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Abstract

Introduction: The current study investigates the utilization and performance of

machine learning (ML) algorithms in the cognitive task of finding the correlation

between numerical parameters of the human brain activation during gaming. We

hypothesize that our integrated feature extraction platform is able to distinguish

between different psychosomatic conditions in the gaming process asmeasured by the

functional near-infrared brain imaging technique.

Methods: For demonstration, the decision-making process was constructed in the

experiment environment that combined gaming simulator, such as the Iowa Gaming

Task (IGT), with functional near-infrared spectroscopy (fNIRS) as the neuroimaging

technique. Features of fNIRS levels were extracted, averaged, and synchronized by

time with the IGT dataset to predict the task score inside ML algorithms, such as mul-

tiple regression, classification and regression trees, support vector machine, artificial

neural network, and random forest. For findings validation, the experiment data were

resampled by training and testing sets. Further, a training dataset was used to train the

ML algorithms, and prediction accuracy was estimated by repeated cross-validation

methods and compared by R squared and root mean square error (RMSE). The model

with the best accuracy was usedwith the testing dataset and finalized the experiment.

Results: During the experiment, the highest correlation was identified in the fourth

block between the oxy-hemoglobin signal and IGT score in average value (0.24) and

signal feature (0.57). Such relationship is due to block 4 characterization as “concep-

tual” period when participants task experience reaches the maximum, and rewards

raise accordingly. Simultaneously, ML algorithms, constructed based on training data

set, demonstrate acceptable performance, andRMSEas the primary performancemet-

ric dynamically increases from block 1 to block 5, from the state of uncertainty and

unknown to the certainty and risky. In contrast, R squared decreases during the same

transition. In most IGT blocks, the best fittedmodel was determined as support vector
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machinewith radial bases function kernel, and predictionsweremadewith the highest

accuracy (lowest RMSE) than in trainingmodels.

Conclusion:Obtained findings showed the applicability and capability ofMLmodels as

a powerful technique to evaluate the cognitive neuroimaging task result. Moreover, in

terms of features it was identified that the hemodynamic response reacts to the accel-

eration decision-making process and raises more significance than it was observed

before.

KEYWORDS

cognitive neuroimaging, functional near-infrared spectroscopy, Iowa gambling task, machine
learning

1 INTRODUCTION

Gaming addiction has become one of the most critical dimensions of

modern society. It is not surprising as gamer auditory demonstrates a

positive trend year by year. Accordingly, Entertainment SoftwareAsso-

ciation reports that about 65% of the US adult population regularly

plays video games (ESA, 2019). In other words, 164 million Americans

build their daily decision-making activity in accordance with a change-

able game environment (Palaus et al., 2017). In this case, clinicians,

researchers, and practitioners are forced to create new methods and

instruments to classify new diseases and identify characteristics and

treatments. Moreover, the American Medical Association (AMA) and

theWorld Health Organization (WHO) added “game disorder” in their

official manuals and classifications (APA, 2018; WHO, 2018). Thus,

they were established characteristics of “new phenomenon” (Przybyl-

ski et al., 2017), inclusion limits, and symptoms such as anxiety, anger,

and depression when the game is taken away, having problems at

work, at school, and in family life, loss of interest in everyday activity

and habits, and losing the power to resist gaming (APA, 2018). Losing

behavioral control, people addicted to the game perceive the game as a

necessity, meeting the need for a short-term instant risk without long-

termplanning. To distinguish patients by their risk-acceptance strategy

and sort them by the category of addicted and healthy, Bechara and

Damasio (2002) adopted an earlier developed gaming simulator, called

IowaGambling Task (IGT).

IGT was originally developed in 1994 to classify patients with dam-

ages of the ventromedial prefrontal cortex (Bechara et al., 1994). At the

beginning of the task, the experiment participant receives $2000 vir-

tual money and can increase or decrease this amount during the sub-

sequent 100 card selection trials from four decks. Two decks (A and B)

have a high probability of gaining or losing and are not preferred in the

scope perspective. They are “bad” decks. The other two decks (C andD)

have a low probability of gaining or losing and are preferred from the

perspective. They are “good” decks. The score of IGT calculates the dif-

ference between the sumof a selection of advantageous (“good”) decks

and disadvantageous (“bad”) decks. It is assumed that healthy partici-

pants’ experiencewill increasewhile performing the task, and the num-

ber of choosing cards from the “good” decks will be higher than the

number of selecting cards from the “bad” decks. Thus, the IGT scorewill

increase accordingly (Bechara &Damasio, 2004).

Another dimension of IGT is five blocks that conditionally divided

100 trials by 20 trails in each block. These blocks have a different

psychiatric meaning. During the first 20 trials (block 1), experiment

participants are in the condition of total unknown and uncertainty

about the degree of probability rewards or punishment assigned by

the card decks and make a decision without any strategy, resulting in

money-losing. This is the “pre-punishment” period (Bechara & Dama-

sio, 2004). Somewhere during the second 20 trials (block 2), partic-

ipants begin to understand the general distribution of advantageous

decisions between decks, and their understanding and knowledge con-

tinue to increase trial by trial through the third 20 choices. These peri-

ods are called “pre-hunch” and “hunch” (Bechara &Damasio, 2004). By

the fourth 20 trials (block 4), participants prove their hypothesis about

gain probability and develop different tactics and strategies to win as

much as possible and test it during the last 20 trials (block 5). These two

final conditions are the “conceptual” period and “risky” state (Bechara

&Damasio, 2004).

