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Abstract: Nowadays, coffee, cocoa, and spices have broad applications in the food and pharmaceutical
industries due to their organoleptic and nutraceutical properties, which have turned them into
products of great commercial demand. Consequently, these products are susceptible to fraud and
adulteration, especially those sold at high prices, such as saffron, vanilla, and turmeric. This situation
represents a major problem for industries and consumers’ health. Implementing analytical techniques,
i.e., Fourier transform mid-infrared (FT-MIR) spectroscopy coupled with multivariate analysis, can
ensure the authenticity and quality of these products since these provide unique information on food
matrices. The present review addresses FT-MIR spectroscopy and multivariate analysis application
on coffee, cocoa, and spices authentication and quality control, revealing their potential use and
elucidating areas of opportunity for future research.

Keywords: spices; coffee; cocoa; quality control; adulteration; FT-MIR; multivariate analysis

1. Introduction

Spices in ancient Egypt and Mesopotamia were used as medicine, currency, and food
preservatives. Later were used for seasoning, aromatizing, and coloring different dishes
and beverages [1,2]. According to the U.S. Food and Drug Administration [3], spices are
aromatic vegetable substances in the whole, crushed, or ground form that flavor food
without adding nutritional value. These are true to name, and from them, no portion
of any volatile oil or other flavoring principle is removed. Examples of plant parts used
as spices are bark (cinnamon), buds (cloves), flowers (saffron), fruits (bell pepper, chili),
pods (vanilla), rhizomes (ginger, turmeric), seeds (pepper, cardamom), and bulbs (onion,
garlic) [4–6].

In addition to their organoleptic properties (flavor, aroma, color, and pungency), spices
provide health benefits to consumers due to their antioxidant, antimicrobial, antidiabetic,
antimutagenic, anti-inflammatory, and immunomodulatory effects [7–11]. Moreover, con-
trary to what was believed in ancient times, research demonstrated that spices are a rich
source of proteins, lipids, vitamins, and minerals [12].

Organoleptic and nutraceutical properties of spices are mainly attributed to their bioac-
tive compounds such as crocin, eugenol, piperine, curcumin, cinnamaldehyde, capsaicin,
quercetin, kaempferol, vanillic acid, caffeic acid, coumaric acid, among others [5,11,13]. As
a result, they have salient applications in the food and beverage, cosmetics, perfumery,
pharmaceutical, and medical industries [2,14].

Foods 2022, 11, 579. https://doi.org/10.3390/foods11040579 https://www.mdpi.com/journal/foods

https://doi.org/10.3390/foods11040579
https://doi.org/10.3390/foods11040579
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://orcid.org/0000-0002-3850-6774
https://orcid.org/0000-0002-9587-9091
https://orcid.org/0000-0002-6685-1639
https://orcid.org/0000-0001-8921-9858
https://doi.org/10.3390/foods11040579
https://www.mdpi.com/journal/foods
https://www.mdpi.com/article/10.3390/foods11040579?type=check_update&version=1


Foods 2022, 11, 579 2 of 22

Spices are a highly demanded product worldwide, whose market is valued at approxi-
mately 12,700 million dollars with a favorable projected growth for subsequent years [15,16].
The high economic value of spices makes them susceptible to fraud and adulteration at
different processing stages (production, storage, transport, and distribution) [17]. Adul-
teration is the act of intentionally adding undeclared compounds or substances for major
economic gain at the expense of food quality and consumers’ health. Common adulterated
spices are saffron, vanilla, turmeric, cardamom, and paprika [1,18]. Usually, spices are
adulterated with plant compounds similar in appearance but with a lower value (e.g., peels,
leaves, petals, seeds, and grains), old batches of the same spice, inferior varieties, and
other products (e.g., ground stones, brick dust, sawdust, flour, and starch); in addition to
artificial colors (Sudan I–IV, Orange II, Metanil Yellow, Basic Red 46, Rhodamine B, and
Malachite Green), which can be carcinogenic and genotoxic [13,16,18–20]. On the other
hand, although they are not considered spices, cocoa and coffee have an intense aroma and
flavor and are highly consumed around the world. Due to the rise in demand in recent
years, it is important to ensure that the quality of the products is maintained since these are
often adulterated with products with similar physical characteristics after being roasted
and ground.

Besides authentication (absence of adulteration), quality control of coffee, cocoa, and
spices includes:

• Evaluation of sensory and physical characteristics, i.e., solubility, density, presence or
absence of external materials;

• Analysis of physicochemical parameters such as moisture content, ash, protein, and fat;
• Presence and concentration of bioactive compounds;
• Microbiological analysis and absence of natural contaminants such as mycotoxins and

heavy metals;
• Classification of spices based on their geographical origin and variety [19,21].

Ensuring the quality of coffee, cocoa, and spices requires the use of appropriate tech-
nologies. Conventional methods for authentication and quality control range from simple
techniques such as Kjeldahl, Soxhlet, and UV/vis to more specialized ones such as high-
performance liquid chromatography (HPLC), gas chromatography (GC), capillary elec-
trophoresis (CE), mass spectrometry (MS), X-ray fluorescence (XRF), inductively coupled
plasma (ICP), proton transfer reaction (PTR), matrix-assisted laser desorption/ionization-
time-of-flight (MALDI-TOF), and DNA analysis, among others. Nevertheless, all these
require prior sample preparation and detailed knowledge; besides, the procedure is slow,
destructive, expensive, pollutant, and hazardous for the analyst [12,20,22]. Consequently,
better alternatives should be implemented, namely infrared spectroscopy (IR) [23–25].

Mid-infrared (MIR) and near-infrared (NIR) spectroscopy are widely used in food qual-
ity control because spectra analysis in the fingerprint region provides unique information
to differentiate compounds, even if two molecules have the same functional groups [26–29].
There is a greater amount of research on the application of NIR spectroscopy to different
spices compared to MIR spectroscopy [30–38]. Nonetheless, studies on MIR spectroscopy
have increased over the years since this method can identify trace elements. Additionally,
MIR spectra are simpler to interpret and present greater specificity and selectivity than
NIR [27,39,40]. Therefore, the present work assesses the application of Fourier transform
mid-infrared (FT-MIR) spectroscopy on the most economically important spices.

