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Background: Acute myocardial infarction (AMI) is one of the most common causes of
mortality around the world. Early diagnosis of AMI contributes to improving prognosis. In
our study, we aimed to construct a novel predictive model for the diagnosis of AMI using
an artificial neural network (ANN), and we verified its diagnostic value via constructing
the receiver operating characteristic (ROC).

Methods: We downloaded three publicly available datasets (training sets GSE48060,
GSE60993, and GSE66360) from Gene Expression Omnibus (GEO) database, and
differentially expressed genes (DEGs) were identified between 87 AMI and 78 control
samples. We applied the random forest (RF) and ANN algorithms to further identify
novel gene signatures and construct a model to predict the possibility of AMI. Besides,
the diagnostic value of our model was further validated in the validation sets GSE61144
(7 AMI patients and 10 controls), GSE34198 (49 AMI patients and 48 controls), and
GSE97320 (3 AMI patients and 3 controls).

Results: A total of 71 DEGs were identified, of which 68 were upregulated and
3 were downregulated. Firstly, 11 key genes in 71 DEGs were screened with RF
classifier for the classification of AMI and control samples. Then, we calculated
the weight of each key gene using ANN. Furthermore, the diagnostic model was
constructed and named neuralAMI, with significant predictive power (area under the
curve [AUC] = 0.980). Finally, our model was validated with the independent datasets
GSE61144 (AUC = 0.900), GSE34198 (AUC = 0.882), and GSE97320 (AUC = 1.00).

Conclusion: Machine learning was used to develop a reliable predictive model for the
diagnosis of AMI. The results of our study provide potential gene biomarkers for early
disease screening.

Keywords: acute myocardial infarction, predictive model, novel gene signatures, random forest, artificial
neural network
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INTRODUCTION

Acute myocardial infarction (AMI) remains the leading cause
of death and disability around the world (1, 2). Despite
improvements in the pharmacological approaches to improve
patients with AMI, their prognosis remains generally poor.
Besides, with the global population age and the increase in life
expectancy, diagnosis and prevent of AMI are more imperative
than ever. Early diagnosis and interventional treatment of AMI
significantly contribute to improving the prognosis of AMI
patients (3). Currently, the evaluation of cardiac biomarkers, such
as cardiac troponin I and cardiac troponin T, is considered one of
the gold-standard tools for the diagnosis of AMI. However, the
diagnosis of AMI based on these biomarkers is still unsatisfactory
due to the limitations in sensitivity and specificity (4, 5).

In recent years, microarray technology has been widely used
and improved. Rapid development in the field of bioinformatics
provides novel methods for the prediction of AMI. Various
biomarkers were identified using integrated bioinformatics, such
as MMP9, TLR2, and ILB1, and they can be regarded as predictive
and diagnostic tools for AMI (6, 7). Moreover, it has been
reported that a multi-biomarker approach may significantly
enhance the diagnostic accuracy for AMI (8). However, because
of the complex genetic architecture, they may lack powerful
ability. In such cases, poor accuracy, low efficiency, and lack
of early screening prompt us to establish a novel predictive
model for AMI. Huang et al. constructed an optimal prediction
model for AMI using multiple machine-learning algorithms (area
under the curve [AUC] = 0.794) (4). Obviously, this predictive
model is not efficient enough for screening and early detection
of AMI. Fortunately, the development of machine-learning
techniques, such as random forest (RF) and artificial neural
network (ANN), has been successfully applied in biomarker
discovery (9, 10).

Thus, in our study, we combined the utilization of RF and
ANN to construct a diagnostic model of AMI with microarray
data from Gene Expression Omnibus (GEO) database. Firstly,
we used the RF classifier to identify AMI-specific genes for
classification, and the ANN algorithm was conducted to calculate
the weights of each key gene. Then, we established a scoring
model named neuralAMI with the cooperation of RF and
ANN. Finally, we evaluated the classification performance of
our model using the receiver operating characteristic (ROC)
curve and validated this model with an independent dataset
from GEO. The analysis process of our study is shown
in Figure 1.