Despite more than 20 years of history, IGT does not lose its rel-

evance even now. On the contrary, combined with functional neu-

roimaging techniques, such as electroencephalography (EEG), func-

tional magnetic resonance imaging (fMRI), or functional near-infrared

spectroscopy (fNIRS), it becomes a powerful instrument for human

brain cognitive exploration and analysis (Aram et al., 2019)

Historically, the task of investigating gaming patterns and their

effect on human brain activity has been solved by collecting data from

neuroimaging devices, such as PET and EEG in the form of an electrical

signal and their analysis using statisticalmethods: general linearmodel,

analysis of variance (ANOVA), t-test, and correlation coefficient (Fris-

ton et al., 1995). By 2017, about 60% of neuroimaging-related experi-

ments were performed with fMRI techniques (Palaus et al., 2017). The

fNIRS method based on the Beer–Lambert equation was introduced

in 1988 (Delpy et al., 1988). This relatively new neuroimaging tech-

nique has several substantial straights, such as the ability to provide

measuring inmotions, portability, and inexpensively (Scarapiccha et al.,

2017). Following fNIRS physics, optical light transmission, absorption,

and scattering through humanhead tissue allow for registered changes
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of oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) levels in target

regions of interest (ROI) (Quaresima & Ferrari, 2019).

Despite the achieved success in dealing with functional imaging

data analysis, statistical parametric mapping, and examining the brain

regions in dynamics and different conditions, several limitations con-

strain statistical methods’ applicability. So, statistical methods are

driven bymathematical and probabilistic long-standing inferences and

failing at a low degree of freedom. In this case, more powerful machine

learning (ML) techniques, driven by data, are suitable for self-learning

based on the integrated behavioral model without outside interven-

tions (Davatzikos, 2019) and are becoming more common in differ-

ent cognitiveneuroimaging tasks, suchaspattern recognition, synchro-

nization, and classification, experiment result evaluation, diagnoses

prediction, spatiotemporal filtering, and so on (DeBruijne, 2016; Lemm

et al., 2011). Moreover, ML is based on “wide data” and more abun-

dant in predictive pattern generalization and suitable in the less con-

trolled experiment environment, requiring minimal data adjustments

and assumptions (Bzdok et al., 2018). If a correlation as a statistical tool

determines the power of interrelationship and impacts one variable on

another, thenMLalgorithmsare capableof buildingmodels of variables

mutual behavior, constructing prognoses andpredictions of this behav-

ior, and fit to evaluate the result of correlation (Kumar &Chong, 2018).

Moreover, constructed around variables feature space increases pre-

diction power and indicates the fields in which the parameter’s corre-

lation reachesmaximum values.

The current study examines ML approaches in the cognitive task

of finding and evaluating the correlation between brain activation

parameters during gaming. On the first cup of the scale was placed

accelerated decision-making score measured as a result of performing

the IGT by the participants, and on the second cup of the scale was set

correspondent and synchronized neuroimaging response as changes

of HbO levels in the human prefrontal cortex (PFC), measured by

fNIRS.

Scientists used IGT and fNIRS capabilities to statistically estimate

human brain performance during decision-making in different stages

and conditions in various studies. Thus, using t-test it was determined

that differences in the brain activation of experiment participants with

low IGT score are less statistically significant than participants with

high IGT score in both brain hemispheres (Suhr & Hammers, 2010).

Using ANOVA, the significance of differences inHbO changes between

IGT blocks was identified in studies of Ono et al. (2015), Balconi et al.

(2018), and Li et al. (2019). Bembich et al. (2014) and Kora Venu et al.

(2021) identified that HbOdynamics changes aremore significant dur-

ing the first half of IGT than in the second half of the task. A weak neg-

ative correlation (−0.39) in the left PFC and (−0.38) in the right PFC

was identified between depression levels andHbO signal during IGT in

patients with bipolar disorder byOno et al. (2015). Li et al. (2019) iden-

tified the difference in the left and right PFC activation during IGT but

calculated the correlation betweenHbO and task score only inside five

IGT blocks: weak positive in the blocks 2, 3, and 4 (0.36, 0.41, and 0.45

respectively), negligible negative in block 1 (−0.01), and negligible pos-

itive in the block 5 (0.09). The summary of providedworks is presented

in Table 1.

Nevertheless, the possibility to use theMLmechanics in neuroimag-

ing was successfully demonstrated and reviewed in various studies

(Aram et al., 2020, 2021). But, despite the popularity and widespread

use of ML algorithms in dealing with neuroimaging data, their appli-

cation to combined IGT and fNIRS datasets is still poorly analyzed

(Table 1). Moreover, methods of statistical analysis transfer gaps and

uncertainties of their application to tasks of investigation dependences

of the brain activity and gaming behavior: using a simple t-test or

ANOVA is less robust in the task of variables performance predic-

tion, and found correlation cannot be evaluated in a dynamic environ-

ment (Bzdok et al., 2018; Kumar & Chong, 2018). Simultaneously, con-

structed inside the cognitive space, self-learning ML models can pre-

dict decision making capabilities based on the HbO levels changes in

the brain, and are suitable for evaluating their correlation with gaming

behavior. Thus, the following “null” hypothesis could be set: There is no

correlation between brain activation and gaming behavior. Alternative

hypothesis is that there is a correlation between brain activation and

gaming behavior, and this correlation has significantly different values

in PFC hemispheres depending on the game stage, condition, and par-

ticipant’s psychosomatic condition.

