/aje/kwr143

 5. Arbogast, PG, Kaltenbach, L, Ding, H and Ray, WA. Adjustment for Multiple Cardiovascular Risk Factors Using 
a Summary Risk Score. Epidemiology. 2008; 19: 30–37. DOI: https://doi.org/10.1097/EDE.0b013e31815be000

https://doi.org/10.5334/egems.254.s1
https://doi.org/10.1093/oxfordjournals.aje.a112339
https://doi.org/10.1093/biomet/asn004
https://doi.org/10.1093/biomet/asn004
https://doi.org/10.1177/0962280208092347
https://doi.org/10.1093/aje/kwr143
https://doi.org/10.1093/aje/kwr143
https://doi.org/10.1097/EDE.0b013e31815be000


Bohn et al: Controlling Confounding in a Study of Oral Anticoagulants with Disease Risk ScoresArt. 27, page 10 of 11  

 6. Cadarette, SM, Gagne, JJ, Solomon, DH, Katz, JN and Sturmer, T. Confounder summary scores when 
comparing the effects of multiple drug exposures. Pharmacoepidemiol Drug Saf. 2010; 19: 2–9. DOI: https://doi.
org/10.1002/pds.1845

 7. Glynn, RJ, Gagne, JJ and Schneeweiss, S. Role of disease risk scores in comparative effectiveness research with 
emerging therapies: Disease Risk Scores for Emerging Therapies. Pharmacoepidemiol Drug Saf. 2012; 21: 138–147. 
DOI: https://doi.org/10.1002/pds.3231

 8. Tadrous, M, Gagne, JJ, Stürmer, T and Cadarette, SM. Disease risk score as a confounder summary method: 
systematic review and recommendations: DRS as a Confounder Summary Method. Pharmacoepidemiol Drug Saf. 
2013; 22: 122–129. DOI: https://doi.org/10.1002/pds.3377

 9. Leacy, FP and Stuart, EA. On the joint use of propensity and prognostic scores in estimation of the average 
treatment effect on the treated: a simulation study. Stat Med. 2014; 33: 3488–3508. DOI: https://doi.org/10.1002/
sim.6030

 10. Stuart, EA, Lee, BK and Leacy, FP. Prognostic score–based balance measures can be a useful diagnostic for 
propensity score methods in comparative effectiveness research. J Clin Epidemiol. 2013; 66: S84–S90.e1. DOI: 
https://doi.org/10.1016/j.jclinepi.2013.01.013

 11. Hansen, BB. Bias reduction in observational studies via prognosis scores. Technical Report 441, University of 
Michigan, Statistics Department, 2006. Available at: http://dept.stat.lsa.umich.edu/~bbh/rspaper2006-06.pdf. 
Accessed March 24, 2016.

 12. Harrell, FE, Lee, KL, Califf, RM, Pryor, DB and Rosati, RA. Regression modelling strategies for improved 
prognostic prediction. Stat Med. 1984; 3: 143–152. DOI: https://doi.org/10.1002/sim.4780030207

 13. Hernan, MA and Hernandez-Diaz, S. Beyond the intention-to-treat in comparative effectiveness research. Clin 
Trials. 2012; 9: 48–55. DOI: https://doi.org/10.1177/1740774511420743

 14. Harrell, FE, Lee, KL and Mark, DB. Tutorial in biostatistics multivariable prognostic models: issues in 
developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996; 
15: 361–387. DOI: https://doi.org/10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4

 15. Schneeweiss, S, Rassen, JA, Glynn, RJ, Avorn, J, Mogun, H and Brookhart, MA. High-dimensional Propensity 
Score Adjustment in Studies of Treatment Effects Using Health Care Claims Data. Epidemiology. 2009; 20: 512–
522. DOI: https://doi.org/10.1097/EDE.0b013e3181a663cc

