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Purpose: Most prostate cancers (PCs) initially respond to androgen deprivation

therapy (ADT), but eventually many PC patients develop castration resistant PC

(CRPC). Currently, available drugs that have been approved for the treatment of CRPC

patients are limited. Computational drug repositioning methods using public databases

represent a promising and efficient tool for discovering new uses for existing drugs.

The purpose of the present study is to predict drug candidates that can treat CRPC

using a computational method that integrates publicly available gene expression data

of tumors from CRPC patients, drug-induced gene expression data and drug response

activity data.

Methods: Gene expression data from tumoral and normal or benign prostate tissue

samples in CRPC patients were downloaded from the Gene Expression Omnibus

(GEO) and differentially expressed genes (DEGs) in CRPC were determined with a

meta-signature analysis by a metaDE R package. Additionally, drug activity data

were downloaded from the ChEMBL database. Furthermore, the drug-induced gene

expression data were downloaded from the LINCS database. The reversal relationship

between the CRPC and drug gene expression signatures as the Reverse Gene

Expression Scores (RGES) were computed. Drug candidates to treat CRPC were

predicted using summarized scores (sRGES). Additionally, synergic effects of drug

combinations were predicted with a Target Inhibition interaction using the Minimization

and Maximization Averaging (TIMMA) algorithm.

Results: The drug candidates of sorafenib, olaparib, elesclomol, tanespimycin,

and ponatinib were predicted to be active for the treatment of CRPC. Meanwhile,

CRPC-related genes, in this case MYL9, E2F2, APOE, and ZFP36, were identified

as having gene expression data that can be reversed by these drugs. Additionally,

lenalidomide in combination with pazopanib was predicted to be most potent for CRPC.

Conclusion: These findings support the use of a computational reversal gene

expression approach to identify new drug and drug combination candidates that can

be used to treat CRPC.
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INTRODUCTION

Drug repurposing or repositioning is a strategy for identifying
new indications for approved or investigational drugs that are
outside the scope of the original medical indication (1). This
strategy offers an advantage in that the cost of bringing a
repurposed drug to market has been estimated to be US$300
million on average, compared to estimates of approximately $2–3
billion for a new drug (2).

Drug–disease similarity approaches aim to identify shared
therapeutic applications for drugs (3) while drug–drug similarity
approaches aim to identify shared mechanisms of action for
drugs (4). Recently, interest in the use of genomics-based drug
repositioning to aid and accelerate the drug discovery process
has increased (5). Drug development strategies based on gene
expression levels are advantageous in that they do not require
a large amount of a priori knowledge pertaining to particular
diseases or drugs (6, 7). Large public datasets such as the
Gene Expression Omnibus (GEO) at the National Center for
Biotechnology Information (NCBI) (8), the Cancer Cell Line
Encyclopedia (CCLE) (9), and the Library of IntegratedNetwork-
Based Cellular Signatures (LINCS) (10, 11), describing chemical
and biological disease entities or gene expression data and
the relationships between them, provide an efficient approach
by which to reposition existing drugs for new indications
(5, 12). Recently, the reverse gene expression scores (RGES)
computationmethodwas developed as a one of the powerful drug
repositioning tools to predict drug candidates (13). The RGES
computation method was applied to find drug candidates for
CRPC in this study.

Prostate cancer (PC) was the cancer with the highest incidence
worldwide and the leading cause of cancer deaths for men in
2015 (14). Although PC mortality in Western countries has
declined due to early diagnosis and treatment, incidence rates
of PC continue to increase in the developing countries (15).
Androgens and androgen receptors (ARs) may play key roles
in the initiation and progression of PC (16). As Huggins and
Hodges discovered that androgen-deprivation therapy (ADT)
with surgical castration to reduce testicular testosterone could
suppress PC progression (17), ADT has been the standard
therapy to treat PC (16, 18).