The current paper aims to overcome the previously achieved results

(Table 1) by spreading the correlation by features and makes a conclu-

sion about the bestMLmodel to predict gaming behavior by brain acti-

vation. By “the best” we mean the best ML algorithm, and the possibil-

ity to assess the ML approach’s applicability in the particular cognitive

task, as presented in the current work (Davatzikos, 2019).

2 METHODS

2.1 Participants and data

Data collection from 30 young adult volunteers (N = 30)—25 females

and five males in the age range between 19 and 26 (M = 21.8,

SD = 1.77)—was approved by the Southwest University Institutional

Review Board (Chongqing, China). All participants signed informed

consent (Li et al., 2019). All experiment participantswere right-handed,

and they did not report any neurological or psychiatric health issues

and problemswith vision.

Demographic characteristics of the study population are presented

in Table 2.

All testees were randomly selected for the experiment without any

coercion or violence. The chance to be chosenwas equal for all of them.

Participants were marked numerically from 002 to 031 without any

forms of individuality.

Asmentioned before, the target variable is the IGT score, measured

numerically, predicted by levels of HbO changes, and divided by five

blocks following classic IGT rules (Bechara et al., 1994). The same

IGT score will be analyzed separately for the left and right brain

hemispheres in each block.

Central tendencies of the research IGT score are presented in

Table 3. Each of the five blocks is a set of 30 numbers that are individ-

ual scores of participants achieved in each block. Key data parameters
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TABLE 1 Iowa gaming task (IGT) and fNIRS in neuroimaging. Literature review summary

Author Experiment Analytical method Result

Suhr and

Hammers

(2010)

IGT, fNIRS, HbO t-test Changes of HbO in the left PFC of participants with lower IGT score (M=−0.4,

SD= 1.9) have significantly lower values than participants with hight IGT score

(M= 0.3, SD= 1.7): t(53)=−1.27, p-value= 0.21

Changes of HbO in the right PFC of participants with lower IGT score (M= 0.3,

SD= 1.2) have significantly lower values than participants with high IGT score

(M= 1.4, SD= 1.8): t(53)=−1.98, p-value= 0.05

Bembich et al.

(2014)

IGT, fNIRS, HbO t-test Changes of HbO aremore significant during the first half of IGT than the second

half

There are significant differences in HbO levels between high and low-risk IGT

card choices

Ono et al.

(2015)

IGT, fNIRS, HbO ANOVA, Pearson

correlation

coefficient

Right PFC: r=−0.39 (p-value= 0.040)

Left PFC: r=−0.384 (p-value= 0.044)

The effect between IGT blocks is significant: F(5, 1)= 7.201, p-value= 0.013

Balconi et al.

(2018)

IGT, fNIRS, HbO ANOVA The effect between IGT blocks is significant: F(2, 50)= 8.54, p-value≤ 0.001,

η2= 0.41

Li et al. (2019) IGT, fNIRS, HbO ANOVA, Pearson

correlation

coefficient

Block 1: r=−0.009 (p-value= 0.483)

Block 2: r= 0.364 (p-value= 0.037)

Block 3: r= 0.409 (p-value= 0.021)

Block 4: r= 0.456 (p-value= 0.011)

Block 5: r= 0.090 (p-value= 0.335)

The effect between IGT blocks and brain hemispheres is significant:F(1,
24)= 6.27, p-value= 0.02, η2= 0.207

Kora Venu

et al. (2021)

IGT, fNIRS, HbO ANOVA Changes of HbO in the left PFC have higher values than in the right PFC: F(1,

27)= 12.3, p-value< 0.001, η2= 0.056

IGT score in Blocks 4 and 5 significantly higher than in Blocks 1, 2, and 3: F(3.03,
109.13)= 3.28, p-value< 0.05, η2= 0.05

TABLE 2 Demographic characteristics of the study population

Experiment participants (N= 30)

Parameter Value

Female 25

Male 5

Age range Years 19–26

Agemean M 21.8

Age standard deviation SD 1.77

demonstrate positive dynamics, increase during the task: sum from

−82.00 in block 1 to 150.00 in block 5; mean from −2.73 in block 1

to 5.00 in block 5; and median from −2.00 in block 1 to 5.00 in block

5. Such tendency indicates that participants’ experience increases

from the beginning to the end of the task, which is typical for healthy

people who are experiment testees. The distribution of the IGT score

by five blocks is presented in Figure 1. Meanwhile, the standard error

of a sample mean (SE.mean) increases from 0.87 in block 1 to 1.66

in block 5; the confidential interval that consist of 95% of mean true

values (CI.mean.0.95) increases from 1.79 in block 1 to 3.40 in block

5; variance increases from 23.02 in block 1 to 83.24 in block 5; and

standard deviation increases from 4.79 in block 1 to 9.12 in the block

5 that indicates activation of risk factor: participants use different

strategies and tactics to gain asmuch as possible, andwith the increase

of experience the risk acceptability raises proportionally.

On the opposite side of the correlation scale is HbO data collected

by fNIRS and grouped by channels and hemispheres. This brain hemo-

dynamics is the independent variable, reflecting participant’s decisions

as changes of levels—friction around zero between −1.5 and 5.5. In

the current study, fNIRS data come preprocessed, that is, filtered and

cleaned from artifacts.

