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White fat stores excess energy, and thus its excessive expansion causes obesity.
However, brown and beige fat, known as adaptive thermogenic fat, dissipates energy
in the form of heat and offers a therapeutic potential to counteract obesity and metabolic
disorders. The fat type-specific biological function is directed by its unique tissue
microenvironment composed of immune cells, endothelial cells, pericytes and neuronal
cells. Macrophages are major immune cells resident in adipose tissues and gained
particular attention due to their accumulation in obesity as the primary source of
inflammation. However, recent studies identified macrophages’ unique role and
regulation in thermogenic adipose tissues to regulate energy expenditure and systemic
energy homeostasis. This review presents the current understanding of macrophages in
thermogenic fat niches with an emphasis on discrete macrophage subpopulations central
to adaptive thermoregulation.
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INTRODUCTION

Obesity is directly linked to the onset of many diseases, including type 2 diabetes, hypertension,
cardiovascular diseases and some types of cancer (1, 2). Therefore, weight loss is suggested as a
fundamental approach to ameliorate those disorders (3, 4). Obesity develops when energy intake
chronically exceeds energy expenditure, and adipose tissue is the center of the regulation of systemic
energy homeostasis. An expansion of white adipose tissue (WAT) in which energy-storing white
adipocytes grow in number (hyperplasia) and size (hypertrophy) is the major characteristic of
obesity (5). Conversely, brown adipocytes found in brown adipose tissue (BAT) and beige
adipocytes inducible in particular WAT depots dissipate excess energy as heat, termed adaptive
thermogenesis (5, 6). Since the biological functions of thermogenic adipocytes include regulating
lipid and glucose metabolism and insulin sensitivity beyond strengthened energy expenditure,
enhancing thermogenic adipocyte activity and amount holds promise to combat obesity and related
disorders (7–10).

The distinct biological functions of white and thermogenic adipocytes are directed by their
unique tissue microenvironments composed of multiple cell types, including immune cells,
adipocyte progenitors, endothelial cells, pericytes and neuronal cells (11). In particular, immune
cells have received considerable attention owing to their role in WAT inflammation, key
pathophysiology of obesity. Macrophages are the most plentiful WAT-infiltrating immune cells
org April 2022 | Volume 13 | Article 8841261
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in obesity and are crucial mediators of inflammation in adipose
tissues (12). Adipose tissue macrophages (ATMs) are a
heterogeneous population but can be conventionally classified
as M1 (classically activated or pro-inflammatory) or M2 (anti-
inflammatory or alternatively activated) cells. In obese WAT, M1
macrophages are recruited in response to pro-inflammatory
mediators (lipopolysaccharides, interferon-gamma among
others) and release pro-inflammatory cytokines [tumor
necrosis factor-alpha (TNFa), inducible nitric oxide synthase)
(13). Oppositely, M2 macrophages are abundantly found in lean
WAT, express specific biomarkers (e.g., arginase) and secrete
anti-inflammatory cytokines [e.g., transforming growth factor-
beta (TGFb), interleukin (IL)-10, IL-1 decoy receptor] (13).

In contrast to WAT, there was a limited research interest
in the role of ATMs in regulating thermogenic adipose tissue
characteristics and functions. The accumulation of pro-
inflammatory M1 macrophages is observed in thermogenic
adipose tissues in the state of obese and impairs thermogenic
machinery of brown and beige adipocytes (14). Intriguingly,
recent studies identified and highlighted the non-canonical roles
of ATMs found in thermogenic adipose niches. Certain ATM
subsets are specialized to mediate thermogenic programs of
brown or beige adipocytes through driving local noradrenergic
or cholinergic tone (15–20). This review covers the roles of ATMs
in thermogenic adipose tissues, emphasizing distinct macrophage
subpopulations central to adaptive thermoregulation.
A DISTINCT ROLE OF THERMOGENIC
FAT IN ENERGY HOMEOSTASIS

In humans, thermogenic fat was believed to exist restrictively to
infancy to generate heat and fight against hypothermia under
cold environments. However, in 2009 a series of milestone
publications identified the presence of functional thermogenic
fat in the upper supraclavicular region of adult humans (21–23).
Thermogenic activity, determined by 18F-fluorodeoxyglucose
uptake, was induced in the supraclavicular area following short
cold exposure, and its biopsy specimens showed the molecular
and morphological features of thermogenic fat. So far, adult
humans have been known to have thermogenic fat in several
anatomic areas, including cervical, axillary, paraspinal,
mediastinal, and abdominal, as well as supraclavicular (24). A
recent study implied the significance of thermogenic fat in humans
by demonstrating a lower prevalence of cardiometabolic disorders,
including type 2 diabetes, coronary artery disease, hypertension
and congestive heart failure, in individuals with thermogenic
fat (25).

