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The stem cell revolution: on the role of CD164 as
a human stem cell marker
Suzanne M. Watt 1,2,3✉, Hans-Jörg Bühring4, Paul J. Simmons5 and Andrew W. C. Zannettino 2,3,6

Accurately defining hierarchical relationships between human stem cells and their progeny, and using this knowledge for new
cellular therapies, will undoubtedly lead to further successful treatments for life threatening and chronic diseases, which represent
substantial burdens on patient quality of life and to healthcare systems globally. Clinical translation relies in part on appropriate
biomarker, in vitro manipulation and transplantation strategies. CD164 has recently been cited as an important biomarker for
enriching both human haematopoietic and skeletal stem cells, yet a thorough description of extant human CD164 monoclonal
antibody (Mab) characteristics, which are critical for identifying and purifying these stem cells, was not discussed in these articles.
Here, we highlight earlier but crucial research describing these relevant characteristics, including the differing human CD164 Mab
avidities and their binding sites on the human CD164 sialomucin, which importantly may affect subsequent stem cell function
and fate.
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DISCOVERY OF HUMAN CD164 AS A HAEMATOPOIETIC AND
SKELETAL STEM CELL BIOMARKER
Just over two decades ago, human (h) CD164 was identified as a
functional biomarker on human haematopoietic precursors and
their associated bone marrow stromal cells1–3. Importantly, a
1998 special focus report in ‘Blood’3,4 highlighted the findings that
hCD164 was a sialomucin involved in human haematopoietic
progenitor-stromal interactions, and that engagement of specific
glycosylated hCD164 epitopes on quiescent human CD34+
haematopoietic stem/progenitor cells (HSPCs) could prevent their
recruitment into the cell cycle3,5. Two decades on, by analysing
human bone marrow Lineage (Lin)neg, CD34+, CD34low, and
CD34neg HSPCs with single cell RNAseq and improved surrogate
transplantation models, Pellin and colleagues, in their article ‘A
comprehensive single cell transcriptional landscape of human
hematopoietic progenitors’ identified hCD164 as an important,
reliable biomarker for defining the earliest branch points of hHSPC
specification, which incorporates the basophil lineage and shows
close similarities to murine lineage specification6. Interestingly,
just prior to this observation, Chan and colleagues, in their paper
entitled ‘Identification of the human skeletal stem cell’ meticu-
lously purified, from hypertrophic zones of the growth plate in
long bones, a subset of human PDPN+CD73+CD164+ skeletal
stem cells (hSSC), which were negative for CD45, CD146, CD235,
Tie2 and CD31, and at the apex of a hierarchy of stem cells that
could transition into an early bone-cartilage-stromal progenitor7,8.
These cells were demonstrated to meet the rigorous definition of
hSSCs9,10, as being locally restricted to the bone, with the ability to
clonally self-renew, differentiate into multiple lineages and
reconstitute a haematopoietic microenvironment both in vitro
and in vivo in surrogate serial transplantation models7,8,11.
Importantly, and reminiscent of initial studies3,4, regulatory

cross-talk was shown to exist between CD164+ hHSCs and these
CD164+ hSSCs7,8,11.
While it is gratifying to see hCD164 identified as a potentially

improved biomarker for hHSPC and hSSC isolation, we wish to
highlight a critical issue not addressed in the three recent
manuscripts cited above3–5, namely the choice of hCD164
antibody used for these purposes. As described below, at least
three epitopes defined by three distinct Classes of hCD164
antibodies (Mabs) exist on hCD164 and representative of each
class do not stain cells equivalently.

THE STRUCTURE OF THE HUMAN CD164 BIOMARKER
hCD164 was cloned from a bone marrow stromal cDNA expression
library using two Mabs, 103B2/9E10 and 105A53,5, and was
demonstrated to be partially homologous to the MGC-24 cDNA5,12.
The hCD164 gene spans at least 22 kb of genomic DNA, is located
on chromosome 6q21, comprises six exons (E1–6) interspersed with
five introns, and encodes a sialomucin2,3,5,13–15. Its extracellular
domain comprises two highly O-glycosylated mucin domains
interrupted by a cysteine-rich non-mucin domain3,5,13,14,16,17. Four
splice variants exist, three involving differential splicing of complete
exons and one involving splicing in the 3′ UTR3,5,13,14,16,17. The
former comprises hCD164(E1–6) containing all six exon-encoded
domains, hCD164(EΔ5) lacking the exon 5-encoded domain and
hCD164(EΔ4) lacking the exon-4-encoded domain, and comprising
the respective 197, 178, and 184 amino acid polypeptides (Fig. 1).
The major isoform hCD164(E1–6), and hCD164(EΔ5) are present on
both hHSPCs and human mesenchymal stem-stromal/skeletal stem
cells (hMSC/hSSC)1–8,13–31.
The full length hCD164(E1–6) isoform is predicted to contain 9 N-

