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ABSTRACT

Long noncoding RNAs (lncRNAs) are emerging as
key regulators of multiple essential biological pro-
cesses involved in physiology and pathology. By an-
alyzing the largest compendium of 14,166 samples
from normal and tumor tissues, we significantly ex-
pand the landscape of human long noncoding RNA
with a high-quality atlas: RefLnc (Reference catalog
of LncRNA). Powered by comprehensive annotation
across multiple sources, RefLnc helps to pinpoint
275 novel intergenic lncRNAs correlated with sex,
age or race as well as 369 novel ones associated
with patient survival, clinical stage, tumor metasta-
sis or recurrence. Integrated in a user-friendly online
portal, the expanded catalog of human lncRNAs pro-
vides a valuable resource for investigating lncRNA
function in both human biology and cancer develop-
ment.

INTRODUCTION

Long noncoding RNAs (lncRNAs) are defined as non-
coding transcripts longer than 200 nt (1). They have been
demonstrated to conduct diverse functions in multiple bi-
ological processes, including suppression of DNA synthe-
sis (2), transcriptional regulation in cis or trans (3,4), post-
transcriptional regulation of RNA (5,6) and regulation of
protein translation (7), and they play important regulatory
roles in various other physiological and pathological pro-
cesses (8–12).

A high-quality and comprehensive lncRNA annotation
is a cornerstone requirement of subsequent functional in-
vestigation. However, while tremendous efforts have been
devoted to systematically characterizing lncRNAs in the
human genome in recent years (13–15), large discrepancies
still exist in the current major annotations. 23.4% of lncR-
NAs are found in only one gene model among GENCODE

(13,16), RefSeq (14,17) and lncRNAdb (15,18), even with
very loose criteria (Supplementary Figure S1A), which may
be partly due to the relatively low and tissue-specific expres-
sion of lncRNAs (19,20).

Here, we use a compendium of 14,166 poly-A+ RNA-
Seq libraries across 30 normal tissues, two cell lines and
18 tumors to comprehensively interrogate the physiologi-
cal human poly-A+ transcriptome. In addition to verify-
ing 50,380 known lncRNAs out of 51,834 lncRNAs, we
have identified 27,520 novel lncRNA transcripts grouped in
20,518 gene loci over major references (see Materials and
Methods for details). The information of all 77,900 lncR-
NAs, known and novel, is combined into a comprehensive
human lncRNA database: RefLnc (Reference catalog of
LncRNA). Using this valuable resource, we are able to iden-
tify hundreds of lncRNAs associated with various physio-
logical traits and cancer progression. Both the assembly and
the analysis results are publicly available through our inter-
active online portal at http://reflnc.gao-lab.org/.

MATERIALS AND METHODS

RNA-Seq datasets

We use two RNA-Seq datasets. For transcriptome recon-
struction, we have screened 7,849 RNA-Seq samples in
the GTEx project (v6) (Supplementary Table S1) based on
three criteria: (i) normal human tissue/cell line (SMSTYP
= ‘Normal’); (ii) RNA integrity number (RIN) value >
6.0; (iii) donors meeting the overall eligibility criteria for
GTEx collection based on answers to eligibility questions
(INCEXC = ‘TRUE’). For analysis in tumor, we filter out
FFPE (formalin fixed paraffin embedded) samples from
The Cancer Genome Atlas (TCGA) data and retain 6,317
samples from 18 tumors (Supplementary Table S2) that are
frozen soon after surgery to prevent degradation of the
RNA and DNA.
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High-performance computing

Computational analysis is performed using the high-
performance computing platform of the Center for Life Sci-
ences of Peking University.

Reference gene model

We merge the lncRNA transcript models in ma-
jor references including GENCODE v23, RefSeq
(ftp://ftp.ncbi.nlm.nih.gov/genomes/Homo sapiens/GFF/
ref GRCh38.p2 top level.gff3) and lncRNAdb (down-
loaded on 27 July 2015) according to the following
criteria. For multiple-exon transcripts, transcripts with
the same sequence and matching splicing patterns are
considered as redundant. For single-exon transcripts,
transcripts with >80% sequence similarity are considered
as redundant. Among the redundant transcripts, the ones
annotated in GENCODE are retained. Annotations for
other transcripts, such as those of protein-coding genes
and pseudogenes, are retained from GENCODE. The final
merged model consists of 79,795 protein-coding transcripts
and 51,834 lncRNAs, which is used as a guided reference
for read mapping and transcript assembly.

Read mapping and transcriptome assembly

A standard RNA-Seq analysis pipeline is employed on all
samples. We use HISAT2 (version 2.0.1-beta) (21) to map
the sequencing reads to the human reference genome (ver-
sion hg38/GRCh38) with the reference splice sites provided
(–known-splicesite-infile). We use StringTie (v1.2.2) (22) to
assemble transcripts in a reference-guided manner (-G).
The reference and assembled transcript models are merged
by StringTie merge (-F1) to obtain the merged transcript
model. Novel transcripts are obtained by comparing the
merged transcript model with the reference model by cuf-
fcompare (23) (code! = ‘=’ && code! = ‘c’). The prelimi-
nary transcript model is obtained by merging the reference
transcript model and novel transcript model directly.

Estimating expression abundance and normalization

We estimate the expression levels (FPKM) and read cov-
erage for the preliminary transcript model by running
StringTie (v1.2.2) (22) in its expression abundance estima-
tion mode (StringTie -e -b). Quantile normalization is ap-
plied to account for library size factors. Although quantile
normalization was originally developed for microarrays, it
has come to be widely used for normalization of RNA-Seq
data (24–34), as well as cross-study/cross-platform normal-
ization (27,35–39) to account for variations within and be-
tween datasets. Specifically, quantile normalization is em-
ployed in large-scale RNA-Seq samples of GTEx (24,25)
and TCGA project (27,31,32) to eliminate the systematic
difference. Moreover, studies indicate that quantile normal-
ization shows similar results to other methods such as DE-
Seq and TMM in aspect of high correlation between nor-
malized counts and qRT-PCR data (absolute value or fold
change) in real or simulated data (33,34).