To date, three types of adipocytes have been identified in
mammals: white, brown and beige adipocytes. While white
adipocytes found in WAT possess few mitochondria and a
large unilocular lipid droplet to store energy efficiently, brown
and beige adipocytes contain multilocular lipid droplets and
numerous mitochondria to generate heat. However, despite their
similarities, brown and beige adipocytes are distinct cell types
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due to the main differences in their anatomical location and
developmental origin (26). Therefore, brown adipocytes are
specified as “classic” in distinction from beige adipocytes.
Classic brown adipocytes cluster in dedicated depots, such as
interscapular BAT of infants and mice. Thermogenic function of
brown adipocytes is active at birth and relatively stable because
they develop prenatally from precursors in the dermomyotome
that expresses myogenic factor 5 (Myf5), paired-box protein 7
(Pax7) and engrailed 1 (27–29). However, beige adipocytes are
inducible in WAT, particularly subcutaneous WAT, in response
to cold exposure, catecholamines, thiazolidinediones and
exercise. They derive from Myf5-absent precursors during
postnatal development in mice, and upon cold exposure, beige
adipocytes can be recruited by differentiation of precursors
expressing alpha-smooth muscle actin (aSma), Cd81, Pax3 or
platelet-derived growth factor receptor, alpha polypeptide
(Pdgfra) (30–33).

The long-standing paradigm in adaptive thermogenic
mechanism has held that heat is generated by uncoupling
protein 1 (UCP1) located in the mitochondrial inner membrane
of brown or beige adipocytes. During mitochondrial respiration,
UCP1 uncouples ATP synthesis and catalyzes proton leak across
mitochondrial membrane, resulting in heat generation. However,
recent studies discovered UCP1-independent adaptive
thermogenic pathways mediated by futile creatine or calcium
cycling in mammals (34–36). The futile cycles dissipate energy as
the form of heat by consumption of ATP derived from lipid or
glucose oxidation and are mainly found in beige adipocytes rather
than brown adipocytes due to their high ATP synthetase
expression. Like traditional UCP1-dependent thermogenesis,
the UCP1-independent thermogenic machinery is also
sufficient to regulate whole-body energy homeostasis and
protect against diet-induced obesity and related metabolic
dysfunction (35–38).

Adaptive thermogenic activation is directed by intercellular
crosstalk within adipose niches. Neuronal-thermogenic adipocyte
communication through catecholamines is the most well-known.
The innervation of sympathetic nervous system (SNS) in
thermogenic adipose tissues connects the central nervous
system (CNS)-originated efferent signals with brown and beige
adipocytes. Upon cold environment, catecholamines, particularly
norepinephrine, released from sympathetic nerve terminals
activates thermogenic programs of existing brown and beige
adipocytes via b3-adrenergic receptor (AR) and induce de novo
beige fat biogenesis via b1-AR in rodents (39–42). It is of note that
in humans, b2 subtype has been recently reported to play a
dominant role in b-ARs-dependent thermogenic fat activation
(43). Besides sympathetic innervation or denervation, the local
noradrenergic tone within thermogenic adipose tissues has
been proposed to be mediated by adipose resident immune
cells, such as subpopulations of ATM synthesizing or
degrading catecholamine (17, 19). Intriguingly, recent studies
also identified cholinergic adipose macrophages (ChAMs)
that secrete acetylcholine to selectively activate beige fat
thermogenesis under cold exposure (15). Hence, the regulation
and function of thermogenic fat need to be understood
April 2022 | Volume 13 | Article 884126
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considering its heterogeneity and complexity stemming from the
tissue microenvironment as a bona fide platform for developing
thermogenic fat-targeting therapeutic interventions.
A CLASSICAL VIEW OF
MACROPHAGES IN THERMOGENIC
ADIPOSE NICHES: INFLAMMATION

Emerging evidence of macrophages’ involvement in controlling
thermogenic fat function has recently drawn enormous attention
to the non-canonical roles and regulation of ATMs (discussed
details in the next section). However, recruitment of pro-
inflammatory macrophages in thermogenic adipose tissues has
been accepted as a pathophysiological phenomenon of obesity,
even though it is less profound than in visceral WAT − the
fat depot containing mainly white adipocytes to store energy
(14, 44, 45). Chronic inflammation stemming from prolonged
calorie overload contributes to the whitening of thermogenic
adipocytes that transforms the cells to possess intensive energy-
storing unilocular lipid droplets and lose unique characteristic of
energy expenditure (14).