Different therapeutic approaches to target androgen and AR
signals after surgical or chemical castration were developed
by combining ADT with various anti-androgens, including
the steroidal anti-androgens cyproterone acetate (19) and
megestrol acetate (19), and non-steroidal anti-androgens,
including nilutamide (20), flutamide (21), and bicalutamide
(22). Most PCs initially shrink in response to ADT, but
eventually most types of ADT with anti-androgens fails and PC
patients develop castration resistant PC (CRPC) (16). When this
occurs, chemotherapeutic approaches such as docetaxel may be
considered (23). Although recently enzalutamide, apalutamide,
and abiraterone acetate were approved for the treatment of
CRPC (24, 25), available drugs that have been approved for
the treatment of CRPC patients are limited (26). Therefore,
repositioning for CRPC is challenging and numerous preclinical
or clinical trial studies deriving from repositioning approaches,

including those focusing on itraconazole (27), phentolamine (28),
and niclosamide (29), have been continually conducted.

Primary PC has relatively few genomic aberrations compared
to other cancers (30). However, detailed spatial sampling
and sequencing of prostate tumors has identified significant
heterogeneity within multifocal tumors in the same patient (31,
32). In the case of CRPC, it has been shown to remain dependent
on the AR signaling pathway by various mechanisms even during
the systemic depletion of androgens (33).

The purpose of this study is to predict drug candidates that
can treat CRPC using a computational method that integrates
publicly available gene expression data of tumors in CRPC
patients, drug-induced gene expression data and drug response
activity data.

MATERIALS AND METHODS

Collection of Gene Expression Data
Publicly available gene expression data for CRPC related studies
were identified in the GEO database hosted by the NCBI (http://
www.ncbi.nlm.nih.gov/geo). A search of the GEO database was
conducted in July of 2018 using “prostate cancer,” “castration,”
“resistance,” and “refractory” as a key search phrases. The
results were filtered using the search terms Homo sapiens,
expression profiling by array, and expression profiling by high
throughput sequencing. Only original experimental datasets
that compared the expression levels of mRNAs between CRPC
tumor and normal or benign tissues were selected in CRPC
patients. Additionally, gene expression data of human prostate
adenocarcinoma cell lines were downloaded from CCLE (version
2.7. updated 2015 https://portals.broadinstitute.org/ccle) (9).

Preprocessing of Gene Expression Data
The GEO accession number, Gene Expression Omnibus
platforms (GPL) access number, number of cases and controls,
sample type, and gene expression data were extracted from each
of the identified datasets. Gene expression data were individually
log2-based transformed and normalized. If there were multiple
probes for the same gene, the probe with the highest interquartile
range was selected for that gene expression level. All probe sets
on different platforms were re-annotated to use the most recent
NCBI Entrez Gene Identifiers (Gene IDs), and the Gene IDs
were used to cross-map genes among the different platforms.
Only genes present in all selected platforms were considered.
The R packages MetaQC (34) was used for quality control (QC)
of gene expression data. The mean rank of all QC measures
in each dataset was also determined as a quantitative summary
score by calculating the ranks of each QC measure among all
included datasets.

Identification of Disease Gene
Expression Signatures
The R package MetaDE (35–38) was used to identify the DEGs
in meta-analysis of CRPC. A moderated t-statistic was used
to calculate P-values for each dataset, and a meta-analysis was
conducted with a fixed effect model (39). Additionally, the degree
of similarities among the gene expression data between CRPC
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tumor samples from the GEO and PC cell lines from the CCLE
were assessed.

Identification of Compound Gene
Expression Signatures
The L1000 landmark transcript values (Level 4) of 978 landmark
genes from LINCS as of May of 2018 were downloaded from
LINCS cloud storage (http://lincscloud.org/) hosted by the Broad
Institute (40). Cell lines described in LINCS, CCLE, andChEMBL
(version 24 1st Sep 2017, https://www.ebi.ac.uk/chembl/) (41)
were mapped using PC cell line names followed by manual
inspection. Meta-information for compound-induced gene
expression values, in this case cell line types as well as treatment
durations and drug concentrations, was retrieved. Only L1000
signatures with the annotation “is gold,” indicating the highest
quality of aggregate data were used for further analyses.

Collection of Compound Activity Data
Compound activity data, described as the half maximal inhibitory
concentrations (IC50) in PC cell lines were retrieved from
ChEMBL. As the IC50 values for a given compound could vary
for the same cell line across different studies, the median IC50

value was used. Compounds included in the ChEMBL and
LINCS were manually mapped using International Union of
Pure and Applied Chemistry International Chemical Identifier
keys. Additionally, the area-under-the-curve (AUC) values for
compound activity data in the PC cell lines were retrieved
from the Cancer Therapeutic Response Portal (CTRP ver
2, https://portals.broadinstitute.org/ctrp.v2.1/) (42). Sensitivity
levels were measured in the form of cellular ATP levels as a
surrogate for cell number and growth using CellTiter-Glo assays
(43). A compound-performance score was computed at each
concentration of compound. Median AUC values across various
cell lines were used. Compounds were categorized into active
(IC50 <10µM) and inactive groups (IC50≥10µM) based on
their activities in cell lines. An IC50 value of 10µM was chosen
as an activity threshold given that compounds with IC50 ≥10µM
in primary screenings are often not pursued (44).