We conducted a review of the literature on FT-MIR spectroscopy combined with
multivariate analysis methods for authentication and quality control of coffee, cocoa,
saffron, turmeric, vanilla, and other spices. In addition, to the advantages and limitations
of using this technology.

2. Mid-Infrared (MIR) Spectroscopy

MIR spectroscopy is a versatile technique based on the vibration of molecular bonds
of compounds that covers the 4000–400 cm−1 region of infrared (IR) spectrum. Vibrational
motions are classified into two groups: stretching (symmetric and asymmetric) and bending
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(scissoring, rocking, wagging, and twisting) [41]. Stretching vibration occurs with the
change in bond length, while bending vibrations generate a change in angle [2]. The
absorption bands of the MIR spectrum are related to those vibrations, and their intensity
provides information on the concentration of a compound in a food matrix; hence, MIR
spectroscopy can be applied for qualitative and quantitative analysis [28]. Moreover, the
MIR region is robust and reproducible, which allows identifying with certainty minimal
differences in the chemical composition of a sample [42]. The MIR spectrum is divided
into four major regions: stretching (4000–2500 cm−1), triple bonds (2500–2000 cm−1),
double bonds (2000–1500 cm−1), and fingerprint (1500–400 cm−1). In the fingerprint region,
unique absorbance patterns of each sample are presented, allowing the distinction of similar
substances [27,43].

Advances in MIR spectroscopy led to the incorporation of FT-MIR spectrometer in food.
FT-MIR is a practical, sensitive, and fast equipment that has a high signal-to-noise ratio
(SNR) and provides well-defined spectra in milliseconds without losing resolution [43,44].
FT-MIR spectroscopy combined with multivariate analysis enables the rapid characteriza-
tion and classification of foods, detecting compounds present at concentrations of parts per
billion [42,45].

FT-MIR spectroscopy allows the analysis of solid, liquid, or gaseous samples using
different sampling techniques (transmission or reflectance) that improve the resolution of
the obtained spectra [44,46]. Transmission sampling techniques require sample preparation,
including NaCl, KBr, CaF2, CsBr, and ZnSe cells for liquids; KBr pellets and Nujol mulls for
solids; and glass cells with NaCl/KBr-coated windows for gases [42,43,47,48]. On the other
hand, reflectance sampling comprises diffuse reflectance (DRIFT), specular reflectance, and
attenuated total reflectance (ATR) [49]. ATR is the most widely used sampling technique
in FT-MIR spectroscopy because it is easy to use, non-destructive, and fast; furthermore,
samples require minimal or no preparation, which improves reproducibility by reducing
spectral variation. MIR spectra of solid foods, liquids, powders, pastes, and viscous fluids
can be obtained through ATR-FT-MIR spectroscopy [45,50] using diverse crystal materials
(typically made of ZnSe, ZnS, Ge, Si, or diamond) according to sample type [27].

3. Multivariate Analysis

Combining instrumental techniques with multivariate analysis can extract qualitative
and quantitative information from MIR spectra, which enhances the development of
composition, adulteration, and traceability methods for food analysis [51–53].

Multivariate analysis uses mathematical and statistical tools to provide complete
information from large chemical data sets [54,55]. First, it is necessary to interpret the MIR
spectra to identify the compounds from the sample and choose the best processing strategies
for the multivariate analysis model [56,57]. Subsequently, MIR spectra are pretreated to
eliminate or reduce variations produced by the nature of the sample or environmental
conditions during the measurement. Spectral pretreatments include baseline correction,
normalization, smoothing, and derivative [58,59].

- Normalization: Reduces spectral variation generated by sample manipulation. Multi-
variate analysis programs offer different normalization methods, with multiple scatter
correction (MSC) and standard normal variable transformation (SNV) being the most
used. MSC separates the light scattering signals from the chemical absorption signals
of the sample, making the chemometric analysis insensitive to changes in the baseline
spectrum. At the same time, SNV removes multiplicative scattering and particle size
interferences. Both normalizations lead to similar results, so it is unnecessary to test
both when optimizing a model [60,61];

- Baseline correction: Removes baseline slopes from spectra commonly generated by
IR beam scattering. Baseline correction attempts to correct spectra without distorting
band intensities or introducing discontinuities [62];

- Smoothing: Removes or reduces noise from MIR spectra using algorithms but also
degrades the resolution of the spectrum by broadening its characteristics. The amount
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of noise in the spectrum is related to the number of scans performed, the higher the
number, the lower the analytical signal’s noise. The most commonly used algorithm is
the Savitzky–Golay algorithm, which aims to minimize the distortion of the spectrum;
the degree of smoothing to be applied will depend on the bandwidth, care must be
taken since a very high smoothing excessively broadens the bands generating a loss of
resolution, so its use is not recommended in very sharp bands [53,60];

- Derivative: It can be first or second order and is used to correct for changes in the
baseline and reduce the effect of overlapping bands. Derived spectra present sharper
features compared to the original spectra. The first and second-order derivatives
eliminate any deviation in the baseline. However, the second-order derivative is also
helpful in identifying band positions in complex regions [53,63].

After applying the necessary spectral pretreatments, chemometric models are devel-
oped using classification tools such as principal component analysis (PCA) and hierarchical
cluster analysis (HCA) and quantification tools such as principal component regression
(PCR), multiple linear regression (MLR), and partial least squares (PLS) regression [29,42,64].
The most used chemometric tools in food for classification (PCA) and quantification (PLS)
analysis were briefly addressed [52,65].