2.2 Experimental design

During the experiment, the computer version of the “classic” IGT

experiment paradigm with 100 trials divided by five blocks was used

(Bechara & Damasio, 2004; Bechara et al., 1994). Multichannel func-

tional near-infrared spectrometer FOIRE-3000/16 (Shimadzu Corp.,

Japan) was used to collect fNIRS data that were further preprocessed

and cleaned from artifacts and noise by wavelet-minimum description

length (Wavelet-MDL) detrending algorithm fromNIRS-SPM software

package (Ye et al., 2009). On the head of participants was placed a spe-

cial cap with 32 integrated probs (16 transmitters and 16 receivers),

which covered the PFC, and was connected by 52 channels that
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TABLE 3 Dependent variable descriptive analysis

Block 1 Block 2 Block 3 Block 4 Block 5

Parameter IGT score IGT score IGT score IGT score IGT score

nbr.val 30.0000 30.0000 30.0000 30.0000 30.0000

nbr.null 7.00000 9.00000 4.00000 6.00000 0.00000

nbr.na 0.00000 0.00000 0.00000 0.00000 0.00000

min −20.0000 −20.0000 −18.0000 −18.0000 −16.0000

max 6.00000 20.0000 20.0000 20.0000 20.0000

range 26.0000 40.0000 38.0000 38.0000 36.0000

sum −82.0000 10.0000 10.0000 112.000 150.000

median −2.00000 0.00000 −1.00000 2.00000 5.00000

mean −2.73333 0.33333 0.33333 3.73333 5.00000

SE.mean 0.87616 1.43546 1.45455 1.54543 1.66575

CI.mean.0.95 1.79196 2.93584 2.97488 3.16076 3.40684

var 23.0299 61.8161 63.4713 71.6506 83.2414

std.dev 4.79895 7.86232 7.96689 8.46467 9.12367

F IGURE 1 IGT score distribution withmean value and error bars
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F IGURE 2 Experiment functional near-infrared spectroscopy (fNIRS) channels arrangement on the regions of interest (ROI): (a) the
probe/channel scheme (red—transmitters, blue—receivers, white—channels), (b) target ROI on the left and the right brain hemispheres

TABLE 4 Cortical channels localization, mmwithing ROI inMNI
space by the left (LH) and right (RH) brain hemispheres

Anatomical

label Channel

MNI Coordinates

x y z SD

LH 28 −23 62 27 7.0

35 −16 71 17 5.4

36 −36 60 17 6.0

42 −9 73 9 7.7

43 −27 68 9 5.7

RH 25 33 59 25 7.3

32 43 59 14 5.4

33 26 69 16 5.7

40 39 64 5 5.1

41 20 73 7 5.0

propagate light beam with continuous wavelengths of 780, 805, and

830 nm, and allowed recording of signals with a 4 Hz frequency. The

probs and channels’ position was standardized for each participant

using Montreal Neurological Institute (MNI) space and International

Positioning System (Li et al., 2019). A three-dimensional (3D) digitizer

was used to record the positioning of optical channels and probs on the

participant’s head with five landmarks: nasion point (Nz), inion point

(Iz), central zero (Cz), left (AL), and right (AR) preauricular points. For

the result reliability and stability, target ROI of the brain were covered

by channels 28, 35, 36, 42, and 43 for the left PFC and channels 25, 32,

33, 40, and 41 for the right PFC (Figure 2; Table 4).

The synchronization of the IGT experiment and HbO signal record-

ing from the fNIRSwas started after 20 s from the beginning of the test

that was spent on the equipment warm-up at the trial start time point

(Figure 3). During the following anticipatory interval, the experiment

participant made their decision about card choice. The hemodynamic

response is recorded at the Reaction Time Point (RTP); levels of HbO

from five channels on the left-brain hemisphere and five channels

from the right hemispheres are averaged and logged. There is a short

period of time (about 0.55 s) after card selection and before receiving

information about gaining virtual money. If money was lost, then

the information about the appropriate amount appeared about 1.5 s

after details about the winning amount. Thereby, the time interval

between information about the winning amount and the trial’s end

is the rewards/punishment period. The hemodynamic response is

recorded at the task duration time point (DTP); levels of HbO from five

channels on the left-brain hemisphere and five channels from the right

hemispheres are averaged and logged. Each IGT session’s length was

about 9 m, and the last 20 s of each session was spent on information

accounting.

RTP and DTP are boundaries of the anticipatory time interval

and determine the start and the end of the participant’s card choos-

ing decision-making period. They are the experiment’s target points.

Corresponding to RTP and DTP fNIRS signal measurements will be

extruded from the whole dataset for the subsequent preprocessing,

features extraction, and evaluation byMLmodels.

2.3 Features extraction

For improving theML algorithm’s performance and application, the set

of features was built around the fNIRS signal. To avoid losing temporal

information in the frequency domain, the set of features was extracted

from averaged time courses of HbO records of the left and right brain

hemispheres collected at two timepoints—RTPandDTP from IGTdeci-

sion making time window: (a) mean (LHmean and RHmean) – HbO sig-

nal mean value; (b) variance (LHvar and RHvar) – the average error

between mean and real HbO level; (c) standard deviation (LHsd and

RHsd) – square root from variance; (d) kurtosis (LHku and RHku) – the

shape of the HbO signal distribution in the vertical axes; (e) skewness

(LHsk and RHsk) – the shape of the HbO signal distribution in the hori-

zontal axis.