MATERIALS AND METHODS

Gene Expression Profile Data Collection
In our research, we searched the datasets, which contained
patients AMI and normal controls. The microarray expression
datasets (GSE48060, GSE60993, GSE66360, GSE61144,
GSE34198, and GSE97320) were downloaded from the GEO
database1 (11–13). The gene expression profiling dataset

1http://www.ncbi.nlm.nih.gov/geo/

GSE48060 contained 49 AMIs and 50 controls collected from
blood, while GSE66360 included 31 AMIs and 21 controls
collected from circulating endothelial cells, which were both
using the GPL570 platform of Affymetrix Human Genome U133
Plus 2.0 Array. In addition, the GSE60993 dataset included 7
AMIs and 7 controls collected from peripheral blood, which is
based on the GPL6884 platform of Illumina HumanWG-6 v3.0
Expression BeadChip. In addition, the GSE61144 dataset was
used as the validation set, which collects 7 AMIs and 10 control
samples based on the GPL6106 platform of Sentrix Human-6
v2 Expression BeadChip, the dataset GSE34198 collects 49
AMIs and 48 controls based on GPL6102 platform of Illumina
Human-6 v2.0 Expression BeadChip, and GSE97320 collects 3
AMIs and 3 controls using the GPL570 platform of Affymetrix
Human Genome U133 Plus 2.0 Array.

Differentially Expressed Genes
Identification
Preprocessing step was performed before differentially expressed
gene (DEG) analysis. If a gene had multiple probe sites during the
conversion of probe ID and gene symbol, we used the averaged
values of the probe sites as a gene expression level. Besides,
we converted the probe IDs to the genes symbol based on the
annotation files from the respective platform and removed the
probes that did not correspond to the genes symbol.

Moreover, the three datasets were merged into a training
cohort, and the batch effects were preprocessed and removed
by the ComBat function of the SVA package (14). DEGs
between patients with AMI and controls were identified by
utilizing the “limma” package of R software (15). Moreover, the
“limma” package was also used to conduct background correction
and data normalization between arrays. We set the threshold
of DEGs in the dataset as adjusted value of p < 0.05 and
|log2FC| > 1 (FC: fold change). Besides, we constructed a logistic
regression model to verify the value of DEGs in segregating
patients using SPSS22.0.

Gene Functional Enrichment Analysis of
Differentially Expressed Genes
The “clusterProfiler” and “GOplot” packages of R software were
utilized to analyze the significant DEGs and to perform the

FIGURE 1 | The flowchart of our study.
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FIGURE 2 | Analysis of differential expression genes (DEGs) in the training set. (A) The heatmap of all the DEGS in the training set. Red color means a higher
expression level and green color means a lower expression level. (B) Volcano plot of differential expression of analysis results. In the map, each red spot represents
an upregulated gene, while each green spot represents a downregulated gene.

Gene Ontology (GO) enrichment and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analyses
(16–18). False discovery rate (FDR) < 0.05 was considered as the
significantly enriched gene sets.

Metascape2 was also used to conduct biological processes
and pathway enrichment annotation, which provided a

2http://metascape.org
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FIGURE 3 | Logistic regression model of the value of differential expression
genes (DEGs) in segregating patients.

comprehensive idea for each gene (19). Terms with a value of
p < 0.05 and a minimum count of 3 genes were considered
significant. The significant terms were grouped into clusters
based on their membership similarities, and the most statistically
significant term within a cluster was chosen to represent
the cluster.

Screening Diagnostic-Related
Differentially Expressed Genes With
Random Forest
Random forest is a popular method for various prediction
problems based on the classification tree (20). The randomForest
package in R software was applied to construct an RF model for
screening out the DEGs. Firstly, we calculated each error rate
of 1–500 trees, and the optimal tree number was determined by
the tree number with the lowest error rate and the best stability.
Next, an RF was constructed based on the selected parameter,
and the important genes were screened as the candidate genes
for AMI diagnosis according to the decreasing accuracy method
(Gini coefficient method). The gene importance greater than 2
is a common screening criterion in the RF algorithm, which
has been used in similar studies (21). Finally, the top 11 DEGs
were chosen as the novel gene signatures for the predictive
model in AMI.