Gene expression landscapes of obese mouse BAT revealed
enriched expression of markers for macrophages-derived pro-
inflammatory cytokines, such as Tnfa, C-C motif chemokine
ligand (Ccl) 2, and Ccl5 (46, 47). Independent studies showed
that the activated pro-inflammatory markers were accompanied
by reduced expression of thermogenic genes in obese BAT (14,
48–50). As direct evidence, pro-inflammatory macrophage
infiltration and related cytokines, such as TNFa and IL-1b,
were seen to inhibit the induction of Ucp1 expression in
response to thermogenic stimuli in mouse thermogenic adipose
tissues and differentiated C3H10T1/2 stem cells (14, 51, 52).
Genetic deletion of TNF receptors in obese mice led to reduced
apoptosis and induced transcriptional activation of Ucp1 in BAT,
suggesting a significant role of TNFa-mediated inflammatory
response in thermogenic adipobiology during obesity (53).
Besides, TNFa appeared to cause insulin receptor substrate 2-
mediated insulin resistance in brown adipocytes, supporting that
pro-inflammatory signaling could affect a broad spectrum of
metabolic processes beyond thermogenic fat cell activity (54).

M1 macrophage infiltration in subcutaneous WAT in obese
mouse models shows deleterious effects on beige thermogenesis.
Interestingly, a recent study found a self-sustained cycle
of inflammation-driven beiging inhibitory mechanism in
which pro-inflammatory macrophages expressing a4 integrin
directly interact with beige adipocytes and their precursors
through vascular cell adhesion molecule-1 (55). Genetic
or pharmacological inhibition of the adhesive interaction
enhanced beige adipogenesis and whole-body energy
expenditure, thereby attenuating obese phenotype. In addition,
genetic ablation of IkB kinase e that amplifies inflammation
signal by its elevation in ATMs enhanced UCP1 expression in
subcutaneous WAT of mice (56). Hence, in obesity, recruitment
of pro-inflammatory macrophages occurs in thermogenic
adipose tissues, as seen in WAT, as a hallmark of obesity and
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negatively influences the biological functions of brown and
beige adipocytes.
THE ADIPOSE MACROPHAGES CENTRAL
TO ADAPTIVE THERMOREGULATION

Since Nguyen et al. first reported catecholamine-producing
ATMs in BAT in 2011, non-classical roles of ATMs in the
regulation of thermogenesis and systemic energy homeostasis
had been received significant attention and extensively
studied as an innovative view to explain complex thermogenic
mechanisms (17). To date, the research effort discovered four
subpopulations of ATMs that played a direct role in controlling
thermogenic fat function and broadened our understanding of
the significance of adipose resident immune cells in systemic
energy homeostasis.

Alternatively Activated Macrophages
In contrast to M1 macrophages, M2 or alternatively activated
macrophages are predominant in lean adipose tissues and release
anti-inflammatory cytokines, such as TGFb and IL-10. In an
obese state, a phenotypic transformation from anti-inflammatory
M2 to pro-inflammatory M1-like macrophages occurs in adipose
tissues leading to insulin resistance. M2macrophages are required
for tissue repair, tissue homeostasis and anti-helminthic activities.
Interestingly, helminth infection attenuated high-fat diet-induced
obesity along with induction of adaptive thermogenic capacity
through enhanced M2 macrophage polarization (57).