The correlation coefficients between HbO signal features and IGT

score, measured by two methods—Pearson’s product-moment (Pear-

son, 1895) and Spearman’s rank (Spearman, 1904) for the left and the

right brain hemispheres and in each block presented in Table 5 and

Figure 4. If Pearson’s coefficient is best suited in normally distributed
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F IGURE 3 IGT experiment design with fNIRS synchronization time points

TABLE 5 Correlation coefficients betweenHbO signal features and IGT score by the left (LH) and right (RH) brain hemispheres in five IGT
blocks. (a) Pearson’s product-moment correlation; (b) Spearman’s rank correlation

Block 1 Block 2 Block 3 Block 4 Block 5

Features LH RH LH RH LH RH LH RH LH RH

mean 0.36 0.34 0.30 0.28 0.25 0.25 0.48 0.44 0.30 0.33

std.dev 0.09 0.09 0.24 0.23 0.25 0.34 0.20 −0.04 0.00 0.02

variance 0.01 0.04 0.24 0.24 0.24 0.33 0.22 −0.02 0.04 0.06

kurtosis −0.45 0.04 −0.18 −0.16 0.28 0.06 −0.16 0.21 0.01 0.14

skewness −0.22 −0.12 0.03 −0.02 −0.13 −0.18 0.48 0.30 0.21 −0.13

Average −0.04 0.07 0.12 0.11 0.17 0.16 0.24 0.17 0.11 0.08

A

Block 1 Block 2 Block 3 Block 4 Block 5

Features LH RH LH RH LH RH LH RH LH RH

mean 0.48 0.45 0.22 0.20 0.24 0.25 0.39 0.39 0.25 0.33

std.dev −0.02 0.10 0.27 0.23 0.19 0.28 0.09 −0.01 −0.08 −0.12

variance −0.02 0.10 0.27 0.23 0.19 0.28 0.09 −0.01 −0.08 −0.12

kurtosis −0.42 0.04 −0.21 −0.22 0.13 0.14 −0.09 0.20 0.04 0.19

skewness −0.33 −0.09 −0.05 0.07 −0.17 −0.38 0.57 0.30 0.24 −0.15

Average −0.06 0.12 0.10 0.10 0.11 0.11 0.21 0.17 0.07 0.02

B

datasets, then Spearman’s test is more robust and shows the best per-

formance with skewed data (Mukaka, 2012; Schober et al., 2018).

2.4 ML models

ML algorithms’ application to evaluate the correlation between exper-

iment variables was performed in R 4.0.3 (R Core Team, 2018). Five

techniques were run: multiple regression, classification and regression

trees (CART), artificial neural network (ANN), support vector machine

(SVM), and random forest. For achieving algorithms’ performancemax-

imization, the taskwas repeated two times, and then thealgorithmwith

the best accuracy was used to predict the IGT score.

First, the dataset of the HbO signal features from the left and the

right brain hemispheres was normalized and split by training and test-

ing in proportions of 70/30. Then training sample was used to train

MLmodels, and the prediction accuracywas compared by twometrics:

root mean squared error (RMSE) and coefficient of determination (R

squared). Following Lemm et al. (2011), we described the most com-

monly used ML model validation techniques for brain imaging analy-

sis, and validated the result by repeated fivefold cross-validation (CV)

method (Tables 5a and 6a).

Second, the training dataset was split in proportions of 80/20, and

the result was validated by repeated 10-fold CV. Moreover, other

improvements were implemented as follows: switching the SVM ker-

nel from linear to Gaussian radial bases function (RBF) and changing

the number of trees in random forest from100 to 500. Achieved RMSE

and R squared are presented in Tables 6b and 7b.

Lastly, the ML algorithm with the lowest RMSE measured in IGT

units and R squared closest to 1 was applied to each block’s testing

dataset and in both hemispheres (Table 8). All fivemodels were utilized

separately. Thus, decision-making behavior was predicted, measured

by IGT score in different psychiatric states as a response to hemody-

namic changes in the formofHbO signal. IGT score prediction distribu-

tion by five blocks and both brain hemispheres applied to the randomly

selected testing data sample presented in Figure 5.
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F IGURE 4 The correlation between oxy-hemoglobin (HbO) signal features and IGT score by blocks and the brain hemispheres: (a) Block 1,
(b) Block 2, (c) Block 3, (d) Block 4, and (e) Block 5
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F IGURE 4 Continued
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F IGURE 4 Continued

TABLE 6 RMSE ofML algorithms by the left (LH) and right (RH) brain hemispheres in five IGT blocks: (a) 70/30 holdout, fivefolds CV; (b) 80/20
holdout, 10-folds CV

Block 1 Block 2 Block 3 Block 4 Block 5

Algorithm LH RH LH RH LH RH LH RH LH RH

Multiple Regression 8.70 6.91 7.88 6.26 7.61 7.42 7.98 9.27 9.85 8.68

CART 4.85 4.71 7.18 5.31 6.88 7.01 7.72 7.95 8.08 8.91

ANN 5.71 4.92 6.89 4.09 7.07 7.05 7.83 8.61 8.60 9.71

SVM (Linear Kernel) 5.86 4.40 6.93 5.28 8.81 7.82 3.37 8.51 9.69 9.01

Random Forest (100 Trees) 4.18 4.91 7.27 5.40 7.00 6.11 7.13 7.97 8.56 8.97

Average 5.86 5.17 7.23 5.27 7.47 7.08 6.81 8.46 8.95 9.05

A

Block 1 Block 2 Block 3 Block 4 Block 5

Algorithm LH RH LH RH LH RH LH RH LH RH

Multiple Regression 8.54 6.75 6.96 6.08 7.42 5.93 9.13 8.33 8.89 9.59

CART 3.81 4.33 6.25 4.52 6.61 5.22 7.17 7.75 8.44 7.92

ANN 4.24 4.17 5.04 4.06 5.96 5.60 7.69 7.76 8.89 8.90

SVM (RBF Kernel) 3.37 3.37 5.46 4.41 5.90 6.42 6.42 7.26 7.84 7.70

Random Forest (500 Trees) 3.85 4.15 5.90 5.08 7.01 4.78 6.24 7.77 8.32 9.00

Average 4.76 4.55 5.92 4.83 6.58 5.59 7.33 7.77 8.67 8.62

B
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F IGURE 5 ML algorithms prediction accuracy; actual values (black) and predicted values (red): (a) the left hemisphere, (b) the right hemisphere