3.1. Principal Component Analysis (PCA)

Principal component analysis (PCA) is a traditional chemometric technique that im-
proves the understanding of an extensive spectral data set by reducing it to a small num-
ber of new uncorrelated variables (orthogonal variables) called principal components
(PCs), which contain the maximum information (maximum variance) of the original data
set [66,67]. The first PC explains most of the variance; the second PC explains the infor-
mation not modeled by the first PC until reaching the last PC, which mainly describes the
noise [56,65,68]. Each sample is projected onto a graphical representation whose value
of its coordinates is called scores or loadings. The graphical display of scores helps find
clusters in a data set and identify outliers or misclassified samples that can be reanalyzed
or removed from the data set to be processed [57,69]. In addition to PCA, there are other
frequently used tools for sample classification or discrimination such as linear discriminant
analysis (LDA), hierarchical cluster analysis (HCA), factor discriminant analysis (FDA),
canonical variant analysis (CVA), artificial neural networks (ANN), partial least squares dis-
criminant analysis (PLS-DA), random forest (RF), quadratic discriminant analysis (QDA),
k-nearest neighbors (k-NN), supervised local linear embedding (SLLE), and support vector
machines (SVM) [28,69,70].

3.2. Partial Least Squares Regression (PLS)

Partial least squares (PLS) regression is the most popular multivariate calibration tool
for data processing and quantitative model development [57,58,64]. From the spectral data,
the PLS algorithm calculates new uncorrelated latent variables (LV) called factors, which
explain the maximum covariance between spectral data and analytical data obtained from
a reference method. The first LV maximizes the covariance between spectral and analytical
data while the latter explains a decreasing residual variance [56,58,69,70]. When evaluating
a PLS regression model, the standard deviation of calibration error (SDEC) calculated from
the samples with which the model was built and the standard deviation of prediction
(SDEP) calculated with samples different from the one used in the construction of the
model are considered [57]. Other algorithms used less frequently for the development of
quantitative models are principal component regression (PCR), multiple linear regression
(MLR), and support vector machine (SVM) regression [28,70].

Ensuring the prediction accuracy of unknown samples requires a multi-step process:
selecting a set of representative FT-MIR spectra, determining the property of interest
using a reference method, choosing the calibration (3/4) and validation samples (1/4),
performing the data pretreatment, applying the classification or quantification algorithm,
and validating the model [58,71].
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4. FT-MIR Spectroscopy Applications in Coffee, Cocoa, and High-Priced Spices

Globally, the highest-priced spices are obtained from not widely cultivated plants or
demand meticulous and laborious production processes, e.g., saffron, vanilla, turmeric,
paprika, cinnamon, and cardamom [16,17]. The following sections address FT-MIR spec-
troscopy and applications to determine the authenticity and quality of those spices. Addi-
tional studies on coffee and cocoa are included for their high economic impact and broad
use [72].

4.1. Coffee

Coffee is one of the main traded crops and the second most consumed beverage
worldwide [73,74]. The coffee plant belongs to the genus Coffea L., which comprises
more than 100 species, but only Coffea arabica (Arabica coffee) and Coffea canephora (Robusta
coffee) are of commercial and economic importance [72,75]. After harvesting, coffee cherries
undergo processing (dry, semi-wet, or wet) to separate the coffee beans (green or raw)
from the fruit and reduce their moisture content (up to 10–12%). Likewise, it facilitates
coffee beans transportation without a loss of quality [76,77]. In the international market,
the leading coffee exporting countries are Brazil, Vietnam, Indonesia, Colombia, and
Ethiopia [75,78].

Green coffee beans require a roasting process for consumption. Coffee roasting softens
the bean, facilitates the detachment of the husk, and augments coffee’s characteristic color,
flavor, and aroma. During this method, some coffee compounds are degraded (proteins,
trigonelline, chlorogenic acids, and phenols), and others are formed (melanoidins and
volatile compounds) [77–79]. Initially, roasting is carried out at 180 ◦C aiming to reduce
the moisture content of the beans to 1.5–5%; then, the temperature is raised to 200–300 ◦C
commencing Maillard and caramelization reactions, which lead to the formation of volatile
substances that generate coffee characteristics. Once the desired roasting is obtained, cof-
fee beans are cooled by water or air to stop the biochemical reactions and avoid further
degradation. Roasted coffee beans consist of polysaccharides (38–42%), lipids (11–17%),
proteins (7.5–10%), aliphatic acids (1.6%), chlorogenic acids (2.5–3.8%), caffeine (1.3–2.4%),
trigonelline (0.7–1%), minerals (4.5–4.7%), volatile compounds (0.1%) and melanoidins
(23–25%) [80,81]. Besides providing health benefits, (e.g., vasoconstrictor, neuroprotec-
tive and neurostimulator, antioxidant, anti-inflammatory, and anticarcinogenic), caffeine,
trigonelline, chlorogenic acids, and volatile compounds content are related to coffee qual-
ity [79,81–84]. Approximately 60–80% of the world’s coffee production is obtained from
Coffea arabica species and the other from Coffea canephora [77,85]. Both commercial species
of coffee differ in composition. C. canephora has a high content of caffeine and chloro-
genic acids; therefore, C. arabica quality is considered superior and double the price of
C. canephora (Robusta coffee). Moreover, the geographical origin of C. arabica can further
raise its cost [86–88]. After roasting and grinding, those differences become imperceptible;
as a result, C. arabica beans can be adulterated with C. canephora to reduce production
costs [73]. Other low-grade products might be added to C. arabica, for example, coffee
husks and grounds, corn wheat, barley, soybean, and rye [74,86,89]. Coffee quality and au-
thenticity are generally measured through chromatography (HPLC and GC), spectroscopy
(UV-vis, NMR, fluorescence, IR, and Raman), inductively coupled plasma (ICP), real-time
PCR, atomic absorption spectrometry (AAS), and mass spectrometry (MS) [84,87,88].