Accumulated evidence shows the association between the
expansion of alternatively activated macrophages and
thermogenic activation (58–62). Many studies have highlighted
howM2macrophages are polarized and activated during adipose
thermogenesis, such as through C-X-C motif chemokine ligand
14 (CXCL14) and meteorin-like (58, 61). Particularly, it is
fascinating that CXCL14 is released from brown adipocytes to
recruit M2 macrophages upon thermogenic activation,
indicating an active interplay between thermogenic adipocytes
and M2 macrophages during adaptive thermogenesis. However,
the mechanisms by which M2 macrophages induce thermogenic
responses have not been well established. Nguyen et al. first
identified that upon cold stress M2 macrophages expressing
tyrosine hydroxylase (TH), key catecholamine synthesizing
enzyme, release norepinephrine via IL-4 signaling to activate
BAT thermogenesis (17). Serial studies from the same group
have found catecholamine-producing M2 macrophage-mediated
thermogenesis in beige adipocytes as well and completed its
whole mechanistic machinery. In mouse subcutaneous WAT, IL-
5 secreted from stimulated type 2 innate lymphoid (ILC2) cells
by IL-33 were identified to activate and recruit eosinophils, and
subsequently, eosinophils activated M2 macrophages by
secreting IL-4 (63, 64). Additionally, ILC2- and eosinophil-
secreted type 2 cytokines, including IL-13 and IL-4, promoted
beige differentiation of PDGFRa+ precursors through IL-4Ra
(64). However, in 2017, Fischer et al. presented contradictory
data that M2 macrophages do not express TH enough to produce
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norepinephrine in BAT and subcutaneous WAT (20). It is still
controversial whether alternatively activated macrophages
synthesize NE during thermogenesis based on published
independent studies (60, 65–67). It has been advances in
identifying thermogenic ligands for brown and beige
adipocytes within adipose niches. However, whether
alternatively activated macrophages can produce any known
ligands other than NE for thermogenic fat activation is still
unclear (68).

A recent study provided a novel aspect of M2 macrophage-
dependent catecholamine secretion and beiging by discovering
the mechanism by which M2 macrophages enhanced the local
SNS activation in subcutaneous WAT upon cold exposure. Slit
guidance ligand 3 (SLIT3) secreted from M2 macrophages
induced sympathetic innervation and TH activation by binding
to sympathetic neurons via roundabout guidance receptor 1
(ROBO1), thereby promoting NE synthesis and beiging to
sustain adaptive thermogenesis (16). Consistent with this
notion, an independent study found that IL-25-induced M2
macrophage polarization increased outgrowth of sympathetic
nerves in subcutaneous WAT (60). It is conceivable that M2
macrophages contribute to adaptive thermogenesis, and
dissecting the mechanisms by which M2 macrophages induce
thermogenesis and maintain systemic energy homeostasis may
empower the specific immune cell type as a novel therapeutic
target for obesity.

Sympathetic Innervation-
Regulatory Macrophages
Under a cold environment, TH-expressing sympathetic axons
are the primary source of NE that binds to b3-ARs on the surface
of mature brown and beige adipocytes and activates thermogenic
programs. A recent mouse study indicated that beige adipocytes
could be differentiated from aSMA-expressing progenitors
through b1-ARs in response to NE (39). Of note, beige
adipocytes are greatly inducible and heterogeneous due to their
remarkable plasticity at the adipocyte and progenitor levels in
response to external cues or genetic disposition. In mice lacking
b-ARs, beige adipocytes were activated by directly sensing cold
temperature or differentiated from myogenic differentiation 1-
expressing progenitors (known as glycolytic beige adipocytes)
(40, 69).

Local sympathetic innervation and activity in rodent BAT
and subcutaneous WAT are enhanced by adipocyte-derived
neurotrophic factors, such as nerve growth factor (NGF),
neuregulin 4 and S-100 protein b-chain, and by vascular
endothelial growth A factor secreted from vascular cells and
brown adipocytes (70–74). Recent studies highlight the
contribution of immune cells resident in thermogenic adipose
niches to sympathetic innervation under cold conditions. In
mouse BAT, gd T cells induced TGFb1 secretion from
adipocytes through IL-17 receptor C signaling and thus
increased outgrowth of sympathetic nerves and adaptive
thermogenesis (75). Eosinophils maintained by IL-5 also
secreted NGF, thereby promoting sympathetic innervation
during cold-induced beiging (76).
Frontiers in Immunology | www.frontiersin.org 4
Methyl-CpG binding protein 2 (Mecp2)-expressing, CX3CR1+