 16. Pisters, R, Lane, DA, Nieuwlaat, R, de Vos, CB, Crijns, HJGM and Lip, GYH. A novel user-friendly score (HAS-
BLED) to assess 1–year risk of major bleeding in patients with atrial fibrillation: the Euro Heart Survey. Chest. 
2010; 138: 1093–1100. DOI: https://doi.org/10.1378/chest.10-0134

 17. Lip, GYH, Nieuwlaat, R, Pisters, R, Lane, DA and Crijns, HJGM. Refining clinical risk stratification for predicting 
stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the euro heart survey 
on atrial fibrillation. Chest. 2010; 137: 263–272. DOI: https://doi.org/10.1378/chest.09-1584

 18. Gage, BF, van Walraven, C, Pearce, L, et al. Selecting patients with atrial fibrillation for anticoagulation: stroke 
risk stratification in patients taking aspirin. Circulation. 2004; 110: 2287–2292. DOI: https://doi.org/10.1161/01.
CIR.0000145172.55640.93

 19. Wyss, R, Lunt, M, Brookhart, MA, Glynn, RJ and Stürmer, T. Reducing Bias Amplification in the Presence 
of Unmeasured Confounding through Out-of-Sample Estimation Strategies for the Disease Risk Score. J Causal 
Inference. 2014; 2. DOI: https://doi.org/10.1515/jci-2014-0009

 20. Harrell, FE, Califf, RM, Pryor, DB, Lee, KL and Rosati, RA. Evaluating the yield of medical tests. Jama. 1982; 
247: 2543–2546. DOI: https://doi.org/10.1001/jama.1982.03320430047030

 21. Demler, OV, Paynter, NP and Cook, NR. Tests of calibration and goodness-of-fit in the survival setting. Stat Med. 
2015; 34: 1659–1680. DOI: https://doi.org/10.1002/sim.6428

 22. Wyss, R, Hansen, BB, Ellis, AR, et al. The “Dry-Run” Analysis: A Diagnostic for Evaluating Risk Scores for 
Confounding Control. Am J Epidemiol. (In press).

 23. Kumamaru, H, Gagne, JJ, Glynn, RJ, Setoguchi, S and Schneeweiss, S. Comparison of high-dimensional 
confounder summary scores in comparative studies of newly marketed medications. J Clin Epidemiol. 2016; 76: 
200–208. DOI: https://doi.org/10.1016/j.jclinepi.2016.02.011

 24. Connolly, SJ, Ezekowitz, MD, Yusuf, S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N 
Engl J Med. 2009; 361: 1139–1151. DOI: https://doi.org/10.1056/NEJMoa0905561

 25. Yao, X, Abraham, NS, Sangaralingham, LR, et al. Effectiveness and Safety of Dabigatran, Rivaroxaban, 
and Apixaban Versus Warfarin in Nonvalvular Atrial Fibrillation. J Am Heart Assoc. 2016; 5. DOI: https://doi.
org/10.1161/JAHA.116.003725

 26. Abraham, NS, Singh, S, Alexander, GC, et al. Comparative risk of gastrointestinal bleeding with dabigatran, 
rivaroxaban, and warfarin: population based cohort study. BMJ. 2015; 350: h1857. DOI: https://doi.org/10.1136/
bmj.h1857

 27. Larsen, TB, Rasmussen, LH, Skjøth, F, et al. Efficacy and Safety of Dabigatran Etexilate and Warfarin in “Real-
World” Patients With Atrial Fibrillation. J Am Coll Cardiol. 2013; 61: 2264–2273. DOI: https://doi.org/10.1016/j.
jacc.2013.03.020