FT-MIR spectroscopy and multivariate analysis are applied for coffee authentication
and quality control (Table 1). Wang et al. [90] implemented these techniques to detect and
quantify adulteration of Kona coffee with lower-quality coffee. They used ground and
brewed coffee in spectra range (1900–800 cm−1), first and second derivative pretreatments,
and PCR and PLS analysis to calibrate the models. The best calibration results were
obtained with the spectra of brewed coffee (R2 = 0.999), applying the second derivative and
PLS algorithm. The unfavorable results for ground coffee spectra were explained by low
spectral data precision due to particle shape and size.
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Ribeiro et al. [91] performed discrimination on commercial coffee samples according
to their caffeine content (caffeinated and decaffeinated) and classification based on roasting
degree. They used DRIFT, smoothing, and multiplicative scatter correction (MSC) pre-
treatments and selected the spectral regions 3600–2820 and 1800–784 cm−1. Later, they
effectuated the discrimination model using PCA and the classification model with PLS-DA
achieving 100% classification of the external validation samples. Craig et al. [92,93] devel-
oped multivariate analysis models to discriminate defective and non-defective green coffee
beans by comparing different sampling techniques (KBr pellets, ZnSe ATR, and DRIFT)
and multivariate analyses (PCA, LDA, and HCA). They executed baseline correction and
normalization in all models, except in the KBr pellets’ model, where the first derivative
was applied. Subsequently, they developed the classification models based on PCA and
LDA algorithms using the DRIFT data, whose predictive capacity ranged between 95% and
100% [94]. Finally, the authors classified Arabica coffee according to cup quality. They used
ZnSe ATR sampling, baseline correction, normalization, MSC, first and second derivative;
employed PCA to separate Arabica and Robusta coffee; and built the classification models
with PLS-DA, which presented 100% sensitivity and specificity in calibration but 67–100%
in validation [95]. Reis et al. [96–98] conducted diverse studies on roasted coffee, adulter-
ants (coffee husk, coffee grounds, roasted corn, and roasted barley), and coffee-adulterant
mixtures using 3200–700 cm−1 spectral region and DRIFT sampling. Through PCA, they
separated the pure samples and each of the adulterants and identified the spectral regions
with significant variations. Simultaneously, they elaborated LDA classification models for
roasted coffee, pure adulterant, and coffee-adulterant mixtures, obtaining 100% predic-
tion and recognition capacity. After, they tested a PLS algorithm to predict the level of
adulteration of the samples (1–66%, w/w), achieving high calibration (0.99) and validation
(0.98) coefficients and low percentage of error (1.23% for calibration and 2.67% for valida-
tion). Researchers simultaneously quantified, with the ZnSe ATR sampling technique, the
above-mentioned adulterants in roasted coffee, obtaining correlation coefficients of 0.99 for
validation and calibration and a percentage of error of 0.69% for calibration and 2.00% for
validation [99]. Lastly, they performed a discriminant analysis of the data by comparing
DRIFT and ZnSe ATR techniques, employing hierarchical models (HM), and then spectral
data fusion (DF). The percentage of misclassified samples decreased to 0% after DF [100].

Brondi et al. [101] introduced two similar models to detect and quantify adulteration
of roasted coffee with corn (0.5–40% w/w). The models were built from data collected
with differential scanning calorimetry (DSC) and FT-MIR techniques coupled to PCA and
PLS. They were able to discriminate between pure coffee and coffee-corn mixtures with
both techniques. The FT-MIR model presented lower cross-validation mean square er-
ror (RMSECV = 2.7%) than DSC; therefore, it has a great application potential. Another
approach proposed by Link et al. [102] classified Arabica coffee samples based on geo-
graphic and genotypic origin using KBr pellets sampling. Spectra (1900–800 cm−1 region)
were pretreated with normalization, baseline correction, and smoothing. They employed
a radial basis function (RBF) network, an artificial neural network (ANN), to build the
classification models, getting better geographic (100%) and genotypic (94.44%) classification
results compared with soft independent modeling of class analogy (SIMCA) and multilayer
perceptron (MLP). Bona et al. [103] also performed geographical classification of Arabica
coffee through SVM and NIR and MIR spectroscopy. The best results were obtained with
the NIR-SVM approach, where all samples were correctly validated.

Correia et al. [104] quantified Robusta coffee content in adulterated Arabica coffee sam-
ples using ZnSe ATR sampling. They analyzed the samples with FT-MIR and developed
a multivariate PLS model that presented low detection (LOD = 1.29%) and quantifica-
tion (LOQ = 4.3%) limits and a high coefficient of determination (R2 = 0.9635) in the
cross-validation. They further evaluated the samples by negative-ion mode electrospray
ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI(-)FT-ICR MS)
and modeled the data by univariate analysis, obtaining slightly better results. However,
FT-MIR is a simpler technique than ESI(-)FT-ICR MS.
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Medina et al. [105] compared three spectroscopic techniques (1H-NMR, NIR, and MIR)
for coffee discrimination according to species (Arabica and Robusta) and origin (Colombia
and other countries). FT-MIR spectra were collected in the 1800–800 cm−1 range and
pretreated with normalization and second derivative; the models were built using PCA
and PLS-DA. All techniques successfully discriminated the samples by species, although
discrimination by origin FT-MIR and 1H-nuclear magnetic resonance (1H-NMR) showed
better results than NIR. The authors emphasized that FT-MIR is a faster and cheaper
technique in comparison with 1H-NMR.

Obeidat et al. [106] performed another model for origin discrimination in green coffee
samples from different countries (Brazil, Colombia, Ethiopia, Kenya, and Yemen) applying
ZnSe ATR. They used the 4000–600 cm−1 spectral region pretreated with normalization.
PCA algorithm allowed to identify the bands with greater spectral variation (2920–2850
and 1745 cm−1), enabling successful discrimination of samples based on origin.