3 RESULT

3.1 Correlation

During the first 20 trials, the card selection decisions of experiment

participants are erratic and random. This uncertainty is reflected in

thenegligible and statistically not significant correlationbetweenbrain

activity and IGT score: the average Pearson’s coefficient in block 1 is

−0.04 (t(4) = −0.304, p-value = 0.775) for the left hemisphere and

0.07 (t(4)= 1.047, p-value= 0.354) (Table 5a). The average Spearman’s

rank as more robust demonstrates the strongest but still statistically

not significant result: −0.06 (t(4) = −0.393, p-value = 0.714) for the

left hemisphere and 0.12 (t(4) = 1.340, p-value = 0.251) for the right

hemisphere (Table 5b). In terms of feature space, the Pearson’s coeffi-

cient was spread between −0.45 and 0.36 for the left hemisphere and

between−0.12 and 0.34 for the right hemisphere (Table 5a; Figure 4a).

The Spearman’s rank is as follows: from−0.42 to 0.48 for the left hemi-

sphere and from −0.09 to 0.45 for the right hemisphere (Table 5b;

Figure 4a). In block 1, the IGT score correlates more significantly with

the HbO signal mean value of 0.48 for the left hemisphere and 0.45 for

the right hemisphere (Table 5).

The participants havemore knowledge in IGT block 2, therefore the

HbO activity increases in their brains, and correlation grows to weakly

positive accordingly but is still not statistically significant: the aver-

age Pearson’s coefficient is 0.12 (t(4)= 1.412, p-value= 0.2306) in the

left hemisphere and 0.11 (t(4) = 1.316, p-value = 0.258) in the right

hemisphere (Table 5a). The average Spearman’s rank generally repeats

such numbers: 0.10 (t(4) = 1.023, p-value = 0.363) in the left hemi-

sphere and 0.10 (t(4) = 1.189, p-value = 0.30) in the right hemisphere

(Table 5, B). Spreading by features, the Pearson’s coefficient reaches

values between −0.18 and 0.30 for the left hemisphere and between

−0.16 and 0.28 for the right hemisphere (Table 5a, Figure 4b); Spear-

man’s rank generally repeats such numbers: from −0.21 to 0.27 for

the left hemisphere and from −0.22 to 0.23 for the right hemisphere

(Table 5b; Figure 4b). The highest achieved correlation values in block

2 reach 0.3 for the left hemisphere, and 0.28 for the right hemisphere

by HbO signal mean value (Table 5).

In the middle of the task (block 3), the participant’s experience

continues to grow, and along with it the statistical significance of

correlation also increases: the average Pearson’s coefficient is 0.17

(t(4) = 2.303, p-value = 0.082) in the left hemisphere and 0.16

(t(4) = 1.620, p-value = 0.180) in the right hemisphere (Table 5a). The

average Spearman’s rank: 0.11 (t(4) = 1.576, p-value = 0.190) in the

left hemisphere and 0.11 (t(4) = 0.903, p-value = 0.417) in the right

hemisphere (Table 5b). By features, the Pearson’s coefficient values are

between −0.13 and 0.28 for the left hemisphere and between −0.18

and 0.34 for the right hemisphere (Table 5a; Figure 4c). Spearman’s

rank values range from−0.17 to 0.24 for the left hemisphere and from

−0.38 to 0.28 for the right hemisphere (Table 5b; Figure 4c). The sig-

nal shape kurtosis performs the highest correlation, 0.28 for the left

hemisphere and the signal skewness −0.38 for the left hemisphere

(Table 5).

The “conceptual” period, that is, the threshold moment in the task,

begins in the fourth set of 20 trials. Participants start to gain rewards,

and hemodynamic in their brains correlates positively with increased

IGT score: the average Pearson’s coefficient is 0.24 (t(4) = 2.072,

p-value = 0.106) in the left hemisphere and 0.17 (t(4) = 1.923, p-

value = 0.126) in the right hemisphere (Table 5a). The average Spear-

man’s rank value is 0.21 (t(4) = 1.772, p-value = 0.151) in the left

hemisphere and 0.17 (t(4) = 2.150, p-value = 0.097) in the right hemi-

sphere (Table 5, B). Dividing by features set, the Person’s coefficient

reaches values between −0.16 and 0.48 for the left hemisphere and

between −0.04 and 0.44 for the left hemisphere (Table 5a; Figure 4d);

Spearman’s rank reaches values between −0.09 and 0.57 for the left
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hemisphere and between −0.01 to 0.39 for the right hemisphere

(Table 5b; Figure 4d). The correlation between IGT score and HbO sig-

nal skewness is the highest achieved result for the left hemisphere 0.57

andmean value for the right hemisphere 0.44 (Table 5).