Development of the Predictive Model
With Neural Network
Firstly, we converted the expression data of the 12 DEGs into
“Gene Score” based on their expression levels with the min-max
method, which was conducted to normalize the data. Take one
sample, for example, if the expression value of a downregulated
gene in a certain sample is higher than the median expression
value of the gene in all samples, its expression will be valued as 0,
otherwise 1. Similarly, if the expression value of an upregulated
gene is higher, its expression will be valued as 1, otherwise 0.
Above all, the “Gene Score” sheet is composed of 165 lines of
samples and 11 columns of DEGs.

The neuralnet package in R software (version 4.1.2) was used
to establish an ANN model (22). The ANN contained one input
layer, one hidden layer, and one output layer. The number of
hidden layers was set as 3 and we set two nodes (control/AMI)
in the output layer. Thus, we constructed a classification model

FIGURE 4 | Gene enrichment analysis results. (A) Gene Oncology (GO)
enrichment analysis of 71 differential expression genes (DEGs). The graph
shows the relationships between DEGs and the top 8 enriched GO terms.
Upregulated DEGs are in red color and downregulated DEGs are in blue color.
(B). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment
analysis of 71 differential expression genes (DEGs). The graph shows the
relationships between DEGs and the top 8 enriched KEGG pathways.
Upregulated DEGs are in red color and downregulated DEGs are in blue color.

of AMI disease with information on gene weight. After the
ANN training, the calculation formula called neuralAMI was
constructed, which could evaluate the classification score of the
AMI disease. Besides, we used the pROC package in R software
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FIGURE 5 | The results of Metascape analysis. (A) The network of enriched terms. The top 20 clusters were selected and rendered as a network, in which terms
with a similarity score > 0.3 are connected by an edge. The thickness of the edge represents the similarity score. (B) Bar graph of enriched terms. The bar was
colored by values of p. The lower the values of p, the deeper the color.

(version 4.1.2) to calculate the verification results of the predictive
performance of our model constructed in our study.

NeuralAMI = 6(GeneExpression×NeuralNetworkWeight)

Validation of the Predictive Model by
Area Under the Curve
The datasets GSE61144, GSE34198, and GSE97320 were used to
validate the effectiveness of the classification score model based
on the training datasets. We screened out the DEGs in Gse61144,
GSE34198, and GSE97320. In addition, the expression levels
of DEGs were converted into binary status (above the median
or below the median) according to the conversion methods

mentioned above. Thus, an updated “Gene Score” was obtained.
The neuralAMI of the validation set was calculated by the
summation of “GeneExpression” × “NeuralNetworkWeight.”
The AUC was calculated using the pROC package in R software
(version 4.1.2), which was considered as an indicator to estimate
the predictive capability of the ANN model.

RESULTS

Identification of Differentially Expressed
Genes in Acute Myocardial Infarction
We merged three datasets (GSE48060, GSE60993, and
GSE66360) into a training cohort. After removing the batch
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FIGURE 6 | Identify the Acute myocardial infarction (AMI)-specific genes using random forest. (A) The influence of the number of decision trees on the error rate. The
x-axis represents the number of decision trees and the y-axis is the error rate. (B) The top 30 differential expression genes (DEGs) of the Gini coefficient method are
based on random forest classifier. The x-axis represents the importance index, and the y-axis represents the genes. (C) Heatmap of the top 11 key genes. Red color
means genes with high expression, while blue color means genes with low expression.

effects, we used the “limma” package in R software to identify
the DEGs. In total, 71 DEGs were identified that include 68
genes that were significantly upregulated and 3 genes that were
significantly downregulated, as shown in Figure 2B, also known
as the volcano plots. The DEG expression levels are presented in
Figure 2A. These 71 DEGs are well performing in segregating
patients (Figure 3).