linked and 32 O-linked glycans, and a glycosaminoglycan (GAG)
attachment site at the end of E5 and beginning of E63,5,13–17. E1
encodes the first mucin domain, E2 and E3 encode the cysteine rich
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non-mucin domain, E4 to part of E6 encode the second mucin
domain, and the remainder of E6 the transmembrane region,
cytoplasmic domain containing a YHTL endocytic motif and 3′UTR. A
cytokine binding pocket (reminiscent of TpoR, IL-4R, IL-6R, EpoR, G-
CSFR, and GM-CSFR) is located in its non-mucin domain (Fig. 1a).
Figure 1b shows a diagrammatic representation of hCD164 and
showing putative intra-molecular disulphide bridges between four
cysteines in the non-mucin domain3,5,13–17. A total of eight cysteines
are present and the remaining four may also contribute to intra-
molecular or inter-molecular disulphide bridges. The hCD164
glycoprotein has a molecular mass of 80–100 kD under reducing
conditions and, under non-reducing conditions, can exist as a
homodimer of 160–180 kD. A GAG attachment at the E5–E6 junction
(TSGT), association with other components (e.g., the cytoskeleton,
growth factors) or the existence of an hCD164 tetrameric form may
increase the molecular weight to >220 kD3,5,13–17.

HCD164 MONOCLONAL ANTIBODIES AND EPITOPES
Nine Mabs (of varying isotypes; Table 1) were initially generated to
hCD1642,3,5,13–17,23. While our initial studies defined the epitope
reactivity of four Mabs, 103B2/9E10, 105A5, N6B6, and 67D2 with
the hCD164 sialomucin, our further studies identified an additional
five hCD164 Mabs, 96.1H5, 96.2D2, 96.3F5, 96.10H10, and
96.12H11, which had been produced against hCD34+ cells3,17.
Cross‐competition experiments between these different hCD164
Mabs indicated that the 105A5 or 103B2/9E10 Mabs were not in
hibited in their binding to the hCD164+ hHSPC line KG1A by each
other nor by any of the other hCD164 Mabs. Conversely, the N6B6,
67D2, 96.1H5, 96.2D2, 96.3F5, 96.10H10, and 96.12H11 Mabs all
cross competed with each other suggesting that they recognise
very similar or identical epitopes17.
Further, we demonstrated that hCD164 resembled a subgroup

of sialomucins, which include the hHSPC biomarker CD34. While
this heavily glycosylated protein subset, like other sialomucins, is
rich in serine and threonine residues, it is encoded by multiple
exons2,3,5,13–17,32. Earlier studies had also demonstrated that CD34

Mabs could be grouped into three Classes based on the resistance
or susceptibility of their cognate epitopes to cleavage by the
enzymes neuraminidase, chymopapain, and a glycoprotease from
Pasteurella haemolytica33–35. For example, the CD34 epitope
recognised by the My10 Class I CD34 Mab was sensitive to both
C. perfringens sialidase and O-sialoglycoprotease treatments; the
CD34 epitope identified by the QBEND 10 Class II Mab was
sensitive to O-sialoglycoprotease, but not to C. perfringens
sialidase; the CD34 epitope defined by the Tük3 Class III Mab
was insensitive to both C. perfringens sialidase and O-sialoglyco-
protease enzymes33–35.
Given this, we examined the glycosidase sensitivities of the cell

surface hCD164 sialomucin and subsequently of recombinant soluble
chimaeric domain-truncation hCD164-Fc/hCD164-His-tagged con-
structs13,14,16,17. We also analysed the global glycosylation patterns
(lectin binding, HPLC, and mass spectrometry) of chimaeric
recombinant domain-truncation constructs17. These latter studies
revealed that hCD164 contains sialic acid moieties in both α2-3 and
α2-6 linkages on O-glycans and N-glycans, but with O-glycans having
a much higher degree of sialylation. Sialyl LewisX (sLeX) was not
detected17. The N-glycans are more complex than the O-glycans,
with high mannose, hybrid and mono-antennary, di-antennary, tri-
antennary, and tetra-antennary complex forms (with or without
bisecting GlcNAC). Most O-glycans are small core 1 or 2.
Predominantly large neutral tri-antennary and tetra-antennary
structures occur on N-glycans in mucin domain II, while smaller, bi-
antennary structures are present in mucin domain I17.
Using a set of nine soluble hCD164 domain truncation mutants