https://doi.org/10.1002/pds.1845
https://doi.org/10.1002/pds.1845
https://doi.org/10.1002/pds.3231
https://doi.org/10.1002/pds.3377
https://doi.org/10.1002/sim.6030
https://doi.org/10.1002/sim.6030
https://doi.org/10.1016/j.jclinepi.2013.01.013
http://dept.stat.lsa.umich.edu/~bbh/rspaper2006-06.pdf. Accessed March 24, 2016
http://dept.stat.lsa.umich.edu/~bbh/rspaper2006-06.pdf. Accessed March 24, 2016
https://doi.org/10.1002/sim.4780030207
https://doi.org/10.1177/1740774511420743
https://doi.org/10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
https://doi.org/10.1097/EDE.0b013e3181a663cc
https://doi.org/10.1378/chest.10-0134
https://doi.org/10.1378/chest.09-1584
https://doi.org/10.1161/01.CIR.0000145172.55640.93
https://doi.org/10.1161/01.CIR.0000145172.55640.93
https://doi.org/10.1515/jci-2014-0009
https://doi.org/10.1001/jama.1982.03320430047030
https://doi.org/10.1002/sim.6428
https://doi.org/10.1016/j.jclinepi.2016.02.011
https://doi.org/10.1056/NEJMoa0905561
https://doi.org/10.1161/JAHA.116.003725
https://doi.org/10.1161/JAHA.116.003725
https://doi.org/10.1136/bmj.h1857
https://doi.org/10.1136/bmj.h1857
https://doi.org/10.1016/j.jacc.2013.03.020
https://doi.org/10.1016/j.jacc.2013.03.020


Bohn et al: Controlling Confounding in a Study of Oral Anticoagulants with Disease Risk Scores Art. 27, page 11 of 11

 28. Lauffenburger, JC, Farley, JF, Gehi, AK, Rhoney, DH, Brookhart, MA and Fang, G. Effectiveness and Safety of 
Dabigatran and Warfarin in Real-World US Patients With Non-Valvular Atrial Fibrillation: A Retrospective Cohort 
Study. J Am Heart Assoc. 2015; 4: e001798. DOI: https://doi.org/10.1161/JAHA.115.001798

 29. Tsiatis, A. A nonidentifiability aspect of the problem of competing risks. Proc Natl Acad Sci U S A. 1975; 72: 
20–22. DOI: https://doi.org/10.1073/pnas.72.1.20

 30. Huang, X and Zhang, N. Regression Survival Analysis with an Assumed Copula for Dependent Censoring: A Sensitivity 
Analysis Approach. Biometrics. 2008; 64: 1090–1099. DOI: https://doi.org/10.1111/j.1541-0420.2008.00986.x

How to cite this article: Bohn, J, Schneeweiss, S, Glynn, RJ, Toh, S, Wyss, R, Desai, R and Gagne, J 2019 Controlling Confounding 
in a Study of Oral Anticoagulants: Comparing Disease Risk Scores Developed Using Different Follow-Up Approaches. eGEMs 
(Generating Evidence & Methods to improve patient outcomes), 7(1): 27, pp. 1–11. DOI: https://doi.org/10.5334/egems.254

Submitted: 22 January 2018            Accepted: 06 December 2018            Published: 15 July 2019

Copyright: © 2019 The Author(s). This is an open-access article distributed under the terms of the Creative Commons 
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.
 

                          OPEN ACCESS eGEMs (Generating Evidence & Methods to improve patient outcomes) is a peer-reviewed 
open access journal published by Ubiquity Press.

https://doi.org/10.1161/JAHA.115.001798
https://doi.org/10.1073/pnas.72.1.20
https://doi.org/10.1111/j.1541-0420.2008.00986.x
https://doi.org/10.5334/egems.254
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	Methods 
	Study population 
	Cohort follow-up 
	Disease risk score development 
	Disease risk score assessment 
	Treatment effect estimation 
	Resampling study 

	Results 
	Patient characteristics and event rates 
	Discrimination 
	Calibration 
	Pseudo-bias 
	Measures of association 
	Resampling smaller historical cohorts 

	Discussion 
	Additional Files 
	Acknowledgements 
	Competing Interests 
	References 
	Figure 1
	Figure 2
	Figure 3
	Table 1
	Table 2
	Table 3
	Table 4