macrophages have been suggested as a subpopulation of BAT-
resident macrophages that directly influences sympathetic
innervation (18). Mecp2 is well-known to show a mutation in
the postnatal neurodevelopmental disorder Rett syndrome. Both
Mecp2-null and brain-restricted Mecp2-deleted mice
demonstrated neurological defects related to Rett syndrome,
such as irregular breathing and hindlimb clasping (77). Wolf
et al. genetically depleted Mecp2 in all tissue macrophages using
Cx3cr1-Cre mice or in a macrophage subpopulation expressing
CX3CR1 using tamoxifen-inducible Cx3cr1-CreER mice (18, 78).
Upon chow diet feeding, the mutant mice developed obese
phenotypes with excessive body weight gain and enlarged fat
mass without Rett-like symptoms in adulthood (18). Thermogenic
dysfunction of BAT and resulted decrease in whole-body energy
expenditure at a steady-state were seen in the mutant animals due
to reduced NE input by impaired local sympathetic innervation.
Mechanistically, Plexin A4 overexpressed in Mecp2-deleted
CX3CR1+ macrophages seemed to interact with and block
outgrowth of Semaphorin 6A-positive sympathetic axons in
the tissue.

Interestingly, Mecp2-expressing macrophages were found to
be insignificant in coordinating the responsiveness to acute
thermogenic stimulation, such as brief cold exposure (18).
Instead, it was linked to sustaining sympathetic innervation
and adaptive thermogenesis at a steady-state for homeostasis.
As discussed, alternatively activated macrophages have also
been reported to involve sympathetic nerve outgrowth in
subcutaneous WAT during cold adaptation (16, 60). Therefore,
available evidence indicates that a discrete subpopulation of
ATMs may reshape local sympathetic innervation to mediate
energy expenditure and maintain metabolic homeostasis.

Catecholamine-Scavenging Macrophages
Over the controversy surrounding the presence and significance
of catecholamine-producing macrophages within thermogenic
adipose tissues, Pirzgalska et al. identified a subpopulation of
ATMs that contains catecholamine by its uptake, not by its
biosynthesis, in both rodents and humans and that mediates
thermogenesis and obesity (19). The macrophage subset, named
sympathetic neuron-associated macrophages (SAMs), was
initially found in sympathetic nerve bundles of subcutaneous
WAT and confirmed its existence in BAT macrophages in mice.
SAMs have been characterized as hematopoietic lineage cells that
have enriched expression of macrophage-specific markers and as
a functionally distinct population that uniquely expresses solute
carrier family 6 member 2 (Slc6a2) responsible for NE transport.
NE was detectable in SAMs, and the NE uptake depended on
extracellular catecholamine availability. Additionally, the
absence of TH in SAMs supported the notion that intercellular
NE accumulation was due to its uptake, not biosynthesis. To
coordinate the cellular catecholamine scavenging process, SAMs
also highly expressed monoamine oxidase A (Maoa) for NE
degradation along with Slc6a2. Previous studies also prove that
macrophages are capable of NE uptake and degradation (79, 80).
Interestingly, beige adipocytes served as a NE clearance route via
April 2022 | Volume 13 | Article 884126
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organic cation transporter 3 (Oct3) in subcutaneous WAT, and
fat-specific Oct3-deleted mice showed enhanced beige
thermogenesis in response to NE (81).

Adipose SAMs have been found to be excessively recruited
in obese conditions, suggesting their possible role in
pro-inflammation (19). However, when SAM-mediated
catecholamine uptake was blocked by bone-marrow
transplantation from Slc6a2 KO mice into obese recipients, the
chimeric mice showed elevated serum NE levels and adaptive
thermogenic capacity in both BAT and subcutaneous WAT under
cold exposure. Furthermore, SNS activation via food restriction
resulted in body weight loss in the chimeric animals due to
activation of adipocyte lipolysis, the first step to generate energy
substrates for thermogenesis in thermogenic adipocytes. An
independent study uncovered a Maoa-enriched macrophage
subset within visceral WAT (82). The distinct subpopulation was
found to lower the bioavailability of NE and blunt adipocyte
lipolysis in the elderly. Mechanistically, its catecholamine-
degradation machinery was activated by NLRP3 inflammasome-
induced growth differentiation factor 3 (82).

This potential integrative explanation involving the
coexistence of catecholamine scavenging and producing ATM
subpopulations within thermogenic adipose niches indicates the
significance of ATMs inmaintaining local noradrenergic tone and
related metabolic homeostasis. Furthermore, the catecholamine
scavenging ATMs may also play a role in regulating systemic NE
homeostasis upon sustained hypernoradrenergic conditions.