comprising different exons (E) but lacking the transmembrane
region, namely hCD164E1‐Fc, hCD164E1‐2‐Fc, hCD164E1‐3‐Fc,
hCD164E1‐4‐Fc, hCD164E1‐5‐Fc, hCD164EΔ5‐Fc, hCD164E1‐6′‐Fc,
hCD164E1,2,4‐Fc, and hCD164E1,3,4‐Fc, we demonstrated that the
103B2/9E10 and 105A5 Mabs recognised all nine soluble proteins,
indicating that they react with the region encoded by exon 115–17.
The N6B6, 67D2 and 96 series Mabs reacted with the hCD164E1‐3‐
Fc, hCD164E1‐4‐Fc, hCD164E1‐5‐Fc, hCD164E1‐6′‐Fc and
hCD164EΔ5‐Fc proteins, but not the hCD164E1‐Fc, hCD164E1‐2‐

Fig. 1 hCD164 structure, epitopes and splice variants. The hCD164 gene is located on chromosome 6q21, comprises six exons (E1–6) and
encodes a type 1 integral transmembrane sialomucin. a hCD164(E1–6) amino acid sequence, with exons (E), glycosylation, mucin domains and
motifs. TM transmembrane region. The hCD164(E1–6) isoform with 9 N-linked and 32 O-linked glycans, and a glycosaminoglycan (GAG)
attachment site at the end of E5 and beginning of E6. The first mucin domain is encoded by E1, the cysteine rich non-mucin domain by E2 and
E3, the second mucin domain by E4 to part of E6, and the transmembrane region, cytoplasmic domain and 3′UTR by the remainder of E6. A
cytokine binding pocket is predicted to lie in the non-mucin domain. b Diagrammatic representation of hCD164, indicating regions where the
Class I, II, and III hCD164 Mabs bind, and putative intra-molecular disulphide bridges. The molecular mass of the hCD164 monomer or
homodimer varies from 80–100 kD to 160–180 kD under respective non-reducing and reducing conditions, while the molecular mass of the
GAG modified hCD164 or the hCD164 tetramer exceeds 220 kD. Epitope recognition sites are also shown for representatives of each Class of
CD164 Mabs and further elaborated in Fig. 2.
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Fc, hCD164E1,2,4‐Fc, and hCD164E1,3,4‐Fc constructs, demonstrat-
ing that they require at least exons 2 and 3 for epitope
recognition15–17. Notably however, none of these Mabs distinguish
between the four known hCD164 splice variants15–17.
Deglycosylation experiments followed by analyses with hCD164

Mabs were carried out on the hCD164(E1–3)-Fc soluble protein and
hCD164 purified from KG1A cells using N-glycanase,
O-glycosidase, sialidase, α-fucosidase, and O-sialoglycoprotease
treatments, either separately or together (Fig. 2)13–17. The epitope
recognised by the 105A5 Mab was sialic acid dependent, with sialic
acid moieties situated on O-glycosylated chains attached to the

exon 1-encoded peptide, but not on N-linked oligosaccharides. O-
glycosidase and O-sialoglycoprotease significantly reduced 103B2/
9E10 and 105A5 Mab binding to hCD164, but this was not seen with
the other hCD164 Mabs. The hCD164 epitope recognised by
the103B2/9E10 Mab was sensitive to N-glycanase treatment, and
hence is dependent on the N-linked carbohydrates of exon. In
contrast, the epitopes recognised by the remaining hCD164 MAbs
were not removed by the deglycosylation procedures used. Thus, by
comparing hCD164 Mabs with the CD34 Mab Classes, the hCD164
Mabs could be classified into three analogous categories13–17.
Hence, the epitope recognised by the Class I 105A5 Mab is present

Table 1. The characteristics of nine hCD164 monoclonal antibodies.