Functional Enrichment Analysis of
Differentially Expressed Genes
We conducted gene enrichment analysis to furthermore exploit
the functions of DEGs. GO and KEGG analyses were performed

on 71 DEGs. Results of GO analysis showed that DEGs were
mainly enriched in immune-related biological processes, such
as “neutrophil degranulation,” “neutrophil activation involved
in immune response,” and “neutrophil-mediated immunity.”
KEGG pathway analysis suggested that DEGs primarily include
immune-related pathways, such as the “Interleukin (IL)-17
signaling pathway,” “C-type lectin receptor signaling pathway,”
and “NF-kappa B signaling pathway” (Figure 4). These
enrichments were upregulated in AMI, indicating their inhibitors
can be regarded as potential therapeutic strategies for patients
with AMI.

Besides, we also performed the enrichment analysis using
Metascape. The Metascape analysis showed the top 20
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FIGURE 7 | The visualization of artificial neural network. The neural network contains 11 input layers, 5 hidden layers, and 2 output layers.

clusters that DEGs were significantly enriched (Figure 5).
The Metascape analysis showed results similar to Figure 4, which
confirmed our results.

Random Forest Screening for Candidate
Acute Myocardial Infarction-Specific
Differentially Expressed Genes
To obtain AMI-specific genes, we applied the expression data
of 71 DEGs to the RF classifier. Afterward, to adjust the
parameters of the RF model, each error rate of 1–500 trees was
calculated. As shown in Figure 6A, we choose the best ntree
value (ntree = 140) due to the lowest error rates. The top 30
in the results of MeanDecreaseGini are presented in Figure 6B.
Finally, we identified a set of 11 AMI-specific DEGs with an
importance greater than 2 for subsequent analysis. The heatmap
shows the expression level of the 11 AMI-specific DEGs, which
are presented in Figure 6C. These 11 genes belong to a cluster
with high expression in the AMI samples and low expression in
the control samples.

Artificial Neural Network-Based
Establishment of the Acute Myocardial
Infarction Predictive Model
Artificial neural network analysis was performed to optimize the
weight of each gene based on the expression transformation of
AMI-specific genes into “Gene Score.” ANN model includes 11
input layers, 3 hidden layers, and 2 output layers (Figure 7). The
AMI-specific scoring model was calculated by the summation
of “GeneExpression” × “NeuralNetworkWeight,” which can
classify the gene expression levels between AMI and control
samples. Besides, the detailed information on gene weight is
shown in Supplementary Table 1. We can see that the entire

training was conducted in 3,369 steps and the termination
condition (reached threshold) was that the absolute partial
derivative of the error function was <0.01. With the calculation
of the pROC package (R version 4.1.2), the AUC for our
predictive model was 0.980, indicating the model has outstanding
discrimination (Figure 8A).

Validation of NeuralAMI
To find out whether the neuralAMI model can predict the
occurrence of AMI, three independent datasets GSE61144,
GSE34198, and GSE97320 were introduced to validate the
model we constructed. Similarly, we used an RF algorithm to
identify the AMI-specific DEGs in the validation sets. Then
the “Gene Score” and neuralAMI of GSE61144 were calculated
in the same way as training sets. In addition, the AUC values
of the validation model were 0.900, 0.882, and 1.00, which
confirmed that our model exhibits high stability and validity
(Figures 8B–D).

DISCUSSION

With the development of machine-learning algorithms and the
availability of gene expression information in public databases,
we have the opportunity to identify the biomarkers for the
diagnosis or prognosis of the disease in various other fields
(23, 24). In the field of AMI diagnosis, various attempts have
been conducted to explore a diagnostic better method for
AMI using diverse machine-learning algorithms (25, 26). In
our study, we aimed to construct a diagnostic model for AMI
based on the datasets from the GEO database. Firstly, we
identified 11 AMI-specific DEGs via an RF classifier, and the
ANN was used to calculate the weight of these genes. Then we
developed the scoring model neuralAMI and constructed ROC
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FIGURE 8 | The results of the receiver operator curve (ROC) verification. (A) Training dataset. (B) Validation dataset (GSE61144). (C) Validation dataset (GSE34198).
(D) Validation dataset (GSE97320).

to validate the accuracy and stability of the diagnostic model
we established.