Computation and Summarization of RGES
The method used to calculate the reverse gene expression score
(RGES) was adapted from the previously described Connectivity
Map method (45) and RGES computational method (13). Briefly,
genes were initially ranked according to their expression levels
for each compound. An enrichment score for each set of up-
and down-regulated genes in CRPCwas computed based on their
positions in the ranked list. RGES values emphasize the reversal
correlation by capturing the reversal relationship between the
DEGs and compound-induced changes in the gene expression
levels. Therefore, a lower negative RGES indicates a higher
likelihood of reversing changes in the gene expression of CRPC,
and vice versa. In addition, the Spearman’s correlation coefficient,
the Pearson correlation coefficient, and the cosine similarity were
computed between DEGs in CRPC and compound activities,
as an alternate method for computing the reversal relationship
between DEGs and the active compounds (46). The databases
used can list multiple gene expression levels associated with one

compound due to testing involving different cell lines, treatment
concentrations and durations of compounds. This resulted in
multiple RGESs for one compound that could reverse disease
gene expression. Given these variations, summarized RGESs
(sRGES) were weighted and calculated. Results obtained for a
10µM drug concentration and a 24 h treatment time were used
to define the reference conditions.

Identification of Reversed Genes
In cases for which multiple gene expression values yielded
multiple RGES values for one compound, a median RGES value
was calculated from the PC cell lines. In cases for which multiple
compound activity IC50 data were available for one compound,
median IC50 values were calculated. Each gene expression datum
was sorted by its expression value. Upregulated genes were
ranked highly (i.e., on the top), whereas downregulated genes
were assigned a low rank (i.e., on the bottom). Among the
upregulated genes, reversal genes were defined as those that
were ranked lower in the active group (IC50 < 10µM) than
in the inactive group (IC50 ≥ 10µM). In contrast, among the
downregulated genes, the reversal genes were defined as those
that were ranked higher in the active group than the inactive
group. A leave-one-compound-out cross-validation approach
was used to find genes having reversed expression (47). For each
trial, one compound was removed and the reversed genes were
then identified using the approach described above. Only those
genes that were significantly reversed in all trials were retained.
The genes with adjusted P < 0.25 in all trials were considered as
reversal genes.

Prediction of Synergic Effects
To predict the synergic effects of drug combinations based
on the interactions between drugs and the identified targets,
RGES values was used for Target Inhibition Inference using the
Maximization and Minimization Averaging (TIMMA) algorithm
(48). The synergic scores were calculated with the TIMMA-
R package (49). The synergic addictive score was defined as
Sa
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). An average synergy score was defined

as S(d1, d2) = 1
n

∑

i∈d1, j∈d2 S(i, j). The predicted sensitivity was

defined as Sensitivity = expectation+ synergy.

Statistical Analysis
The degree of similarity in gene expressions between CRPC
tumor samples from the GEO and PC cell lines from the CCLE
were assessed by a Spearman’s rank correlation test, as were
these similarity degrees between RGES and IC50 values from
ChEMBL or AUC values from CCLE. A Wilcoxon signed-rank
test was used to assess differences between RGES across active
(IC50 < 10µM) and inactive compounds (IC50 ≥ 10µM),
the same and different cell lines, higher (≥10µM) and lower
(<10µM) drug concentrations, and longer (≥24 h) and shorter
(<24 h) treatment durations. P-values were adjusted with the
Benjamini and Hochberg’s false discovery rate method to correct
for multiple testing.
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RESULTS

Inclusion of CRPC Gene
Expression Datasets
The study selection process for finding CRPC disease signatures
is outlined in Figure 1. A total of 224 GEO Series Experiments
(GSEs) were searched. A number of GSEs were excluded
due to duplicated data (n = 21), disease (n = 179), non-
human (n = 14), non-control (neither normal nor benign
tissues) (n = 4), and number of genes <5,000 (n = 2).
Finally, the four datasets of GSE3325, GSE35988, GSE70768,
and GSE80609 were selected for further analysis after a MetaQC
analysis (Supplementary Table S1). Detailed information about
the downloaded CRPC gene expression datasets is summarized in
Supplementary Table S2. GSE35988 contained gene expression
data from the GPL6480 and GPL6848 platforms. Tumor gene
expression signatures in CRPC were analyzed for 178 samples by

comparing RNA expression data for 64 tumors and 114 normal
or benign tissues from those four datasets.