Belchior et al. [107], with the assistance of a panel of tasters, built a model of espresso
coffee discrimination according to its sensory characteristics. Unlike other researchers,
they used commercial capsules of different coffee brands and diverse roasting degrees.
Tasters evaluated the sensory quality of espresso coffee on a 5-point scale. The spectra
of the beverages were collected in the 3000–600 cm−1 region, measured with ZnSe ATR.
The data were pretreated with autoscaling and analyzed by PCA to group the samples
according to aroma and flavor. Then, they developed discrimination models for each
sensory attribute with PLS-DA, which showed high sensitivity and specificity for calibration
and validation and low classification errors in cross-validation. The same authors built a
model for predicting quality scores in beverages prepared from specialty samples of green
Arabica coffee (quality score of 81–91 points established by cuppers). FT-MIR spectra were
obtained under the same conditions as their previous work. PLS algorithm results were
satisfactory for both calibration (R2 = 0.99 and RMSEC = 0.23) and validation (R2 = 0.97 and
RMSEP = 0.23) [108]. Lastly, Flores-Valdez et al. [109] identified and quantified adulterated
samples of Arabica coffee with corn, barley, soybeans, oats, rice, and coffee husks at levels
of 1–30%. MIR spectra were obtained with diamond ATR and processed with atmospheric
filter pretreatments, normalization, smoothing, and baseline correction; using the spectral
regions of 3500–2800 and 1800−800 cm−1, they optimized a discrimination model applying
a SIMCA algorithm and developed PCR, PLS1, and PLS2 algorithms for quantification
models. The discrimination model presented an accuracy of 100% and differentiated all
adulterants, while the best quantification model was obtained with the PLS1 algorithm with
outstanding calibration (R2 = 0.99 and SEC = 0.39–0.82) and validation results (R2 = 0.99
and SEP = 0.45–0.94).

Table 1. Applications of FT-MIR spectroscopy in coffee quality control.

Spectral Range
(cm−1) Sampling Technique Algorithm Purpose of the Analysis Reference

Arabica coffee variety Kona typica

1900–800 ZnSe ATR PCR
PLS

Detection and quantification of adulteration of coffee grown
in Kona, Hawaii, with coffee from another region. [90]

Brazilian coffee

3600–2820
1800–784
1900–800

DRIFT PCA
PLS-DA

Discrimination of decaffeinated coffee and classification
according to roasting degree. [91]

KBr pellets RBF (ANN) Coffee classification by geographic and genotypic origin. [102]

Green Arabica coffee

4000–700 ZnSe ATR
DRIFT

PCA, LDA
HCA

Discrimination of immature coffee (defective) and mature
coffee (non-defective). [92]

4000–700 KBr pellets
ZnSe ATR, DRIFT

PCA
HCA

Discrimination of defective and non-defective coffee using
three different sampling techniques. [93]
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Table 1. Cont.

Spectral Range
(cm−1) Sampling Technique Algorithm Purpose of the Analysis Reference

3600–600 DRIFT PCA,
LDA

Discrimination of defective and non-defective roasted
coffee. [94]

1800–800 KBr pellets SVM Geographical classification of different coffee genotypes. [103]

4000-600
2920–2850

1745
ZnSe ATR PCA Discrimination of coffee beans according to their origin

(Brazil, Colombia, Ethiopia, Kenya, and Yemen). [106]

3000–900 ZnSe ATR PLS Prediction of quality scores given by cuppers for coffee
beverage samples. [108]

Roasted Arabica coffee

3200–700 DRIFT PCA
LDA

Discrimination between roasted coffee, corn, coffee husk,
coffee-corn, and coffee-husk blends. [96]

3200–700 DRIFT PCA
LDA

Discrimination between roasted coffee, coffee husks, coffee
grounds, corn, barley, and coffee-adulterant blends. [97]

3200–700 DRIFT PLS Prediction of adulteration levels of roasted coffee with
different adulterants (pure and blended). [98]

4000–700 ZnSe ATR PLS Simultaneous quantification of four adulterants (coffee
husk, coffee grounds, barley, and corn) in roasted coffee. [99]

4000–525 Diamond ATR PCA
PLS

Detection and quantification of adulteration of roasted
coffee with corn. [101]

3200–700
4000–600

DRIFT
ZnSe ATR

PLS-DA
HM
DF

Discrimination between roasted coffee and adulterated
coffee using two sampling techniques and merging data. [100]

ZnSe ATR PCA
PLS-DA

Classification of cup quality of coffee with different roasting
degrees. [95]

3500–2800
1800–800 Diamond ATR

SIMCA
PCR

PLS1, PLS2

Identification and quantification of adulterated coffee with
coffee husks, corn, barley, soybeans, oats, and rice. [109]

Arabica and Robusta coffee

4000–600
2000–1500
3000–2750

ZnSe ATR PLS Quantification of Robusta coffee content in blends with
Arabica coffee. [104]

1800–800 ATR PCA
PLS-DA

Comparison of three spectroscopic techniques (1H-NMR,
NIR, and MIR) for the discrimination of coffee by species

and origin.
[105]

Commercial coffee capsules

3000–600 ZnSe ATR PCA
PLS-DA

Discrimination of espresso coffee according to sensory
characteristics. [107]

PCR: principal component regression; PLS: partial least squares regression; PCA: principal component analysis;
PLS-DA: partial least squares discriminant analysis; LDA: linear discriminant analysis; HCA: hierarchical cluster
analysis; ANN: artificial neural networks; HM: hierarchical models; DF: data fusion; SVM: support vector machine;
SIMCA: soft independent modeling of class analogy; PLS1: partial least squares with single y-variables; PLS2:
partial least squares with multiple y-variables.

4.2. Cocoa

Cocoa beans are used to produce chocolate; these are native to South America but
domesticated in Central America. Afterward, the Spanish sped it to Europe and then
distributed it to other countries. Nowadays, it is mainly grown in the hot and humid
regions of Africa [110], Central and South America, and Asia [111]. There are three main
varieties of cocoa: Criollo, Trinitario, and Forastero; the Criollo variety is not produced as
much as other varieties despite the suitable quality of its cocoa; this is mainly grown in
America. On the other hand, Forastero is produced mainly in Africa; even if its cocoa is not
as suitable as Criollo, it has better yields. Lately, Trinitario variety is a cross between Criollo
and Forastero, and it yields cocoa of reasonably suitable quality. Although the quality of
cocoa depends on the variety of origin, another determining factor is the suitable harvest
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and proper drying and fermentation. During fermentation, the conditions are provided
for the characteristic flavor and aroma of chocolate to develop in the grain through the
microorganisms that intervene in the process. A correct process could produce suitable
cocoa quality [112].