Transcript Confidence Score (TCS)

The Transcript Confidence Score indicates how well sup-
ported a transcript model is, based on the number of
uniquely mapped junction reads, expression levels and sam-
ple recurrence. The Transcript Confidence Score is calcu-
lated according to the formula below:

TCSt = 100
3

×
(

Jt

max J
+ Et

max E
+ Rt

max R

)

Jt is the average number of uniquely mapped junction reads
of transcript t in the maximally expressed sample; Et is
the 95th quantile expression (FPKM) of transcript t; Rt is
the number of samples in which transcript t is expressed
(FPKM > 0.1)

Filtration of background noise

To define an optimal TCS cutoff for distinguishing bona fide
transcripts from background, we calculate the TCS for the
46,519 verified multiple-exon known lncRNAs and 78,146
multiple-exon mRNAs as well as for randomly shuffled in-
tergenic transcripts (Supplementary Figure S1B). The ran-
dom intergenic transcripts are generated by bedtools shuf-
fle (40) according to the structures of known mRNAs and
lncRNAs (Supplementary Figure S1B). An optimal cutoff
for distinguishing bona fide transcripts from background
noise is the value for which the point on the ROC curve has
the minimum distance to the upper left corner (where sensi-
tivity = 1 and specificity = 1). By Pythagoras’ theorem, this
distance is sqrt((1 – sensitivity)2 + (1 – specificity)2). Novel
transcripts with TCS below this cutoff are excluded from
the follow-up analysis.

LncRNA identification and classification

We identify novel lncRNAs through the two following fil-
ters: (i) size selection (length > 200 bp) and (ii) lack of cod-
ing potential. We develop a stringent filtering pipeline aim-
ing at removing novel transcripts with evidence for protein-
coding potential. First, we integrate Coding Potential Cal-
culator (CPC) (41) and Coding Potential Assessment Tool
(CPAT) (42): transcripts that are predicted to lack cod-
ing potential by either CPAT or CPC are regarded as pre-
liminary noncoding RNAs. Second, we make conceptual
translations for three frames of these preliminary noncod-
ing RNAs by ORFfinder (https://www.ncbi.nlm.nih.gov/
orffinder/). Finally, we scan these translated sequences in
the Pfam (43) database with three cutoffs (ga/nc/tc), in the
2,201 mass spectrometry samples from Human Proteome
Map (44) (by X!tandem (45)) and in the 61 Ribo-Seq pro-
filing samples (by RibORF (46)) from SRA database (47)
(Supplementary Table S3). We remove the transcripts with
any hit in the Pfam database, the mass spectrometry data or
the Ribo-Seq samples, and obtain the final lncRNA catalog.

As for classification, lncRNAs are compared to protein-
coding transcripts by cuffcompare (23), and lncRNAs with
the code ‘u’ are defined as ‘intergenic’. The lncRNAs over-
lapping with the exons of protein-coding transcripts in the
same strand are defined as ‘sense’. The lncRNAs tran-
scribed from the antisense strand of protein-coding genes

ftp://ftp.ncbi.nlm.nih.gov/genomes/Homo_sapiens/GFF/ref_GRCh38.p2_top_level.gff3
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are classified as ‘antisense’. The remaining lncRNAs are re-
ferred to as ‘others’.

Validation of novel lncRNA transcripts by quantitative RT-
PCR and Sanger sequencing

We select 100 novel intergenic lncRNAs (42 single-exon
and 58 multi-exon) for biological validation according to
the following criteria: (i) not overlap with any annotated
transcripts; (ii) with top expression (FPKM > 1) in either
H1-ESC, HepG2, HelaS3 or K562 based on the expression
levels assayed by RNA-Seq of cell lines from ENCODE
(http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg38&c=
chr7&g=wgEncodeRegTxn); (iii) blat (48) these transcripts
to hg38 genome, and remove the transcripts mapped to
multiple positions of genome with Coverage ≥90% and
Identity ≥90%, and only retain transcripts that can be
mapped to genome with 100% coverage and 100% identity.

Primer pairs are designed using the Primer-Premier 5
(Premier Biosoft Interpairs, Palo Alto, CA, USA) and are
mapped against the human genome (hg38) by UCSC In-
Silico PCR (49) to ensure specificity. Unique primer pairs
are designed for 93 lncRNAs. As for each multi-exon tran-
script, there are primers designed to span exon junctions.

RNA is isolated from H1-ESC, HepG2, HelaS3 and
K562 cells in Trizol (Invitrogen) respectively. 1–5 ug RNA
is converted into cDNA using random primers and the
HiScript® II 1st Strand cDNA Synthesis Kit (+gDNA
wiper) (Vazyme). Quantitative real-time PCR (qPCR) is
performed using ChamQTM Universal SYBR® qPCR
Master Mix (Vazyme) on Roche480 Real-Time PCR Sys-
tem for each transcript in the cell line with the highest ex-
pression level in RNA-Seq data. Housekeeping gene, actin,
is used as positive control. Data is normalized by house-
keeping gene using the delta Ct method. The amplicons are
further analyzed by Sanger sequencing.

Tissue specificity

To evaluate the tissue specificity of the transcripts, we ap-
ply the previously defined entropy-based ‘tissue specificity
score’, which relies on Jensen–Shannon (JS) divergence to
quantify the similarity between the transcript expression
patterns and another pre-defined pattern in which the tran-
script is expressed in only one tissue (19). A higher tissue
specificity score represents higher tissue specificity of a tran-
script. According to the previous study (19), the JS diver-
gence of two probability distributions p1 and p2 is defined
to be

JS
(

p1, p2) = H
(

p1 + p2

2

)
− H

(
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) + H
(

p2
)

2
,

where H is the entropy of a probability distribution:
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The tissue specificity of a transcript’s expression pat-

tern, e, across n tissues with respect to tissue t is defined
as

JSsp (e|t) = 1 − JSdist
(
e, et)

where et is a pre-defined expression pattern that represents
the extreme case in which a transcript is expressed in only
one tissue t.