Gene Expression Signatures of CRPC
The workflow for the exploration of the compounds
using the calculated RGES values is presented in
Supplementary Figure S1. Corresponding probes on each
platform were re-annotated with the most recent NCBI Entrez
Gene IDs and then mapped to yield 7,825 unique common
genes across the five different platforms. A fixed-effect model
method was used by combining the P-values using the MetaDE
package. Among the gene expression signatures, 53 genes
showed increased expression levels in tumors compared to
normal or benign tissues (adjusted P < 0.001, log2foldchange
> 1.5), whereas 42 genes showed decreased expression levels
in tumors compared to normal or benign tissues (adjusted P <

0.001, log2foldchange<–1.5; Supplementary Table S3).

FIGURE 1 | Flowchart of the selected process to select gene expression datasets for meta-analysis of castration resistant prostate cancer (CRPC). GEO, Gene

Expression Omnibus.
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Similarity in Gene Expressions Between
Tumor Samples and PC Cell Lines
The degree of similarity in the gene expression levels between
CRPC tumor samples from the GEO and PC cell lines from
the CCLE was assessed by a ranked Spearman’s correlation
test. Gene expression data for eight PC cell lines were
included in the CCLE (Supplementary Table S4). The top
5,000 genes in these cell lines were ranked according to
their interquartile range across all PC cell lines used. Among
them, <0.1% of genes had expression levels in tumor samples
from the GEO that did not correlate with those in these
cell lines.

Computation of RGES Values
Changed expression values of 978 landmark genes after a
compound treatment of human prostate adenocarcinoma PC3
cell lines with 172 compounds in the LINCS data as drug
signatures were used for the computation of the RGES values.
The median IC50s values for 12,895 compounds used to treat
PC cancer cell lines listed in the ChEMBL were used for
the RGES computation. The changed expression values of
95 DEGs after extraction from the set of LINCS landmark
genes as disease signatures were also used for computation.
Variations in the RGES values were evaluated under various
biological conditions. The RGES values showed larger variations
across different cell lines relative to those within different
replicates of the same cell line when the same concentration
and treatment duration for a compound were used (P <

2.2 × 10−16; Figure 2A). In addition, higher compound
concentrations (>10µM) had lower RGES values than lower
concentrations (<10µM, P = 1.46 × 10−4; Figure 2B) when
a compound was tested on the same cell line at the same
concentration. Likewise, longer treatment durations (≥24 h)
were associated with lower RGES values compared to shorter
durations (<24 h) (P < 2.2 × 10−16; Figure 2C). The RGES
values for the compounds were evaluated by examining the
correlations with their activities in the same cell line. Finally,
the RGES values were correlated with the IC50 values for the
compounds (Spearman correlation rho= 0.19, P = 1.43× 10−2;
Figure 3A).

Summarization and Evaluation of
RGES Outcomes
sRGES values were computed by weighting various cell lines,
compound concentrations, and treatment durations. A number
of known methods were used to summarize the RGES outcomes
and obtain sRGES values (Supplementary Table S5). The
calculated sRGES values for each compound were significantly
correlated with drug activity levels (Spearman correlation
rho = 0.21 and P = 8.06 × 10−3; Figure 3B). Additionally,
CTRP was used as an external data set to confirm the correlation
between the reversal potency and the compound activity.
Compound activity data expressed as AUC values for 558
compounds tested in PC cell lines were collected from CTRP.
After the sRGES computations, the median AUC values across
multiple cell lines were used to evaluate the sRGES outcomes. The

FIGURE 2 | Differences in reverse gene expression scores (RGES) under the

various biological conditions. (A) Standard deviation (s.d.) of reverse gene

expression scores (RGES) of individual compounds across different cell

(Continued)
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FIGURE 2 | lines (gray) vs. across replicates within the same cell line (black

gray). (B) RGES distribution between drug concentrations<10µM (gray) and

≥10µM (black gray). (C) RGES distribution between treatment

durations<24 h (gray) and ≥24 h (black gray). Treatment duration and

compound concentration were categorized based on compound data in

LINCS. P-value was calculated using a Wilcoxon signed-rank test.