Due to the increase in the demand for cocoa, it is important to have a technique that
allows determining the suitable quality of the product or a correct classification of the kind
of variety. Table 2 summarizes the works on FT-MIR spectroscopy application to cocoa
and chocolate.

Table 2. Applications of FT-MIR spectroscopy on quality control of cocoa.

Spectral Range
(cm−1) Sampling Technique Algorithm Purpose of the Analysis Reference

Chocolate

3600–2800
1800–500 ATR cell PCA

PLS Determination of cocoa solids content in chocolates. [113]

1800–700 Diamond ATR PLS Quantification and prediction of antioxidant
capacity and catechin concentration in chocolate. [114]

Chocolate and fermented cocoa beans

4400–600 ZnSe ATR PLS Prediction of antioxidant capacity and total
phenolic content. [115]

Cocoa bean shells

4000–500 Ge ATR PCA
PLS-DA

Identification of systematic patterns related to the
geographical origin of the samples. [116]

PCA: principal component analysis; PLS: partial least squares regression; SIMCA: soft independent modeling of
class analogy; PLS-DA: partial least squares discriminant analysis.

Batista et al. [115] used cocoa beans spontaneously fermented and inoculated with Sac-
charomyces cerevisiae to quantify the antioxidant capacity and the total phenolic compounds
of the beans as well as the chocolate produced from them. Results indicated variations
in phenolic composition between spontaneously fermented and inoculated samples. The
PLS model for total phenolics and antioxidant capacity prediction showed a correlation
coefficient >0.94.

Santos et al. [113] performed models for predicting cocoa solids in chocolate, which
showed excellent prediction and generalization capability for commercial samples by ap-
plying PLS to the MIR data set and reported that the cocoa solids content in 14% of tested
chocolates differed in more and 10% of the content presented on the label. On the other
hand, Hu et al. [114] built five PLSR models and cross-validated them to quantify cate-
chin, antioxidant capacity, and total phenolics in chocolate, achieving suitable prediction
capability for DPPH (R2

p = 0.89), ORAC (R2
p = 0.90), Folin–Ciocalteu (R2

p = 0.88) and (+)-
catechin (R2

p = 0.86) but low accuracy in prediction of (−)-epicatechin (R2
p = 0.72). Finally,

Mandrile et al. [116] used NIR, FT-MIR, and inductively coupled plasma-optical emission
spectroscopy (ICP-OES) in conjunction with PCA to authenticate the geographical origin of
cocoa shells through their molecular and elemental composition. The best classification
results were obtained using the three spectroscopic techniques and PLS-DA to merge the
PCA data obtained with each technique and were for Central African samples with an
accuracy of 0.84.

4.3. Saffron

Saffron is derived from the dried red stigmas of the Crocus sativus flower [117]. Saf-
fron flowers do not naturally reproduce and require human handling to subsist, while
harvesting stigmas is generally performed manually, making it a delicate process [118,119].
Nonetheless, their ability to add flavor, aroma, and color to foods makes them a largely de-
manded spice [120]. Saffron, also called “red gold,” is the most expensive spice worldwide
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(valued at USD 40–60/g) yet highly monopolized by Iran with 90%, followed by India,
Afghanistan, Greece, Morocco, Spain, and Italy [117,121,122].

In addition, its antioxidant, anti-inflammatory, and antigenotoxic effects attract the
attention of medical and pharmaceutical industries [117,123], having a beneficial influence
on cardiovascular and respiratory diseases, metabolic syndrome, depression, anxiety, pre-
menstrual syndrome, digestive disorders, and different types of cancer [124–126]. Despite
the multiple benefits of saffron, it should be consumed moderately as high doses may
cause toxicity [124]. Four bioactive compounds provide saffron sensory and nutraceutical
properties: crocin, a carotenoid with high antioxidant activity responsible for the red col-
oring of the stigmas (or orange when dissolved in water and golden-yellow when mixed
with food); crocetin, a carotenoid dicarboxylic acid precursor of crocin; safranal, the main
metabolite of saffron, which has a pungent aromatic note and is a potent antioxidant and
an anticarcinogen; and picrocrocin that provides a bitter taste and whose hydrolysis during
drying allows the release of safranal [125–128]. The detection and quantification of these
bioactive compounds in conjunction with the geographical origin determine the quality
of saffron, classified into categories I (high quality), II (medium quality), and III (lower
quality) [123,124,126]. However, saffron may be adulterated by adding floral parts of the
same (styles and stamens) or other species (calendula, safflower, buddleja, madder, and
gardenia), cheaper spices (turmeric and paprika), corn, beet fibers, or artificial colorants
that may be toxic to human health, such as Allura Red, Azorubine, Erythrosine, Ama-
ranth, Carminic acid, Tartrazine, Sunset Yellow, Sudan I–IV, Ponceau 4R. The addition of
inorganic salts and immersion of saffron in glycerin or syrups to increase weight is also
common [120,121,124,129].

Authentication and quality are certified in the international market according to ISO
3632-1/2 [120,123,126]. Saffron quality control can be evaluated through physical (mor-
phological inspection, sensory evaluation, colorimetry, and gravimetry), chromatographic
(TLC, HPLC, and GC), molecular (real-time PCR, LAMP, and RAPD-SCAR), sensor-based
(E-nose and E-tongue) and spectroscopic (UV-vis, NMR, Raman, MS, FT-NIR, and FT-MIR)
methods [22,124]. Table 3 summarizes FT-MIR spectroscopy use for saffron quality control.