et = (
et

1, et
2, . . . , et

n

)
, s.t. et

i =
{

1 i f i = t
0 otherwise

Finally, the tissue specificity score of a transcript is defined
as the maximal tissue specificity score across all n tissues of
the transcripts expression pattern e:

JSsp (e) = argmaxt JSsp (e|t) , t = 1, 2, . . . , n

The expression pattern, e, is normalized as follows:

E′ = log2 (E + 1)∑n
i = 1 log2 (ei + 1)

Splicing efficiency

We estimate splicing efficiency according to the method de-
scribed previously (50). When calculating the expression of
transcripts, we use a modified annotation containing an ad-
ditional isoform per gene that spanned the whole gene locus.
The splicing efficiency of a gene is calculated as the sum of
the abundances of all originally annotated isoforms of the
gene divided by the sum of the abundances of all isoforms
including the spanning one.

splicing efficiency

= Abundance isoform1 + . . . + Abundance isoform n
Abundance isoform1 + . . . + Abundance isoform n + Abundance spanning unspliced isoform

A higher splicing efficiency score represents higher splicing
efficiency of a gene.

Conservation analysis

The evolutionary conservation of the transcripts
in our assembly is evaluated by the PhastCons
score of 100 vertebrates downloaded from UCSC
(http://hgdownload.soe.ucsc.edu/goldenPath/hg38/
phastCons100way/hg38.phastCons100way.bw). We ex-
tract the scores from the genomic regions using bedtools
(40) and divide the conservation scores by the transcript
length.

Inter-individual expression variability analysis

Inter-individual expression variability is estimated by nor-
malizing the standard deviation to the average expression
among donors for 23 normal tissues and two cell lines from
both genders. The donors are selected by choosing all the
female donors and randomly selecting an equal number of
male donors. Transcripts from chromosomes X and Y are
discarded and only transcripts expressed in the given tissue
in at least one donor (FPKM > 0.1) are displayed.

http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg38&c=chr7&g=wgEncodeRegTxn
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/phastCons100way/hg38.phastCons100way.bw
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GWAS analysis

A list of 29,929 unique GWAS SNPs is obtained from the
National Human Genome Research Institute’s GWAS cat-
alog (51) (accessed 15 March 2017). We focus on 3,425 re-
ported intergenic and significant SNPs (P-value < 5e–8).
The number of overlap between SNPs and the whole tran-
script locus (including the introns) is counted.

Novel lincRNAs for functional screening

We focus on 7,143 novel multiple-exon intergenic lncR-
NAs with moderate-to-high expression (Q3 +1.5*IQR >
0.1 FPKM in at least one normal tissue, which is a more
stringent cutoff than the general cutoff of maximum expres-
sion (>0.1 FPKM in at least one tissue)) for the functional
screening of novel lincRNAs.

Sex, race and age differential transcript expression analysis

We apply a linear mixed model (LMM) incorporating sex,
race and age as covariates together with individual and tis-
sue to investigate their effects on transcript expression. We
consider individuals as block random effects and we use the
function lme of the nlme package of R. The model is writ-
ten as lme(fixed = Expression ∼ Tissue + Sex + Race + Age,
random = ∼1|Individual). We only use samples in GTEx in
this part of analysis.

Tissue-specific expression patterns of race-biased novel lin-
cRNAs

We apply the estimated odds ratio (OR) in Fisher’s exact
test (one-tailed test) to measure the tissue-specific expres-
sion pattern for race-biased novel lincRNAs.

Odds ratio
= the number of race biased transcripts specifically expressed in tissue t

the number of other race biased transcripts /
the number of non race biased transcripts specifically expressed in tissue t

the number of other non race biased transcripts

Therefore, an odds ratio >1 indicates that race-biased tran-
scripts are enriched in tissue t compared to non-race-biased
transcripts. Tissue-specific transcripts are defined as tran-
scripts with tissue specificity score >0.6.

Discovery of differentially expressed transcripts between tu-
mor and normal tissues

We use the linear mixed model (LMM) for each tissue to
investigate the effect of tumor/normal type on the tran-
script expression, incorporating sex, race and age as covari-
ates together with individual as the random effects. Fold-
change is calculated based on the ratio of the average ex-
pression levels in tumor and normal tissues. Transcripts that
are significantly associated with tumor/normal type (FDR
< 0.05) and with fold-change >1.5 are defined as differen-
tially expressed transcripts between tumor and normal tis-
sues. When we perform the differentially expression analy-
sis, we’ve used the quantile normalization for the expression
profiles of GTEx and TCGA samples to remove the batch
effect (52).

Identifying lncRNAs associated with tumor metastasis and
recurrence

We investigate the effect of clinical outcomes on transcript
expression by extending the LMM for each tumor to incor-
porate sex, race and age as covariates together with individ-
ual as the random effects. Fold-change is calculated based
on the ratio of the average expression level between the two
conditions. Transcripts that are significantly associated with
clinical outcomes (FDR < 0.05), with fold-change >1.5,
and moderately to highly expressed in the corresponding tu-
mor (Q3 +1.5*IQR > 0.1 FPKM) are retained.

Identifying lncRNAs associated with clinical stage

We investigate the effect of clinical stage on transcript ex-
pression by extending the LMM for each tumor to incor-
porate sex, race and age as covariates together with individ-
ual as the random effects. Transcripts that are significantly
associated with clinical stage (FDR < 0.05) and moder-
ately to highly expressed in the corresponding tumor (Q3
+1.5*IQR > 0.1 FPKM) are retained.

Identifying lncRNAs associated with overall survival

We perform a multivariate Cox proportional hazard (Cox
regression) analysis for each tumor (retaining only one sam-
ple of each individual) to assess the association between in-
dividual lncRNA expression and survival in the presence of
race, age and sex as confounding factors. In addition, we
conduct a survival analysis for each status, including clini-
cal stage and mutation status (EGFR, EML4 and KRAS in
lung tumor). The hazard ratios (HRs) from the multivariate
Cox regression analysis are used to identify protective (HR
< 1) and risky lncRNAs (HR > 1). We use the cox.zph func-
tion to test the proportional-hazards assumption for each
covariate, and there is strong evidence of non-proportional
hazards for age in brain and ovary tumors. We accommo-
date the non-proportional hazards by dividing the age into
strata to incorporate an interaction between age and time
into the Cox regression model. Kaplan–Meier analysis with
log-rank test is performed for specific cases, and the cutoff
distinguishing the two groups is the median expression of
patients with available survival information. The transcripts
that are significantly associated with survival (FDR < 0.05)
and moderately to highly expressed in the corresponding tu-
mor (Q3 +1.5*IQR > 0.1 FPKM) are retained.