FIGURE 3 | Correlation between drug efficacy and reverse gene expression

score (RGES) in PC3 cancer cell lines. (A) Correlation between RGES and

drug efficacy (IC50) by linear regression and Spearman’s correlation tests. (B)

Correlation between drug efficacy (IC50) and summarized reverse gene

expression score (sRGES) for all cancer cell lines using a linear regression and

a Spearman’s correlation tests. IC50, half maximal inhibitory concentration.

sRGES values were significantly correlated with the AUC values
(rho= 0.29, P= 2.91× 10−5; Figure 4).

FIGURE 4 | Correlation between AUC and sRGES of compounds. AUC data

were retrieved from CTRP. Sensitivity levels were measured in the form of

cellular ATP levels as a surrogate for cell number and growth using

CellTiter-Glo assays. A compound-performance score was computed at each

concentration of compound. Median values were used to summarize AUC

across all prostate cancer cell lines examined. A Spearman’s correlation test

was used to analyze the correlation between sRGES and AUC. AUC, areas

under the concentration-response curve. CTRP, the cancer therapeutic

response portal.

Identification of Reversed Genes and
Predictions of Compounds
Using the correlation between the sRGES values and the
compound activity, compounds having high reversal potency for
PC were identified. Next, genes having expression levels that
were reversed by the active compounds were predicted by a
leave-one-compound-out approach. The four genes that showed
significant reversal of expression following treatment with PC
cell lines with the active compounds included the following:
(i) myosin light chain 9 (MYL9), (ii) DNA topoisomerase 2-
binding protein 1 (TOPBP1), (iii) Apolipoprotein E (APOE),
and (iv) zinc finger protein 36 (ZFP36) (Figures 5A,B). Fifty
compounds were determined to be active compounds against
CRPC (Figure 5A), while 48 compounds were determined to
be inactive compounds (Figure 5B, Supplementary Table S6).
The active drugs against CRPC identified by our analysis
contained the tyrosine kinase inhibitors dasatinib, lapatinib,
lestaurtinib, and saracatinib; the histone acetylation inhibitors
belinostat, entinostat, mocetinostat, panobinostat, trichostatin-
A, and vorinostat and the heat shock inhibitors elesclomol
and geldanamycin.

Prediction of the Synergic Effect
Combination of 98 drug candidates were employed the TIMMA.
Of all these drug combinations, the highest synergy sensitivity
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FIGURE 5 | Genes having reversed expression in response to treatment with active (A) and inactive (B) compounds. Low rank and high rank suggests that the gene

expression is down- and upregulated, respectively, by the corresponding compound. The heatmap indicates the relative position of a gene in ranked drug expression

data. Position are normalized and compound columns are ordered according to IC50. Red and green colors indicate up- and down-regulation, respectively, after

compound treatment.

score was predicted for the combination of lenalidomide
and pazopanib (Figure 6, Supplementary Table S7). Next, the
synergic sensitivity score orders were lenalidomide combined
with olapanib, nocodazole, tipifarnib, and imatinib and their
corresponding targets were APOE, ZFP36, E2F2, andMYL9.

DISCUSSION

The computational approaches used in systemic analyses of large
amounts of data such as gene expression values, genotypes, and
chemical structure similarities for predictive repositioning offer
a relatively quick and mechanistic method of identifying new
application of existing drugs that may be translated into clinical
applications (50). In this study, computational methods using
public database were used for the purpose of identifying drug
repositioning candidates for treatment of CRPC. Several drug
candidates were identified, as well as DEGs in CRPC whose

expression can be reversed by these agents. We used public
cancer genomic and pharmacologic databases to demonstrate the
reversal potency relationship between DEGs and drug activities,
and to predict potential new drug candidates for CRPC.