Cholinergic Adipose
Macrophages (ChAMs)
Acetylcholine is arguably accepted as the most crucial
neurotransmitter in the CNS, autonomic nervous system and
somatic nervous system. Parasympathetic nerves are the primary
source of acetylcholine. However, non-neuronal cell types also
contain cellular machinery that modulates acetylcholine
availability and utilization, called the non-neuronal cholinergic
system (NNCS), to maintain physiological functions and
homeostasis of key organs (83–85). Furthermore, dysfunctional
NNCS is directly linked to the pathogenesis of diseases (84, 85).
Hence, identifying and understanding NNCS in various types of
cells provides new insights to treat diseases.

NNCS includes an acetylcholine synthesizing enzyme [choline
acetyltransferase (ChAT)], transporters [vesicular acetylcholine
transporter (VaChT)], receptors [nicotinic acetylcholine
receptors (nAChRs), muscarinic acetylcholine receptors
(mAChRs)] and degrading enzymes [acetylcholinesterase,
(AChE), butyrylcholinesterase (BChE)] (84, 85). Immune cells
have been known to express NNCS components, particularly
ChAT. Recent findings highlight distinct biological roles of
acetylcholine-synthesizing immune cells, particularly T cells and
B cells, in maintaining innate immunity and blood pressure and
responding to chronic viral infection (86–88).

ChAT has been reported to be expressed in macrophages;
however, the physiological significance of the acetylcholine-
producing macrophages has not been elucidated (86, 89–91). Jun
et al. recently identified ChAMs responsible for acetylcholine
Frontiers in Immunology | www.frontiersin.org 5
secretion and adaptive thermogenesis in subcutaneous WAT
where parasympathetic innervation is absent (15, 92, 93). Using
ChAT reporter mice to monitor functional ChAT-expressing cells
in vivo, acetylcholine-producing cell populations were defined as
CD45+ hematopoietic immune cells, not neurons, and they were
composed mainly of B cells, T cells and macrophages (92). Among
the ChAT+ immune subsets, macrophages were the only
population to show induction in ChAT abundance and
acetylcholine secretion in response to cold stress (15).
Macrophage-specific ChAT deleted mice showed impaired cold-
induced thermogenesis in subcutaneous WAT. ChAMs were
activated by NE through b2-AR signaling, demonstrating their
role in linking sympathetic signals to thermogenic beige fat
activation (15). As suggested by transcriptome analysis, the
functionally distinct ChAMs displayed unique molecular
machinery fulfilling their role in neurotransmitter metabolism (15).

It has been found that neuronal acetylcholine receptor
subunit alpha 2 (CHRNA2) senses ChAMs-produced
acetylcholine in beige adipocytes and activates thermogenesis
through UCP1- and creatine futile cycling-mediated pathways
(92, 94). CHRNA2 has been identified as a unique marker for
activated beige adipocytes. However, brown adipocytes do not
have functional CHRNA2 to receive acetylcholine (92). Besides,
the abundance of ChAT+ macrophages in BAT was very low and
not responsive to cold exposure (15). Therefore, CHRNA2-
dependent thermogenic activation was not seen in BAT.
CHRNA2 signaling was induced during cold exposure, and its
deficiency at the whole-body or adipocyte level in mice was
unable to fully activate cold-induced thermogenic programs in
subcutaneous WAT and systemic energy expenditure (92, 94).
Importantly, this acetylcholine-mediated CHRNA2 signaling
showed physiological significance to combat obesity and
related metabolic dysfunction by demonstrating profound fat
accumulation and impaired whole-body glucose metabolism
after chronic calorie overload in the absence of Chrna2. The
discovery of ChAMs that secrete acetylcholine via b2-AR
signaling and induce beige thermogenesis provides novel
evidence of the neuro-immune-beige fat axis and may offer a
new approach to counteract obesity and metabolic disorders.
CONCLUDING REMARKS

Thermogenic fat in adult humans was first found and described
as the interscapular gland in 1908 (95). Around a hundred years
later, its rediscovery, in which thermogenic fat is inducible and
functional in adult humans upon external stimuli, fueled
scientific interest in the field and contributed to recent
advances in understanding thermogenic adipobiology (21–23).
Over the last decade, immune-thermogenic adipose interaction
has received particular attention in the field due to its unexpected
critical roles in shaping thermogenic fat function. Macrophages
have been identified as a major resident immune cell type in
thermogenic adipose niches. Four distinct subsets of ATMs
central to thermoregulation have been identified so far,
as summarized in Figure 1. Secretory response to cold
April 2022 | Volume 13 | Article 884126
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exposure was seen in both M2 macrophages and ChAMs to
rapidly stimulate thermogenic machinery in a paracrine manner.
Surprisingly, M1 macrophages-derived inflammatory cytokine
CXCL5 has been reported to induce beige thermogenesis (96).
On the contrary, there are ATM subsets that inhibit adaptive
thermogenesis and exert pathogenesis of obesity. The four ATM
subpopulations have been characterized as distinct populations
that express their unique markers or cellular machinery.
However, it is still unknown whether they share their
molecular natures or developmental origins, at least in part,
and interact with each other in a particular environment. In
addition, their distribution across tissues and tissue-specific
functions is worth studying to understand their biological
significance better at the whole-body level.