The enrichment analysis of DEGs indicates that most of
the screened DEGs were mainly involved in the immune
response. We found that neutrophil response-related biological
processes. In practice, it has been reported that neutrophils
are involved in the development of AMI, and we can improve
AMI by suppressing the activation of neutrophil (27, 28). In
addition, the “IL-17 signaling pathway” is the best-characterized
pathway among the KEGG pathways. Recent studies have
reported that IL-17 plays a role in the development of AMI
(6, 29). Thus, the IL-17 signaling pathway may be a novel
therapeutic target for AMI. There have also been reported
that the IL-17 level in patients with AMI is markedly higher

than in controls, which indicates that IL-17 might be a
biomarker for AMI (30). The correct interpretation of DEG
enrichment analysis results contributes to reveal the molecular
mechanism of AMI and discover novel diagnostic predictors and
therapeutic targets.

In this study, the top 11 key genes in DEGs were screened
by the RF model based on MeanDecreaseGini. Furthermore,
10 of the 11 genes were also considered as AMI candidate
genes in other studies: Acyl-CoA synthetase long-chain family
member 1 (ACSL1) (31), nuclear factor interleukin-3-regulated
(NFIL3) (32), interleukin-1 receptor-associated kinase 3 (IRAK3)
(33), interleukin-1 receptor type 2 (IL1R2) (7), dysferlin (DYSF)
(32), S100A12 (34), B-cell lymphoma 6 (BCL-6) (35), mast cell-
expressed membrane protein 1 (MCEMP1) (36), serpin family
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A member 1 (SERPINA1) (37), and intelectin-1 (ITLN1) (38).
Besides, we identified for the first time that zinc finger protein-
36 (ZFP36) may get involve in the pathogenesis of AMI. It
was reported that the expression of ZFP36 was low in the
healthy aorta but was high in endothelial cells covered with
atherosclerotic lesions in human (39).

The application of RF and ANN in constructing disease
models has proven to be sophisticated (21). The highlighted
novelty of our diagnostic model was firstly integrated RF and
ANN algorithms to improve the predictive ability of the AMI
predictive model. In addition, our scoring model was achieved
by comprehensively considering the genes and their weight,
which is vital to classify AMI and control samples. Gene weight
is the actual value associated with each gene, indicating the
importance of that gene in predicting the final output value.
Besides, we removed the batch effects of training datasets and
validation datasets by gene scoring, thus improving the predictive
power of the model. As one of the most important machine-
learning approaches, the advantages of RF include relatively good
accuracy, precision, and ease of use, contributing to recognizing
the key genes (40). The ANN algorithm has a good predictive
ability, and the ANN model is stable and reliable (41, 42). It has
been reported that the combined machine-learning methods of
RF and ANN were efficient in many data-generating processes
(43). As shown in our study, our model has a superior predictive
capacity (AUC = 0.980) when compared to another model
built by Chen et al. (AUC = 0.8550) (44). Moreover, the AUC
of the predictive model achieved 0.900 in the validation set
GSE61144, 0.882 in set GSE34198, and 1.00 in set GSE97320,
which suggested that our model is of great applicability. The high
AUC score in our predictive model indicates it could distinguish
between AMI and control samples with a promising probability
in microarray data.

However, there are still some limitations to our study. First,
even though our predictive model is equipped with satisfactory
performance in training and validation sets, the sample size
in each dataset is relatively small. Thus, we combined 3 and
3 small-size datasets to get microarray training and validation
sets. Second, the construction of the predictive model was based
on the datasets from the GEO database, we should conduct
in vitro and in vivo experiments to practice and verify our
predictive model. Last but not least, because of the limitation
of sample size, we did not conduct a fivefold cross-validation in
ANN analyses. However, the expression data in our study are
from peripheral blood and circulating endothelial cells, thus the
predictive model can be applied to determine the likelihood of
AMI through timely blood tests or tissue biopsy, which suggests
our model has an outstanding classification performance. There
is no doubt that our diagnostic model has a certain clinical
value. Our predictive model needs to be investigated further in
clinical work.

CONCLUSION

We established a novel predictive model for AMI based on
machine-learning algorithms and a neuralAMI scoring formula
that could be used to predict patients with AMI. Besides,
we validated the model with an independent dataset from
GEO. Our study provides clinicians with a novel diagnostic
strategy that shows better prediction performance than using
existing biomarkers.
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