Monoclonal
antibody

Class/Domain (Exon)
interaction

Isotype Molecular weight species of
hCD164 in protein lysates

Cross competing (Partial/
Complete)

Epitope dependency

105A5 Class I (E1) mIgM 80–100 kD (monomer)
160–180 kD (homodimer)

No Long chain sialylated O-
linked glycans

103B2/9E10 Class II (E1) mIgG3 80–100 kD (monomer)
160–180 kD (homodimer)

No N-linked and O-linked
glycans

N6B6 Class IIIA
(E2–3)

mIgG2a 80–100 kD (monomer)
160–180 kD (homodimer)

Yes, with Class IIIA
and IIIB

Disulphide bridge;
conformation

96.1H5 Class IIIA
(E2–3)

mIgG1 80–100 kD (monomer)
160–180 kD (homodimer)

Yes, with Class IIIA
and IIIB

Disulphide bridge;
conformation

96.10H10 Class IIIA
(E2–3)

mIgG1 80–100 kD (monomer)
160–180 kD (homodimer)

Yes, with Class IIIA
and IIIB

Disulphide bridge;
conformation

67D2 Class IIIB
(E2–3)

mIgG1 80-100 kD (monomer)
160–180 kD (homodimer)
>220 kD

Yes, with Class IIIA
and IIIB

Disulphide bridge;
conformation

96.12H11 Class IIIB
(E2–3)

mIgG1 80–100 kD (monomer)
160–180 kD (homodimer)
>220 kD

Yes, with Class IIIA
and IIIB

Disulphide bridge;
conformation

96.3F5 Class IIIB
(E2–3)

mIgG1 80–100 kD (monomer)
160–180 kD (homodimer)
>220 kD

Yes, with Class IIIA
and IIIB

Disulphide bridge;
conformation

96.2D2 Class IIIB
(E2–3)

mIgG2b 80–100 kD (monomer)
160–180 kD (homodimer)
>220 kD

Yes, with Class IIIA
and IIIB

Disulphide bridge;
conformation

Fig. 2 Defining hCD164 epitopes by glycosidase treatments. Schematic representation of hCD164 epitopes deduced from different
glycosidase treatments of the hCD164 molecule and the binding of representative Class I (105A5), Class II (103B2/9E10), and Class III (N6B6,
67D2) hCD164 Mabs. □, exon encoded domains; ○, potential N-linked carbohydrates; horizontal bars with or without arrows, potential O-
linked carbohydrates; arrows, potential sialic acid motifs on O-linked carbohydrates. (Originally published in The Journal of Immunology.
Doyonnas R, Yi-Hsin Chan J, Butler LH, Rappold I, Lee-Prudhoe JE, Zannettino AC, Simmons PJ, Bühring HJ, Levesque JP, Watt SM. 2000. CD164
monoclonal antibodies that block hemopoietic progenitor cell adhesion and proliferation interact with the first mucin domain of the CD164
receptor. J. Immunol. 165, 840–851. Copyright © 2000.The American Association of Immunologists, Inc.).
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on hCD164 mucin domain I and is associated with long chain
sialylated O-linked glycans. The epitope recognised by the Class II
103B2/9E10 Mab is also present on mucin domain I and is
dependent on N-linked and O-linked glycans, but independent of
sialylation. The remaining seven Class III Mabs react with
conformation-dependent epitopes that require the co-expression
of the cysteine-rich domain, encoded by E2 and E3, which lies
between mucin domains I and II. Their binding relies on
intramolecular disulphide bridges, which are resistant to glycosidase
cleavage and principally encompass the hCD164 peptide back-
bone13,14,16,17. The Class III Mabs are further divided into closely
associated Class IIIA and IIIB Mabs, with the seven Mabs partially or
completely cross-competing with each other13,14,16,17. Class IIIA Mabs
(N6B6, 96.1H5, and 96.10H10), like their Class I and II counterparts,
identify hCD164 monomers or homodimers, while the Class IIIB
antibodies (67D2, 96.12H11, 96.3F5, and 96.2D2) also bind to a >
220 kD hCD164 protein species13,14,16,17. As indicated earlier, the
latter may be an hCD164 tetramer, a hCD164 monomer or
homodimer in association with other, possibly cytoskeletal or
growth factor, components, or a GAG containing hCD164 species,
an issue not yet resolved (Fig. 1)3,5,13–17.