In the last set of 20 “risky” trials, participant’s total money gain

increases, but brains hemodynamic reaches positive and negative peak

values that reflect a decelerating of correlation growth: the average

Pearson’s coefficient is 0.11 (t(4) = 1.852, p-value = 0.137) in the left

hemisphere and 0.08 (t(4) = 1.112, p-value = 0.328) in the right hemi-

sphere (Table 5, A). The average Spearman’s rank: 0.07 (t(4) = 1.011,

p-value = 0.369) in the left hemisphere and 0.02 (t(4) = 0.264, p-

value=0.804) in the right hemisphere (Table 5, B). In spreading byHbO

signal features: the Person coefficient reaches values between 0 and

0.3 for the left hemisphere and between −0.13 and 0.33 for the right

hemisphere (Table 5a; Figure 4e); the Spearman’s rank reaches values

between−0.08and0.25 for the left hemisphere and−0.15and0.33 for

the right hemisphere (Table 5b; Figure 4e). TheHbOsignalmean values

demonstrate the highest achieved correlation result of 0.3 for the left

hemisphere and 0.33 for the right hemisphere (Table 5).

3.2 Machine Learning algorithms performance

In the current study, ML algorithms serve to evaluate the correlation

between parameters of brain hemodynamics and the decision-making

score inside the cognitive environment. Table 6 illustrates the perfor-

mance of ML techniques measured by RMSE and evaluated by 70/30

holdout method and fivefolds CV (Table 6, A), and 80/20 holdout and

10-fold CV (Table 6b). The following tendencies are in the transition

of ML performance through five blocks in the left and the right hemi-

spheres:

1. RMSE increases from block 1 to block 5 with fivefold CV and

70/30holdout (from5.860 (t(4)=7.587, p-value=0.001) to 8.956

(t(4) = 25.914, p-value < 0.001) in the left hemisphere and from

5.170 (t(4) = 11.615, p-value < 0.001) to 9.056 (t(4) = 52.288, p-

value< 0.001) in the right hemisphere) (Table 6, A);

2. RMSE increases from block 1 to block 5 with 10-fold CV and

80/20holdout (from4.762 (t(4)=4.989, p-value=0.007) to 8.676

(t(4) = 25.041, p-value < 0.001) in the left hemisphere and from

4.554 (t(4) = 7.936, p-value = 0.001) to 8.622 (t(4) = 24.386, p-

value< 0.001) in the right hemisphere) (Table 6b);

3. RMSE decreases in each block and both hemispheres by switching

validation methods from 70/30 holdout and fivefold CV to 80/20

holdout and 10-fold CV (Table 6a, b);

4. R squared decreases from block 1 to block 5 with 10-fold CV

and 70/30 holdout (from 0.42 (t(2) = 6.851, p-value = 0.020) to

0.19 (t(2) = 2.939, p-value = 0.098) in the left hemisphere and

from 0.306 (t(2) = 7.977, p-value = 0.015) to 0.18 (t(2) = 2.71, p-

value= 0.113) in the right hemisphere) (Table 7a);

5. R Squared decreases from block 1 to block 5 with 10-fold CV

and 80/20 holdout (from 0.87 (t(2) = 39.955, p-value < 0.001) to

0.82 (t(3) = 32.569, p-value < 0.001) in the left hemisphere and

from 0.89 (t(2) = 7.977, p-value = 0.001) to 0.80 (t(3) = 67.634,

p-value< 0.001) in the right hemisphere) (Table 7b);

6. R Squared increases in each block and both hemispheres by

switching validationmethods from 70/30 holdout and fivefold CV

to 80/20 holdout and 10-fold CV (Table 7a, b);

7. In each IGT block, the best model is the model with the lowest

RMSE (in units of IGT score) and highest R squared (SVMwithRBF

kernel in blocks 1, 3, and 5, Random Forest with 500 trees in block

4, ANN in block 2 in the left hemisphere, and SVMwith RBF kernel

in blocks 1, 4, and5, ANN inblock2, RandomForestwith 500 trees

in the right hemisphere) (Table 8);

8. In the set of best fitted models, RMSE increases from block 1 to

block 5 (Table 8);

9. All achieved best fitted ML algorithms are more accurate by

achieved RMSE than training models in all IGT blocks and hemi-

spheres (Tables 7; Table 8);

10. RMSEof best fittedmodels is lower than the standard deviation of

the IGT score dataset (Table 3) in all blocks (Table 8).

4 DISCUSSION

As noted in the previous research, the hemodynamic response to the

stimulation of the decision-making process in all five IGT blocks and

both brain hemispheres has different patterns and differs significantly

(Table 1). At the same time, thresholds between blocks are not clearly

drawn. Eventually, the transfer of psychosomatic conditions of the

experiment participants from total uncertainty and ambiguity in deci-

sionmaking at thebeginning to certainty and risk acceptanceat theend

of each task session is not direct and smooth. All of these assumptions

are reflected in the current study: findings of correlations and algo-

rithm performance are substantially varied by IGT blocks and by using

data from the left or the right brain hemispheres (Tables 5, 6, 7, and 8).

Generally, the current experiment findings do not contradict previ-

ous studies: the highest achieved correlation in average value is 0.24

(t(4)= 2.072, p-value= 0.106) in the left hemisphere while performing

the fourth 20 cards chooses. The correlation between HbO activation

and IGT score was observed during experiments of Ono et al. (2015)

and Li et al. (2019). But unlike them, dividing results not only by blocks

as in the study of Li et al. (2019) and not just by hemispheres as in the

study of Ono et al. (2015), current research allows weight and account

for all correlationsmore precisely and reliable.