Given the relatively low expression of lncRNAs (19,20),
the 0.1 FPKM is a widely used cutoff for filtering the ex-
pressed lncRNAs (53–55). Meanwhile, we’ve added another
set of cancer-related lncRNAs with more stringent expres-
sion criterion (FPKM > 1) as Supplementary Table S4–S7.

Comparisons of RefLnc with the other recent lncRNA cata-
logs

We compare the lncRNA transcripts in RefLnc with those
in GENCODE v29, RefSeq (NCBI Homo sapiens An-
notation Release 109), lncRNAdb v2, NONCODE v5,
MiTranscriptome v2, CHESS v2 as well as FANTOM
CAT (56) (FANTOM CAT.lv3 robust.only lncRNA.gtf)
with the following criterion: the overlap of 1 bp in the exon
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(ignoring strand) is considered as redundant. The transcript
assemblies of MiTranscriptome and FANTOM CAT are
converted from GRCh37 to hg38 by UCSC liftOver (49).

The independent datasets of normal human tissues and cancer
cell lines

For the independent evaluation of transcript expression, we
screen for two independent datasets of 1,131 samples of hu-
man normal tissues in the SRA database (Supplementary
Table S8) and 935 samples of human cancer cell lines in the
CCLE database (Supplementary Table S9). We select the
normal samples from SRA based on the following criteria:
(i) sample-type confidence > 0.7; (ii) filter out samples with
ontology of description of ‘cell line’, ‘disease’ and ‘cancer’;
(iii) paired-end sequencing. When we evaluate the coverage
of the novel lncRNAs in the SRA samples, the highly ex-
pressed novel lncRNAs in GTEx tissues contained in the
SRA are novel lncRNAs with expression (Q3 +1.5*IQR)
higher than 1 FPKM.

The set of putatively functional lncRNAs

The lncRNAs are considered putatively functional if they
are associated with any of the following traits: (i) overlap
significant trait-associated SNPs located within intergenic
regions; (ii) be remarkably differentially expressed between
tumor and normal tissues; (iii) be significantly correlated
with physiological traits (sex/age/race); (iv) be significantly
associated with survival, metastasis, clinical stage or tumor
recurrence.

Statistics analysis

We adjust the false discovery rate (FDR) using the
Benjamini-Hochberg procedure. All the statistical methods
are performed by the computing environment R. Statistics
are done using R 3.2.4 (57), the data.table (58) the prepro-
cessCore (59), the plyr (60), the nlme (61), the stringr (62)
and the survival (63,64) packages.

RESULTS

An expanded landscape of human lncRNAs

To characterize the landscape of human lncRNAs across
different tissues, cell lines and individuals, we interrogate
the human transcriptome with 14,166 poly-A+ RNA-Seq
libraries, including 7,849 from the Genotype-Tissue Expres-
sion (GTEx) project (24,65) and 6,317 from The Cancer
Genome Atlas (TCGA) (66) (Figure 1A-B and see Mate-
rials and Methods for details). The dataset represents wide
coverage of the human transcriptome, including 30 normal
tissues, two cell lines and 18 tumors.

After mapping the reads of RNA-Seq libraries to the ref-
erence genome (hg38/GRCh38, see Methods for details),
we verify 50,380 known lncRNAs out of 51,834 lncRNAs
from GENCODE (v23), RefSeq and lncRNAdb. In spe-
cific, >95% of the known lncRNAs in GENCODE (96.9%,
26,966/27,841), RefSeq (97.6%, 24,714/25,314) and lncR-
NAdb (95.2%, 139/146) can be verified in at least one sam-
ple with >2x per-base coverage on average (67). This result

confirms the generally high quality of the existing major an-
notations.

Given the significant genetic alterations in tumor cells
(68), we assemble the transcripts only from physiologi-
cal human samples. We curate 7,849 high-quality poly-
A+ RNA-Seq libraries from 533 individuals, covering 30
physiological tissues and two cell lines (Epstein-Barr virus–
transformed lymphocytes (LCL) and cultured fibroblasts
from skin (FIBRBLS)), containing approximately 350 bil-
lion sequencing reads (Figure 1A). Employing a reference-
guided assembly approach for cohorts of various sizes (see
Methods for details), we find that the number of novel as-
sembled transcripts exhibits a 1.24-fold increase when the
sample size increases from ∼200 samples to ∼400 samples
(Figure 1C). When the number of samples reaches ∼4,700,
the number of novel transcripts approaches saturation (Fig-
ure 1C). From all 7,849 physiological samples, we obtain a
human transcriptome with 411,645 primary expressed tran-
scripts (FPKM > 0.1 in at least one sample) from 123,493
genes, nearly half of which (47.3%; 194,604) are novel (Fig-
ure 1D and see Methods for details). Our curated data pro-
vides a rich resource for the genome-wide exploration of
novel transcripts.