CELLULAR DISTRIBUTION OF HCD164 EPITOPES
Assessment of the cellular distribution of Class I and II hCD164
epitopes2,3,5,23,26,31 revealed their expression on CD45+CD34+

hHSPCs throughout ontogeny. Notably, they are present on
CD34+ clusters located on the ventral floor of the dorsal aorta in
the week 5–6 developing human embryo, and on a proportion of
CD34+ cells from foetal liver, cord blood, bone marrow, and
mobilised peripheral blood23. Furthermore, LinnegCD34lo/neg or
CD34int+extnegCD38lo/neg, CD133hiCD34hiCD38lo/neg, and CD133hiC-
D34lo/neg repopulating HSPCs express abundant hCD164, of which
the CD34+CD164hi HSPCs expand more in ex vivo cultures than
bulk CD34+ HSPCs3,5,6,19–22,28,29,31. Recent studies by Pellin’s group
used the Class IIIB 67D2 Mab to demonstrate that CD34+CD164hi,
but not CD34+CD164lo, cells sustained early and late in vivo
human haematopoietic reconstitution in NBSGW immunodeficient
mice6. Importantly, hCD164 is also a biomarker for hMSCs/hSSCs,
including CD271hiCD45lo/neg and CD56+ or CD56neg primary bone
marrow hMSC7,8,25,26. Notably, the Class IIIB Mab (67D2) has been
used to identify and isolate PDPN+CD146neg CD73+CD164+ self-
renewing, serially transplantable hSSCs with multipotent (osteo-
genic, chondrogenic, and haematopoietic supporting stromal)
potential from the human bone growth plate and diaphyseal
zones7. Significantly, these hSSCs exist at the apex of the human
skeletogenic differentiation hierarchy, are present in human foetal
and adult bones, can be generated from BMP-2 stimulated human
adipose MSCs and iPSCs, expand locally following acute skeletal
injury and maintain human haematopoiesis7,8,11.
While all the hCD164 epitopes described to date are present on

hCD34+ and hCD133+ hHSPC subsets and on hBM MSCs, this is in
direct contrast to their differential expression in other postnatal
haematopoietic and non-haematopoietic tissues2,3,5,13–17,23. We
observed that the epitopes detected by the Class I and II Mabs can
be differentially expressed and distributed on reciprocal cell
subsets in some tissues, while the Class III Mabs stained cells that
bound both or either of the Class I and/or II hCD164 Mabs23. For
example, the epitope recognised by the 103B2/9E10 Class II Mab,
but not that by the 105A5 Class I Mab, is present on most vascular
endothelium, on some high endothelial venules in lymphoid
tissues, on the venous sinuses in spleen, on the thymic subcapsular
epithelia which is associated with pre-T lymphoid cell trafficking
and on the basal-layer epithelia of the tonsil and skin. In contrast,
the epitope recognised by the 105A5 Class I Mab is present on
lymphoid cells in tissues that are involved in lymphoid/blood cell
recirculation, such as in the tonsil, spleen, and gut23. However, the
CD1+ and cortical and medullary CD43+ thymic lymphoid cells

stain weakly with the Class I, but not at all with the Class II, hCD164
Mabs, while thymic macrophages express both the hCD164
epitopes defined by the Class I and II Mabs23.

THE ROLE OF HCD164 IN REGULATING CELL FATE
The epitopes defined by the different Classes of hCD164 Mabs are
implicated in possessing functional roles in haematopoiesis as
illustrated by in vitro studies or based on hCD164 structural
studies. Engaging the hCD164 molecule with specific hCD164
Mabs can modulate CD34+ or CD133+hHSPC proliferation,
differentiation, adhesion to, and retention or migration in different
microenvironmental niches. As a first exemplar, the hCD164
103B2/9E10 Class II Mab-defined epitope partially blocks adhesion
of CD34+ and CD133+ hHSPCs to bone marrow MSCs3,5,13,14,31.
Ligating this epitope with the 103B2/9E10 Class II Mab also
inhibits cytokine-driven (IL-3, IL-6, SCF, and G-CSF) recruitment of
single CD34+CD38lo/neg hHSPCs into the cell cycle in vitro3,5,13,14.
Such effects are indicative of cognate ligands for hCD164 acting in
cis or trans, albeit not yet fully defined. Our findings show that
hCD164 lacks sLeX moieties required for P-selectin or E-selectin
binding, while its sialylation in the absence of fucosylation
suggests that hCD164 is a potential Siglec ligand, with preliminary
studies indicating hSiglec-5 (but not hSiglec-3, hSiglec-7, hSiglec-
8, hSiglec-9, or hSiglec-10) binding13–15,17. The second example
demonstrates that culturing hBM CD34+ cells with IL-1β, IL-3, IL-6,
G-CSF, GM-CSF, and SCF for 21 days in the presence of the Class I
105A5 or Class II 103B2/9E10 hCD164 Mabs reduces the absolute
number of both total nucleated cells generated, and, when
erythropoietin is added as well, decreases the development of
clonogenic BFU-E and CFU-GM13–15. Furthermore, hCD164 is a key
component of the CXCR4-VLA-4-VLA-5 complex, regulating
CD133+ hHSPC CXCL12-mediated migration or retention in the
hHSC niche and promoting CXCR4-mediated signalling, a process
inhibited by the 103B2/9E10 Class II hCD164 Mab31. Although
functional effects of engaging the hCD164 epitopes with Class III
Mabs have not been fully assessed, the full length hCD164
contains a potential cytokine binding pocket located in its non-
mucin domain, as well as a potential GAG attachment site at the
E5-E6 junction of hCD1642,3,5,13–17, that could act in concert to
modulate cytokine-mediated, chemokine-mediated, or adhesion-
mediated effects on the same or opposing cells. While this is
purely hypothelical, it is important to keep in mind that these and
other Mabs chosen to isolate hHSCs might inadvertently affect the
function or fate of the hHSCs when assessed in vitro or in vivo.