Our results showed that the ability of drugs to reverse

DEGs was correlated with drug activity in CRPC, although this

correlation was highly dependent on the cell lines as well as

the treatment concentration and duration of the drugs. The
positive correlation between sRGES and IC50 values indicated

that combining disease gene expression data derived from clinical

samples with drug gene expression data obtained from results
with in vitro cell lines could be used to predict drug activities.

In our study, four genes, MYL9, E2F2, APOE, and ZFP36,

showed reversed expression in response to 50 active compounds
in CRPC. To the best of our knowledge, this is the first study
focusing on drug repositioning using a computational reversal
gene expression approach in relation to CRPC. MYL9 (myosin
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FIGURE 6 | Predicted synergic drug combinations against castration resistant prostate cancer. Predicted sensitivity scores were calculated by the Target Inhibition

Interaction using Maximization and Minimization Averaging algorithm. The bar on the right shows predicted synergic scores.

light chain 9) has been reported to play an important role in
tumor progression in PC (51). Loss of the RB function facilitates
the development of CRPC via E2F-mediated upregulation of the
AR (52). ZFP36 is reportedly involved in the progression and
prognosis of PC (53). As cholesterol is known to be a potential
target for CRPC, ApoE has been suggested to play a potential role
in prostate cancer progression (54). These genes showed reversed
expression levels and thus may be feasible as therapeutic targets
for CRPC.

Among the active drugs against CRPC identified by our
analysis, the histone deacetylase inhibitors, vorinostat (55), and

panobinostat (56), the tyrosine kinase inhibitors, dasatinib (57)
and lapatinib (58), and a poly (ADP-ribose) polymerase (PARP)
inhibitor, olaparib (59), have gone through phase I and phase
II clinical trials for CRPC patients. Additionally, the docetaxel
FDA-approved for metastatic CRPC (60) was identified as an
active drug in our results. Bicalutamide and flutamide used as
a hormonal therapy against CRPC have low cytotoxic activities,
resulting that they have been identified as inactive drugs in
our study. The cytotoxic chemotherapy is most effective when
given in combination to achieve an additive or synergistic
effect and a targeted therapy involving more than one drug
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increases powerful antitumor effects and overcomes resistance
mechanisms (61). A combination of high-throughput screening
of all licensed drugs has been carried out in an attempt to
discover synergistic interactions (62). Therefore, the synergic
effects of the candidate drugs identified were examined in our
study. The immunomodulatory, drug lenalidomide combined
with a tyrosine kinase inhibitor, pazopanib was most potent
against CRPC in our result. Several clinical trials of lenalidomide-
or pazopanib-based regimens for CRPC were conducted (63–
65). The phase I/II study of lenalidomide in combination with
sunitinib was conducted in patients with advanced or metastatic
renal cell carcinoma (66). Despite the fact that the combination
of pazopanib and lenalidomide has been reported to induce
synergistic cytotoxicity in multiple myeloma (67), this drug
combination has not yet been tested yet in CRPC cases.

After CRPC development, PC switches from an endocrine-
driven disease to a paracrine- or autocrine-driven disease.
Therefore, CRPC represents an increased opportunity to
accumulate genomic aberrations and is riddled with aggressive
and heterogeneous clones. Strengths of this work is that it
leverages publically available datasets to identify candidates for
drug repositioning targets and theoretically, this could be a
much cheaper and faster way to identify promising new leads. A
limitation of this study is that the CRPC disease gene expression
datasets from the GEO are not uniformly associated with clinical
outcomes or CRPC etiologies. CRPC is a heterogeneous disease
that might be driven by different pathways, depending on
prior treatments and this approach essentially treats CRPC as
a single entity. The drug efficacy of the predicted compounds
may also vary because the CRPC tissue states varied for
individual patients. Therapeutic efficacy is more complex than
a simple correlation of gene expression levels with drugs and
diseases. Therefore, our findings for drug candidates will require
further preclinical testing and demonstration in clinical trials. As
performing randomized trials in relation to a rare cancer disease
is challenging, a computational drug repositioning approach with

public gene expression databases may become a quite useful
strategy for treating rare types of cancer.

In summary, our computational approach combined
disease gene expression with drug-induced expression
data in CRPC to identify new drugs and target genes as
CRPC therapies. This approach, can also be used to predict
the efficacy of new drug candidates to treat CRPC. This
computational approach could be broadly applied to other
rare forms of cancer for which reliable gene expression data
are available.
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