We design a Transcript Confidence Score (TCS) to mea-
sure transcript quality based on uniquely mapped junction
reads, expression levels and recurrence (Figure 1E and see
Materials and Methods for details). ROC analysis indicates
that TCS performs well, with an AUC of 0.961, and an op-
timal cutoff (0.701) of TCS is determined with high speci-
ficity (0.961) and sensitivity (0.918) (Supplementary Fig-
ure S1C). Thus, 140,190 reliable novel transcripts with TCS
above 0.701 are retained for the follow-up analysis (Figure
1D). Among them, 92.9% are expressed in more than two
different tissues, and 98.2% are detected in more than three
samples (Supplementary Figure S1D–E). From the 140,190
novel transcripts, we further identify 27,520 novel lncRNAs
at 20,518 loci by screening transcripts with lack of coding
potential and transcript length longer than 200 bp (Figure
1D and see Materials and Methods for details). Most of
these novel lncRNAs (83.6%, 23,001/27,520) are intergenic
(Figure 1F), and more than half (52.9%, 14,551/27,520)
have multiple exons. In addition, 89.6% of these novel lncR-
NAs are transcribed in more than two different tissues, and
96.6% could be reproducibly detected in more than three
samples (Supplementary Figure S1D-E). We combine the
novel lncRNAs with verified known ones into a compre-
hensive human lncRNA catalog (RefLnc), in which 35.3%
(27,520/77,900) lncRNAs are novel (Figure 1F).

To further assess the robustness of these identified novel
lncRNAs, we choose 100 novel intergenic lncRNAs (58
multi-exon and 42 single-exon) which are not overlapped
with any annotated transcripts for quantitative RT-PCR
(qRT-PCR) validation. Primer pairs are designed using the
Primer-Premier 5 (Premier Biosoft Interpairs, Palo Alto,
CA, USA) and mapped against the human genome (hg38)
by UCSC In-Silico PCR (49) to ensure specificity. Unique
primer pairs meeting these criteria are designed success-
fully for 93 lncRNAs (57 multi-exon and 36 single-exon,
see Methods for details). Out of these 93 cases, 91.4% (52
multi-exon and 33 single-exon) are successfully validated
by Sanger sequencing independently (Supplementary Ta-
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Figure 1. Reference-guided transcriptome assembly greatly expands the landscape of human lncRNAs. (A) The composition of the 7,849 physiological
samples of 30 physiological tissues and two cell lines used for transcriptome reconstruction. (B) The composition of the 6,317 samples of 18 tumors from
TCGA. (C) The number of novel transcripts assembled using different size of sample sets. We assemble the transcriptome by analyzing 40 datasets of
RNA-Seq samples. Each dataset contains a different number of samples, from 196 to 7,849 samples (rising by 2.5% of the whole dataset). In each dataset,
samples are randomly selected by 20 times according to the original tissue proportion of the whole dataset, which is shown in each boxplot. In addition,
each dataset includes all type of sexes and races. (D) An integrative computational pipeline for lncRNA identification. The sequencing reads are mapped to
the human reference genome (version hg38/GRCh38) and reference-guided transcriptome assembly is carried out on each RNA-Seq library. The resulting
assembled transcript models for each library are merged to a consensus transcript assembly and filtered to obtain the reliably expressed novel transcripts.
Finally, novel lncRNAs are identified by two filters: (1) lack of coding potential; (2) size selection. (E) The Transcript Confidence Score (TCS) of novel
lncRNAs is higher than that of known lncRNAs. P-values are calculated using the Wilcoxon rank sum test. ‘***’: P-value < 0.001. (F) In total, RefLnc
contains 77,900 lncRNAs including the verified known and novel lncRNAs, and 83.6% of the novel lncRNAs are in intergenic regions.
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ble S10, Supplementary Figure S1F-I and see Materials and
Methods for details). Meanwhile, we also find a significant
correlation between qRT-PCR quantitation and RNA-Seq
expression profiles (P-value = 6.95e–7, Spearman rho =
0.437).

The characterization of human lncRNAs

While lncRNAs and mRNAs share similar biogenesis path-
ways (69), they differ considerably in many aspects (50).
Consistent with previous reports (19,20,50), lncRNA tran-
scripts are shorter (Supplementary Figure S2A), with fewer
exons (Supplementary Figure S2C) and lower GC content
(Supplementary Figure S2E), and are less evolutionarily
conserved (Figure 2A) than mRNAs. In addition, we find
that lncRNAs have lower expression (Figure 2B) and less al-
ternative splicing efficiency than protein-coding genes (Fig-
ure 2C, 14.0% of lncRNA genes are alternatively spliced
while 85.5% of protein-coding genes are spliced), and lncR-
NAs are expressed in a much more tissue-specific manner
than mRNAs (Figure 2D). The above results are still signif-
icant when the expression levels are controlled (Supplemen-
tary Figures S2B, D, F, S3A–C).

It has been proposed that the high correlation of tran-
scriptional activity between neighboring noncoding and
coding loci is an evidence for a cis-regulatory role of lncR-
NAs (70,71), while the co-expression between a lncRNA
and its protein-coding neighbor may also result from prox-
imal transcriptional activity in the surrounding open chro-
matin (72,73). We find that the correlation between neigh-
boring lncRNA and mRNA pairs is significantly higher
than the correlation between random neighbor pairs with
the same distances (P-value < 2.2e–16, Wilcoxon test;
Supplementary Figure S3D), which supports the cis-effect
model.

Multiple novel lincRNAs show sex/age/race-biased expres-
sion and overlap with trait-associated SNPs

Long intergenic non-coding RNAs (lincRNAs) are long
non-coding RNAs that do not overlap annotated protein-
coding genes. The lincRNAs such as XIST (74) and HO-
TAIR (75) have been functionally characterized in diverse
gene regulation processes, organisms and human diseases.
To identify potentially functional novel lincRNAs, we focus
on 7,143 novel multiple-exon lincRNAs with moderate-to-
high expression in the next sections (see Methods for de-
tails).