Anastasaki et al. [130] applied FT-MIR spectroscopy to discriminate the origin of
saffron. Using 250 samples from Greece, Iran, Italy, and Spain, they obtained IR spectra of
crushed stigmas through DRIFT and saffron volatile extracts with a ZnSe optical window.
Smoothing, baseline correction, and second derivative pretreatments were applied to all
IR spectra. Authors performed multivariate PCA-DA analysis in the IR spectra of the
crushed stigmas testing different spectral regions, achieving a low recognition ability
(67.6%). The best discrimination results were reached in the spectral region 2000–700 cm−1

with 98.4% total explained variance and 93.6% classification. Discrimination between
Italian samples was attributed to the carbonyl group region (1746 cm−1), while the bands
at 1600 and 1670 cm−1 were responsible for the differentiation of samples from the other
countries. Hence, they concluded that FT-MIR spectroscopy along with multivariate
analyses is a fast and environmentally friendly method to verify the geographical origin
of saffron, which could be applied for quality control, adulteration, and traceability in the
international market.

Table 3. Applications of FT-MIR spectroscopy for saffron quality control.

Spectral Range
(cm−1) Sampling Technique Algorithm Purpose of the Analysis Reference

Ground saffron stigmas

1028
1175–1157 KBr pellets PCA

MLR
Evaluation of the effects of storage conditions and

spoilage detection. [131]

4000–400 Diamond ATR PCA Discrimination between pure and adulterated
samples (safflower, calendula, and turmeric). [132]
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Table 3. Cont.

Spectral Range
(cm−1) Sampling Technique Algorithm Purpose of the Analysis Reference

4000–600
2000–600 DRIFT PLS-DA

PLS

Detection, identification, and quantification of
adulteration with saffron stamens, calendula,
safflower, turmeric, buddleja, and gardenia.

[133]

1800–1400
1300–700 KBr pellets PCA

PLS-DA
Classification of pure and adulterated samples with

carminic acid. [134]

4000–400 KBr pellets
PCA

PLS-DA
PLS

Classification by origin, detection, and
quantification of adulteration with C. sativus style,

calendula, safflower, and Rubia genus.
[135]

4000–400 Diamond ATR EPO-PCA
EPO-SVM

Classification by origin, detection, and
quantification of adulteration with C. sativus style,

calendula, safflower, and Rubia genus.
[136]

Ground stigmas and volatile extracts from Saffron

2000–700 DRIFT
ZnSe window

PCA
DA

Classification by geographical origin (Greece, Iran,
Italy, and Spain). [130]

Ground stigmas and aqueous extracts from Saffron

4000–400 Diamond ATR
SO-PLS-LDA
SO-CovSel-

LDA

Classification by geographical origin (four zones
of Italy). [137]

PCA: principal component analysis; DA: discriminant analysis; MLR: multiple linear regression; PLS: partial
least squares regression; PLS-DA: partial least squares discriminant analysis; SO-PLS-LDA: sequential and
orthogonalized partial least squares linear discriminant analysis; SO-CovSel-LDA: sequential and orthogonalized
covariance selection linear discriminant analysis; EPO-PCA: external parameter orthogonalization with principal
component analysis; EPO-SVM: external parameter orthogonalization combined with support vector machine.

Biancolillo et al. [137], analyzed 114 saffron samples (83 for calibration and 31 for
validation) from four Italian areas (Spoleto, L’Aquila, Sicily, and Città della Pieve) via FT-
MIR and UV-vis spectroscopy. FT-MIR spectra were obtained from the pulverized saffron
samples using a diamond ATR accessory and UV-vis spectra from the aqueous extracts of
saffron. They tested diverse combinations of spectral pretreatments (first and second deriva-
tive, standard normal variate (SNV), SNV + first derivative, and SNV + second derivative)
and simultaneously processed the data from MIR and UV-vis spectra employing two multi-
block strategies: sequential and orthogonalized partial least squares linear discriminant
analysis (SO-PLS-LDA) and sequential and orthogonalized covariance selection linear
discriminant analysis (SO-CovSel-LDA). Better results were obtained with the SO-PLS-LDA
model, which only validated 3 of 31 samples erroneously while SO-CovSel-LDA verified
4 of 31 incorrectly. These coincided and were identified as atypical samples from a broader
collection area (Sicily), whose variability made their validation difficult.

Ordoudi et al. [131] applied FT-MIR spectroscopy to measure apocarotenoid changes
(crocin and picrocrocin) of saffron during storage. They obtained FT-MIR spectra of 52 saf-
fron samples stored in the dark for different periods and analyzed their extracts by UV-vis
spectroscopy and HPLC-DAD. FT-MIR spectra were pretreated with smoothing, baseline
correction, normalization, and second derivative. Results showed modifications in the
1028 cm−1 band associated with glucose residues and in the 1175–1157 cm−1 region related
to the cleavage of glycosidic bonds. Scores computed in the subsequent PCA analysis were
correlated with the data from HPLC-DAD, concluding that the FT-MIR technique consti-
tutes a promising, sensitive and fast tool for saffron quality control. The same authors used
FT-MIR spectroscopy to detect carminic acid (CA) in saffron samples [134]. Spectra were
pretreated with smoothing, baseline correction, and normalization; then used 1800–1400
and 1300–700 cm−1 spectral regions were to perform PCA and PLS-DA. They were able to
separate pure samples from those with high concentrations of CA (>10.0%, w/w) without
prior sample preparation except grinding.
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Furthermore, Petrakis and Polissiou [133] implemented FT-MIR spectroscopy, DRIFT,
and multivariate analyses (PLS-DA and PLS) to identify and quantify plant adulterants
in 230 saffron samples: 50 of pure saffron and 30 mixtures of each type of adulterant, i.e.,
C. sativus stamens, calendula, safflower, turmeric, buddleja, and gardenia. Testing different
pretreatments (smoothing, baseline correction, and normalization) and performing PLS-DA
analysis on data from the fingerprint region of the MIR spectrum (4000–600 cm−1), they
achieved 99% classification between pure and adulterated saffron (5–20% w/w levels). They
also characterized the type of adulterant employing a six-class PLS-DA model on data from
2000 to 600 cm−1 spectral region and quantified each adulterant through PLS methods with
detection limits of 1.0–3.1% (w/w).