The unexpected discovery of acetylcholine-secreting ChAMs
in subcutaneous WAT raises the possibility that existing distinct
macrophage subpopulations within thermogenic adipose niches
might be more diverse than we think. ChAMs are the only ATM
subset so far known to target a non-canonical thermogenic
pathway, CHRNA2 signaling, in beige adipocytes among the
four thermogenic ATMs. In addition, ChAMs responded to b2-
AR agonist or fibroblast growth factor 21 mediated by miRNA-
Frontiers in Immunology | www.frontiersin.org 6
182-5p from beige adipocytes to induce acetylcholine secretion
in a cold environment (15, 97). The other three ATM
subpopulations are linked to the canonical b-AR mechanism in
thermogenic adipocytes via regulating local noradrenergic tone.
Further work studying mechanistic details that modulate
activation and target thermogenic pathways of the ATM
subsets may contribute to defining their distinct features and
functions from each other in regulating adipose thermogenesis
and metabolism. For example, it is reasonable to question
whether and how the thermoregulatory ATMs’ functions are
mediated by the dynamic regulators of macrophage activation
that control cytokine secretion and innate immunity in response
to external cues and also affect the recruitment of subtypes of
thermogenic adipocytes (98–100). In addition, since chronic
excessive systemic acetylcholine or catecholamine causes
disease conditions, such as acetylcholine-induced nicotinic/
muscarinic toxicity and catecholamine-induced hypertension,
we need to investigate whether their levels mediated by the
thermogenic ATM subsets are limited at the local site level or
affect systemic levels (101–103). Furthermore, these ATM
subsets’ presence and biological significance need to be
assessed in human thermogenic adipose tissues.
FIGURE 1 | Adipose tissue macrophage-mediated adaptive thermogenesis in brown and beige adipocytes. Distinct macrophage subpopulations within thermogenic
adipose tissues, including brown and subcutaneous white fat, support functions of brown or beige adipocytes to dissipate energy and regulate systemic energy
homeostasis. Alternatively activated M2 and cholinergic adipose macrophages activate thermogenic responses in brown or beige adipocytes through paracrine
mechanisms in a cold environment (red arrows). On the other hand, thermogenic inhibitory ATM subsets that block sympathetic innervation or import/degrade
catecholamine have been identified in thermogenic adipose niches (red blunt-ended lines). AR, adrenergic receptor; ChAT, choline acetyltransferase; CHRNA2,
neuronal acetylcholine receptor subunit alpha 2; CXCL14, C-X-C motif chemokine ligand 14; MAOA, monoamine oxidase A; MECP2, methyl-CpG binding protein 2;
NE, norepinephrine; PLEXA4, plexin A4; ROBO1, roundabout guidance receptor 1; SEMA6a, semaphoring 6a; SLC6a2, solute carrier family 6 member 2; SLIT3, slit
guidance ligand 3; TH, tyrosine hydroxylase.
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There is growing awareness that brown and beige adipocytes
improve lipid metabolism, glucose metabolism and insulin
sensitivity beyond enhanced energy expenditure. However,
underlying regulatory mechanisms of thermogenic adipocytes
are complex due to their remarkable plasticity and heterogeneity
depending on external cues, genetic disposition and
microenvironment. Although understanding of adaptive
thermogenic mechanisms still remains incomplete, discovering
the ATM subpopulations central to thermoregulation has
broadened our knowledge of immune-thermogenic adipose
interaction in metabolic adaptation and brought new insights
into the development of therapeutic strategies to enhance energy
expenditure. Further research in dissecting ATM populations to
identify a specific subset that supports the functions of
thermogenic adipocytes may provide exciting perspectives in
the field and establish an immune-targeting metabolic drug
to improve systemic energy homeostasis and reverse the
pathophysiology of obesity and other metabolic disorders.
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