Onemore crucial specificity of the present work is the ability to dis-

tribute correlation by HbO signal features, not only mean value but

standard deviation, variance, kurtosis, and skewness and result esti-

mation by two methods: Pearson’s and Spearman’s. The participant’s

brain hemodynamicmeasured by fNIRS is not normally distributed sig-

nal during the whole task time; thus, signal shape parameters from the

left hemisphere provide the highest achieved moderate positive cor-

relation with the IGT score in block 4: 0.57 (Table 5b), that is outper-

forming previous findings in terms of blocks (0.45 in the study of Li

et al., 2019) and in terms of brain hemispheres (−0.38 in the work of

Ono et al., 2015). So, the “null” hypothesis should be rejected, and the
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TABLE 7 R Squared ofML algorithms by the left (LH) and right (RH) brain hemispheres in five IGT blocks: (a) 70/30 holdout, fivefolds CV; (b)
80/20 holdout, 10-folds CV

Block 1 Block 2 Block 3 Block 4 Block 5

Algorithm LH RH LH RH LH RH LH RH LH RH

Multiple Regression 0.35 0.35 0.25 0.18 0.28 0.43 0.31 0.25 0.14 0.05

CART NA NA 0.25 0.13 NA 0.64 NA NA NA NA

ANN NA NA 0.29 0.20 0.33 0.39 NA NA NA NA

SVM (Linear Kernel) 0.55 0.23 0.39 0.41 0.17 0.27 0.35 0.24 0.12 0.24

Random Forest (100 Trees) 0.38 0.34 0.29 0.21 0.28 0.41 0.38 0.19 0.33 0.27

Average 0.42 0.30 0.29 0.22 0.26 0.42 0.34 0.22 0.19 0.18

A

Block 1 Block 2 Block 3 Block 4 Block 5

Algorithm LH RH LH RH LH RH LH RH LH RH

Multiple Regression 0.83 0.86 0.84 0.82 0.79 0.44 0.79 0.83 0.84 0.82

CART NA NA 0.61 0.78 0.64 0.67 0.84 0.81 0.75 0.79

ANN NA NA 0.89 0.86 0.78 0.39 NA NA NA NA

SVM (RBF Kernel) 0.90 0.96 0.88 0.83 0.84 0.29 0.86 0.87 0.86 0.83

Random Forest (500 Trees) 0.89 0.86 0.77 0.79 0.82 0.78 0.87 0.78 0.85 0.78

Average 0.87 0.89 0.79 0.81 0.77 0.51 0.84 0.82 0.82 0.80

B

TABLE 8 ML algorithms prediction accuracy (RMSE) by the left (LH) and right (RH) brain hemispheres in five IGT blocks

Block 1 Block 2 Block 3 Block 4 Block 5

LH RH LH RH LH RH LH RH LH RH

Algorithm

(10-Folds CV)

SVM (RBF

Kernal)

SVM (RBF

Kernal)

ANN ANN SVM (RBF

Kernal)

Random

Forest

(500

Trees)

Random

Forest

(500

Trees)

SVM (RBF

Kernal)

SVM (RBF

Kernal)

SVM (RBF

Kernal)

RMSE 3.32 3.36 3.28 3.45 5.82 4.27 6.23 6.79 6.43 6.89

question about spreading the correlation into the feature space could

bemarked as solved.

Consequently, MLmodels could exit beyond simple correlation, and

evaluate and predict gaming behavior by participants’ brain activation

during learning effect transfer from uncertainty to the risk. In total,

100 ML models were built separately in each IGT block and both

PFC hemispheres (Tables 6a; Table 7a). The experiment determined

that switching the holdout method from 70/30 to 80/20 and the CV

method from fivefold to 10-folds add more prediction accuracy by

both performance metrics (Table 6b; Table 7b). SVMwith RBF showed

one of the best accuracies: lowest RMSE 3.37 – 7.84 (Table 6b) and

highest R Squared 0.29 – 0.96 (Table 7b). Based on achieved RMSE

and R Squared, the best fitted model was chosen in both hemispheres

and each block (Table 8) and applied to the randomly selected testing

dataset. As illustrated in Figure 5, predicted values marked in red

are keeping learning effect based on classic IGT rules for healthy

experiment participants—the task score increases from block 1 to

block 5 by different curve patterns using HbO signal levels from the

left and the right hemispheres as predicters.

5 CONCLUSION

Since its development from1994 to the present, IGT remains a reliable

tool for estimating human behavior during gaming. Adding to the

experiment, fNIRS capabilities create a coherent flow of neuroimaging

data that, combined with IGT and driven by ML, open new horizons

and perspectives for scientists in investigating brain mystery and

game-relatedmental disorders.

In the current research, ML models were developed and applied

to the testing dataset that allowed predicting IGT score behavior and

general positive task trend. In terms of IGT rules, with the growth

of experiment participants’ experience, the brain activation measured

as HbO signal levels increases with the acceleration of the decision-

making process and gaming. Dividing theHbOsignal by features allows

identifying the strongest correlation between cognitive task perfor-

mance and brain activation that was not investigated before. Partici-

pants add risk in decisions of card choices, and the standard deviation

aroundmean value increases eventually. Inside theML regression task,

RMSEas ameasure of prediction error increases accordingly. Thus, this
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reflects on a prediction of human behavior during gaming based on

activity in the brain.
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