A mixed model with sex, age and race incorporated as
covariates is employed to identify lncRNAs associated with
these traits (see Methods for details). As a result, we detect
75 novel lincRNAs with strongly sex-biased expression pat-
terns (false discovery rate (FDR) < 0.05, Figure 2E, Sup-
plementary Table S11). Among them, 50 (66.7%) are male-
biased and 25 are female-biased (Figure 2E). In addition
to several known X inactivation lncRNAs like XIST (FDR
= 0) and JPX (FDR = 7.44e–64), we find that most of
sex-biased lncRNAs (82.5%, 260 out of 315) are expressed
in heart. Co-expression analysis further reveals that these
lncRNAs are highly correlated (|spearman correlation| >
0.6) with protein-coding transcripts involved in muscle con-
traction (FDR = 6.2e–18), muscle filament sliding (FDR

= 2.8e–10) and sarcomere organization (FDR = 1.1e–2),
suggesting their functional roles in cardiac physiology as
well as possible contribution to the sex difference in car-
diac pathology (76,77). We also identify 132 novel lincR-
NAs whose expression levels are globally associated with
age (FDR < 0.001, Figure 2F and Supplementary Table
S12). Among them, the expression levels of 82 novel lincR-
NAs (62.1%) increase with the elevated age (Figure 2F). In
particular, a novel lincRNA, MSTRG.31492.1, is highly ex-
pressed in brain and muscle, and its expression levels are
positively associated with donor age (FDR = 1.53e–4 glob-
ally, 4.79e–4 in brain, and 0.021 in muscle, Figure 2G). The
majority of age-associated lncRNAs are transcribed in hu-
man brain (97.0%), heart (95.3%) and testis (76.0%). The
protein-coding transcripts co-expressed with age-associated
lncRNAs (|spearman correlation| > 0.6) are enriched in the
biological process of spermatogenesis (FDR = 9.9e–15),
cell adhesion (FDR = 5.1e–10), cell differentiation (FDR
= 8.6e–10), muscle contraction (FDR = 2.1e–8), multicel-
lular organism development (FDR = 2.3e–4) and chemical
synaptic transmission (FDR = 2.9e–3). They are also en-
riched in the KEGG pathway of focal adhesion (FDR =
1.16e–4), GABAergic synapse (FDR = 1.9e–2), arrhythmo-
genic right ventricular cardiomyopathy (ARVC) (FDR =
2.0e–2), and hypertrophic cardiomyopathy (HCM) (FDR =
4.0e–2). Furthermore, we detect 70 novel lincRNAs differ-
entially expressed among individuals of various races (FDR
< 0.05, Figure 2H and Supplementary Table S13). Notably,
compared to novel lincRNAs that are not significantly asso-
ciated with race, the race-biased ones tend to be expressed in
brain (odds ratio [OR] = 8.84, P-value = 3.05e–6, Fisher’s
exact test) and testis (odds ratio [OR] = 2.70, P-value =
1.21e–3, Fisher’s exact test and see Materials and Methods
for details).

Last but not least, we detect 160 novel lincRNAs overlap-
ping with 189 intergenic SNPs reported in 159 genome-wide
association studies (51) (Supplementary Table S14). Specif-
ically, 21 novel lincRNAs overlap with cancer-associated
SNPs (Supplementary Table S14). For example, the second
exon of a novel lincRNA, MSTRG.19068.1, overlaps with
a thyroid cancer risk-associated SNP (rs116909374, OR =
1.81, P-value = 1e–16; Figure 2I). Interestingly, this novel
lincRNA is also specifically expressed in thyroid and sig-
nificantly up-regulated in thyroid tumor (FDR = 8.84e–38;
log2FC = 1.39; Figure 2I).

Novel lincRNAs are dysregulated in various tumors and asso-
ciated with clinical outcomes

To extend our knowledge beyond the known cancer-
associated lncRNAs (78,79) and further explore the poten-
tial roles of our newly detected lncRNAs in cancer devel-
opment, we scan 6,317 tumor samples across 18 tumors
in TCGA (Figure 1B). We find 6,674 novel lincRNAs ex-
pressed in tumor samples (FPKM > 0.1 in at least one sam-
ple), with 734 commonly detected in all 18 tumors (Supple-
mentary Table S15).

We further investigate the differential expression patterns
of novel lincRNAs in 15 tumors with matched normal tis-
sues available in the GTEx project (see Materials and Meth-
ods for details). As a result, 2,163 novel lincRNAs are dif-
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Figure 2. Characterization of the RefLnc assembly. (A) The conservation of lncRNAs is lower than that of mRNAs. (B) The expression levels of lncRNAs
are lower than that of mRNAs, with 4.8-fold and 13.3-fold lower for median and mean expression levels, respectively. (C) lncRNAs have lower splicing
efficiency than protein-coding genes. (D) lncRNAs are expressed in a much more tissue-specific manner than mRNAs. P-values are calculated using the
Wilcoxon rank sum test. ‘***’: P-value < 0.001. (E) Sex-biased novel lincRNAs that are differentially expressed between males and females (FDR < 0.05).
The transcripts on the left side of the red dotted line represent novel lincRNAs up-regulated in the female, while the right side represents novel lincRNAs
up-regulated in the male. (F) Novel lincRNAs and known lncRNAs correlated with age (FDR < 0.001). The left side of the red dotted line indicates that
the expression of the lncRNAs decreases with increasing age, while the right side indicates that the expression of the lncRNAs increases with the increasing
age. (G) The genomic view and expression patterns in normal samples of the age-associated novel lincRNA MSTRG.31492.1. (H) Novel lincRNAs and
known lncRNAs that are differentially expressed across different races (FDR < 0.05). The pie chart shows the population of the samples. (I) The genomic
view and differential expression patterns between tumors and normal tissues of the novel lincRNA MSTRG.19068.1, which overlaps a thyroid cancer
risk-associated SNP.
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ferentially expressed between tumors and normal tissues, of
which 1,201 are up-regulated and 1,276 are down-regulated
(Figure 3A, B and Supplementary Table S16). The percent-
age of tumor-specific RNAs is much higher in the novel
lincRNAs (50.4% up- and 73.7% down-regulated, Figure
3A-B) than in previously known lncRNAs (45.3% up- and
50.5% down-regulated, Supplementary Figure S4A and B)
or mRNAs (22.4% up- and 37.7% down-regulated, Supple-
mentary Figure S4C and D). Notably, 12 novel lincRNAs
show significantly altered expression levels in all 15 tumors
and normal counterparts (Supplementary Table S17).