BIOMARKERS AND LINEAGE HIERARCHIES
Biomarkers that identify definitive, but rare, repopulating human
bone marrow stem cells have been the “holy grail” of stem cell
research since the seminal discovery of monoclonal antibodies by
Koehler and Milstein over 5 decades ago36. These, when coupled
with the increasingly sophisticated technological developments37–44

of cell sorting, surrogate in vivo models, gene editing, single cell
barcoding, single cell deep sequencing, lineage tracing and fate
mapping in vitro and in vivo, and human transplantation or
regenerative medicine, have fuelled a series of debates on the
hierarchical relationships of these human stem cells with their
immediate progeny, and on selecting the best biomarkers and cell
subsets for therapeutic use. To this end, biomarkers, lineage trees
and lineage relationships have been constantly changing with
progressive technological developments and research. Examples of
these are indicated in the attached references6,7,41–62.
Deciphering lineage commitment processes with biomarkers is

critical to our understanding of human haematopoiesis3,7,8,30,37,55–62,
and must not be hindered by the use of reagents that modulate
hHSPC function in vivo. Hypotheses are hotly debated; the classical
model describes a structured hierarchy of lineage commitment, with
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early branching of lymphoid and erythro-myeloid lineages. Other
hypotheses include lineage-biased HSCs, early megakaryocyte
lineage branching followed by erythroid, myeloid, and lymphoid
lineage transitions, early branching of erythroid-megakaryocyte
precursors from lymphoid–myeloid precursors, and a continuum
of low-primed hHSPCs from which unilineage cells differentiate
(CLOUD-HSPCs)41,42,44–55,59,61,62. Pellin et al.6 have stated that
hCD164 can ‘preserve the resolution of the single-cell events of
the more-primitive compartments, whereas at the same time
maintaining a full representation of the late cell fate branching’,
leading them to propose a modification of the classical hierarchical
model, in which ‘human hematopoiesis develops along early cell
fate bifurcations occurring in a continuum of states forming a
hierarchical-like structure’ with early priming to either lymphoid/
dendritic cell/monocyte/granulocyte or erythroid/megakaryocyte
/basophil commitment.
When defining lineage hierarchies and developing new cellular

products with hCD164 as a biomarker, it is important to remember
that, while Pellin et al.6 and Chan et al.7 used the 67D2 Class IIIB
hCD164 antibody to identify hHSCs and hSSCs, different classes of
hCD164 antibodies possess different avidities for this molecule
and, by interfering with ligand binding sites, these may alter
human hHSPC and hSSC function and hence fate. The information
garnered from previous research should be carefully reviewed
when considering the choice of hCD164 antibodies in future
clinical studies. This said, Class II, and to a lesser extent, Class I
hCD164 antibodies, with isotypes distinct from the Class III
antibodies, may prove beneficial for confirming the purity of
and hence establishing release criteria for the hCD164 Class III-
enriched hHSC and hSSC subsets for in vivo therapy.
In conclusion, using this knowledge in association with new

cellular therapies will undoubtedly contribute to successful
treatments for life threatening and chronic diseases, which are
substantial burdens on both patient quality of life and healthcare
systems globally63,64.
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