We investigate novel lincRNAs associated with clinical
outcomes such as tumor metastasis, recurrence, clinical
stage and survival (Figure 3C and see Materials and Meth-
ods for details). We identify 12 novel lincRNAs significantly
associated with tumor metastasis, and all of them are up-
regulated in metastatic tumors (Supplementary Table S18
and Table S19). Additionally, there are eight novel lincR-
NAs significantly associated with tumor recurrence, and all
of them are up-regulated in recurrent tumors (Supplemen-
tary Table S18 and Table S20). In addition, 63 novel lincR-
NAs are significantly associated with clinical stage: 46 are
up-regulated in high-stage tumors, and 17 are up-regulated
in low-stage tumors (Supplementary Table S18 and Table
S21).

To identify the survival-related novel lincRNAs, we per-
form a multivariate Cox regression analysis for each tu-
mor, controlling for confounding factors such as sex, age
and race (see Materials and Methods for details). The ex-
pression levels of 339 novel lincRNAs are significantly cor-
related with overall survival time in nine tumors (FDR <
0.05, Supplementary Table S18 and Table S22). For exam-
ple, 180 novel lincRNAs are associated with overall sur-
vival time in the brain tumor, including 131 putative pro-
tective prognostic markers and 49 risky ones. Moreover,
about one-half of the survival-associated novel lincRNAs
(47.2%, 76/161) are expressed and validated in the inde-
pendent Chinese LGG dataset (80) of 258 glioma samples
with available survival information (FDR < 0.05, Supple-
mentary Table S23). It is also noteworthy that 44 novel lin-
cRNAs show positive or negative correlations with over-
all survival in at least two tumors, suggesting their poten-
tial roles as multiple-tumor prognostic biomarkers (Supple-
mentary Table S24). For example, MSTRG.18808.1 is sig-
nificantly up-regulated in all 15 tumors (Figure 3D). This
novel lincRNA is also correlated with poorer overall sur-
vival in the brain tumor (HR = 2.50, FDR = 1.89e–9, Fig-
ure 3E, and Supplementary Figure S5A for an independent
glioma dataset (HR = 4.81, FDR = 6.37e–9) (80)) and kid-
ney tumor (HR = 2.18, FDR = 2.16e–3, Figure 3F and
Supplementary Figure S5B). It is also positively correlated
with clinical stage in kidney tumor (FDR = 0.03, Supple-
mentary Figure S5C). In addition to 339 novel intergenic
lncRNAs, we also identify 3,525 known lncRNAs with sig-
nificant association with patient survival time (FDR < 0.05)
in at least one tumor (Supplementary Table S22). Nearly
one half (1,692 out of 3,525) are also reported as ‘survival-
associated lncRNAs’ by TANRIC (81) (Supplementary Ta-
ble S25). Meanwhile, 207 (89.2%) of 232 survival-associated
lncRNAs, which are in the list of disease-associated lncR-
NAs in the manually curated database EVLncRNA (Exper-

imentally Validated LncRNAs) (82), are curated as ‘cancer-
related’ (Supplementary Table S26).

An interactive web portal

To facilitate the usage of RefLnc by the wider research com-
munity, we develop an online portal for visualizing the de-
tailed characteristics of lncRNAs in 7,849 normal samples
and 6,317 tumor samples (Figure 4). This platform allows
users to search and download information about the lncR-
NAs of interest, which is valuable for both experimental
and computational researchers. The annotations for each
lncRNA are organized into three panels. The genomics an-
notation panel shows the lncRNA’s genomic location, gene
model structure and GWAS associations as well as multiple
external links to relevant databases. The physiology anno-
tation panel displays the lncRNA’s various features in nor-
mal samples, including its expression profile, co-expression
profile and sex/age/race association results. The pathology
annotation panel displays the lncRNA’s features in tumor
samples, including its expression profile, differential expres-
sion profile, co-expression profile and survival association
results. In addition, users can obtain more information by
using the external link to AnnoLnc, a web server for sys-
tematically annotating human lncRNAs (83).

DISCUSSION

Long noncoding RNAs are emerging as central players in
cell biology and play important regulatory roles in vari-
ous processes such as cell differentiation and development
(8,9,78,79). Despite the large number of lncRNAs already
reported, the list of human lncRNAs is still far from be-
ing completed, partly due to their tissue-specific expression
patterns (19). To overcome the challenge, we take a data-
driven approach and utilize the largest amount of publicly
available data to investigate human lncRNAs. The resultant
RefLnc has effectively expanded the landscape of human
lncRNAs.

We follow a stringent quality control procedure to remove
potential artifacts during transcript assembly and lncRNA
identification. 88.5% of novel lncRNAs (95.8% for highly
expressed novel lncRNAs) are verified in the independent
datasets of 1,131 human normal samples in Sequence Read
Archive (SRA) (47) and 935 samples of human cancer cell
lines in Cancer Cell Line Encyclopedia (CCLE) (84,85) with
>2x per-base coverage on average (67) (Supplementary Fig-
ure S6A and B). The transcript quality, measured by the
Transcript Confidence Score (TCS), of the novel lncRNAs
is remarkably higher than that of known lncRNAs (Fig-
ure 1E, P-value < 2.2e–16). Compared to known lncRNAs,
the novel lncRNAs are less evolutionarily conserved (Figure
2A), have higher expression (Figure 2B) and higher alterna-
tive splicing efficiency (Figure 2C). And the novel lncRNAs
are expressed in a much more tissue-specific manner than
known lncRNAs (Figure 2D). As expected, the novel lncR-
NAs identified in the present study show remarkably higher
inter-individual expression variability than that of known
lncRNAs in 23 normal tissues and two cell lines (Supple-
mentary Figure S6C). This high natural expression variabil-
ity explains why these novel lncRNAs were not identified
before.
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Figure 3. Discovery of tumor-associated novel lincRNAs. (A) Novel lincRNAs that are up-regulated in various tumors. (B) Novel lincRNAs that are down-
regulated in various tumors. (C) The Venn diagram of clinical-associated novel lincRNAs. Two novel lincRNAs are both associated with tumor recurrence
and patient survival, and five novel lincRNAs are associated with both tumor metastasis and survival. (D) The genomic view and differential expression
pattern of the survival-associated novel lincRNA MSTRG.18808.1. (E) The expression of MSTRG.18808.1 is associated with poorer patient survival in
the brain tumor. In the Kaplan-Meier curves of two patient groups with higher (top 50%) or lower (bottom 50%) expression, the red line indicates higher
expression, and the blue line indicates lower expression. The box plot in the inset shows that MSTRG.18808.1 has higher expression in the brain tumor
(Wilcoxon rank sum test, FDR < 0.05). (F) The expression of MSTRG.18808.1 is correlated with poorer patient survival in the kidney tumor. The box
plot in the inset shows that MSTRG.18808.1 has higher expression in kidney tumor (Wilcoxon rank sum test, FDR < 0.05).
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Figure 4. The architecture of the online webserver RefLnc. It provides detailed annotation of each lncRNA in RefLnc including genomics annotation,
physiology annotation and pathology annotation.
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Among the 27,520 novel lncRNAs, 275 novel lincRNAs
are highly correlated with physiological traits of sex, age
or race, and 160 novel lincRNAs overlap with intergenic
GWAS SNPs. We also identify 2,163 novel lincRNAs dif-
ferentially expressed between normal and tumor tissues,
and 369 novel lincRNAs are associated with clinical out-
comes such as patient survival, stage, metastasis and recur-
rence. Interestingly, compared to uncharacterized novel lin-
cRNAs, these functionally characterized novel lincRNAs
show higher conservation across 100 vertebrates (P-value
= 6.02e–9, Wilcoxon test, Supplementary Figure S6D).

Iyer et al. presents a similar large-scale transcriptome
survey that ab initio assembles 175,706 human lncRNAs
(MiTranscriptome, version 2) from 6,503 RNA-Seq sam-
ples mainly from tumor (85.8%) (20). Compared to Re-
fLnc, MiTranscriptome has missed 13,414 novel lncRNAs
and 12,797 verified known lncRNAs annotated in GEN-
CODE v23, RefSeq and lncRNAdb (Supplementary Fig-
ure S7A). Among the RefLnc-specific novel lncRNAs, none
of them are extremely lowly expressed (FPKM < 0.1 in all
GTEx samples) and 22.5% (3,019/13,414) are of the maxi-
mum expression level less than 1 FPKM. Meanwhile, 21.3%
(16,668/78,334) of MiTranscriptome-specific lncRNAs are
expressed lowly in all of GTEx samples (FPKM < 0.1) and
81.0% (63,472/78,334) are of the maximum expression level
less than 1 FPKM. Of note, 17.0% (16,508/97,372) of Mi-
Transcriptome lncRNAs overlapped with RefLnc lncRNAs
are also lowly expressed in all of GTEx samples (FPKM
< 0.1). Over all, the coverage of MiTranscriptome lncR-
NAs is significantly lower than that of RefLnc lncRNAs
or even novel RefLnc lncRNAs in 14,166 samples in GTEx
and TCGA, and independent 2,066 samples of SRA and
CCLE (Supplementary Figure S7B–I).

We’ve also performed the comparison of RefLnc with
the up-to-date version of FANTOM CAT (56) and CHESS
(v2) (86). Compared to RefLnc, FANTOM CAT has missed
at least 18,395 novel lncRNAs and 17,928 known lncR-
NAs annotated in GENCODE, RefSeq and lncRNAdb ver-
ified by coverage in 14,166 RNA-Seq samples (Supplemen-
tary Figure S8A and S8B). Similarly, CHESS has missed
at least 20,313 novel lncRNAs and 14,790 verified known
lncRNAs (Supplementary Figure S8C and S8D). Among
the 24,172 RefLnc-specific lncRNAs, 16,388 are novel lncR-
NAs missed by both FANTOM CAT and CHESS (Supple-
mentary Figure S8E and S8F). In which, 15,226 (92.9%) can
be verified in the independent datasets of 1,131 human nor-
mal samples in SRA (47) and 935 samples of human cancer
cell lines in CCLE (84,85) with >2x per-base coverage on
average (67). Moreover, among the RefLnc-specific novel
lncRNAs, 39 (78%) are validated successfully by indepen-
dent RT-PCR and Sanger sequencing out of the 50 selected
novel lncRNAs.

Since the RefLnc’s first release at early 2018, the hu-
man lncRNA landscape has been expanded continuously
by updated annotations (13–17,20,86–90). The union of
the recently updated public lncRNA catalogs (GENCODE
v29, RefSeq (NCBI Homo sapiens Annotation Release
109), lncRNAdb v2, NONCODE v5, MiTranscriptome v2,
CHESS v2 as well as FANTOM CAT) has covered 16,416
RefLnc novel lncRNAs with >90% coverage, further con-
firming the high quality of our identification procedure.

Meanwhile, there are still 8,842 novel lncRNAs in RefLnc
not overlapped with exons of records in any of sources (Sup-
plementary Table S27). Of which, 92.8% (8,209) can be ver-
ified in the independent datasets of 1,131 SRA samples and
935 CCLE samples with >2x per-base coverage on average
(67). Among the 8,209 verified novel lncRNAs, 16 are cor-
related with age (FDR < 0.001) and 13 are differentially ex-
pressed between two sexes (FDR < 0.05). In addition, 195
are differentially expressed between tumor and normal tis-
sues (FC > 1.5 and FDR < 0.05), 40 are associated with
survival time of tumor patient (FDR < 0.05) and 14 are dif-
ferentially expressed between different clinical stages (FDR
< 0.05). This well highlights the great necessity for improv-
ing lncRNA annotations in term of completeness and com-
prehensiveness (91,92).

It should be noted that our analysis is restricted to poly-
A+ transcripts and offer little insight into expression of
lncRNAs that lack poly(A) tails. Therefore, more sophis-
ticated methods, such as non-poly(A) tail RNA-seq tech-
nology, are required to more comprehensively capture the
lncRNA transcriptome.

Overall, RefLnc has greatly expanded the landscape of
human lncRNAs and enabled the genome-wide exploration
of the physiological function and clinical significance of
lncRNAs. We anticipate that the RefLnc assembly as well as
the computational pipelines developed will help to advance
our knowledge of lncRNAs and provide a foundation for
lncRNA genomics and biomarker development.
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