Varliklioz et al. [132] compared three spectroscopic techniques (ATR-FTIR, Raman,
and LIBS) to classify pure saffron and adulterated samples with safflower, calendula, or
turmeric. PCA analysis showed that the ATR-FTIR technique achieved better discrimination
results between pure saffron and plant adulterants compared with Raman; nevertheless,
the best inter-class classification results were obtained with the laser-induced breakdown
spectroscopy (LIBS). Therefore, PLS was performed only with LIBS data.

Recently, Amirvaresi et al. [135] compared NIR and MIR spectroscopic techniques
along with multivariate analyses for the detection of adulterants (i.e., C. sativus styles,
safflower, calendula, and Rubia genus) in saffron samples. The authors examined the
spectra of unadulterated samples obtained from each spectroscopic technique by classifying
them with PCA according to their origin (warm and cold climate); they obtained a better
prediction with NIR spectra. Subsequently, they performed a PLS-DA to discriminate pure
samples from the adulterated ones, obtaining satisfactory results with both NIR and MIR
spectroscopy. Lastly, they applied a PLS algorithm to quantify adulteration where the
MIR spectra did not correlate with the level of adulteration; hence, the concentration of
adulterants could not be measured. On a second examination, scholars performed the same
classification with FT-MIR spectroscopy (diamond ATR) employing external parameter
orthogonalization (EPO) for spectral data pretreatment combined with PCA to classify
saffron samples based on their origin (warm and cold climate), obtaining a 90% accurate
prediction [136]. Then, they computed an EPO-SVM algorithm to detect adulterated saffron
samples, achieving better classification results (>95%) in contrast to other multivariate
analyses (RF, QDA, k-NN, PLS-DA, and classification tree). These studies demonstrate
the potential of FT-MIR spectroscopy and multivariate analyses for saffron authentication
(Table 3).

4.4. Vanilla

Vanilla has gained importance in the food industry, is considered native to Mexico,
and its uses date back to the first settlers of the country. The Vanilla genus belongs to
the Orchidaceae family and comprises more than 110 species, of which 15 are aromatic,
and only three are cultivated for commercial purposes [138]. Due to vanilla’s extensive
usage and high price (after saffron), it is important to determine its quality, yet few studies
have implemented FT-MIR spectroscopy on this product (Table 4). Moreno-Ley et al. [139]
identified and quantified adulterations in vanilla extracts with ethyl vanillin and coumarin.
The model was built with 40 samples adulterated with coumarin (0.25–10 ppm) and
40 samples with ethyl vanillin (0.25–10%). A soft independent modeling of class analogy
(SIMCA) was developed to identify and classify the purity of adulterated samples, and
PLS1, PLS2, and PCR algorithms to predict the adulterants concentration, resulting in
an accurate calibrated model (R2 ≥ 0.99). PLS1 algorithm achieved the best prediction
performance (R2 ≥ 0.99). Another study adequately discriminated between adulterated and
unadulterated vanilla samples using SIMCA, PLS-DA, and SVM-C algorithms but could
not identify the geographic origin of the samples [140]. Conversely, Sharp et al. [141] used
FT-MIR spectroscopy and selected ion flow tube mass spectrometry (SIFT-MS) to formulate
an effective model to discriminate the geographical area of vanilla pods according to the
composition of the extracts.
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Table 4. Applications of FT-MIR spectroscopy on quality control of vanilla.

Spectral Range
(cm−1) Sampling Technique Algorithm Purpose of the Analysis Reference

Ethanolic vanilla extracts

4000–700 ZnSe ATR SIMCA Determination of origin according to the main
compounds of the vanilla pods. [141]

3000–1100
1700–1110
1800–850

ZnSe ATR
PLS1
PLS2
PCR

Quantification of adulteration with ethyl vanillin
and coumarin. [139]

4000–700
1549–778 ZnSe ATR

PCA; SIMCA
PLS-DA
SVM-C

Discrimination between pure and adulterated
samples as well as by origin (from Madagascar or

other than Madagascar).
[140]

PCR: principal component regression; PCA: principal component analysis; SIMCA: soft independent mod-
eling of class analogy; PLS1: partial least squares with single y-variables; PLS2: partial least squares with
multiple y-variables; PLS-DA: partial least squares discriminant analysis; SVM-C: support vector machine-
classification mode.

4.5. Turmeric

Yellow turmeric (Curcuma longa) is an ancient spice from South Asia, highly produced
in India. Cultivation and demand have increased at a global scale due to its multiple uses;
besides seasoning, several studies reported that it has health benefits, e.g., antibacterial,
anti-inflammatory, anticancer, and antioxidant properties [142–145]. The large-scale com-
mercialization and export make it susceptible to adulteration with lower-quality products;
hence, IR spectroscopy and multivariate analyses are non-destructive and reliable tools to
determine its quality (Table 5).

Table 5. Applications of FT-MIR spectroscopy in quality control of turmeric.

Spectral Range
(cm−1) Sampling Technique Algorithm Purpose of the Analysis Reference

Yellow turmeric powder

1700–700 Ge ATR PLS Adulteration with Sudan red G dye. [146]

1820–1172 Ge ATR PLS Prediction of total and individual curcuminoid
composition. [147]

4000–400 KBr pellets PCA
HCA

Discrimination between turmeric from Egypt
and Algeria. [148]

White turmeric powder

1700–900 Ge ATR PLS Adulteration with Sudan red G dye. [146]

Curcuminoid tablets

2975–660
1784–1587 Diamond ATR PLS

PCR
Quantification of curcuminoids (curcumin and

desmethoxycurcumin). [149]

Ethanolic extract of Curcuma longa and Curcuma xanthorrhiza

4000–400
2000–400 KBr pellets PCA

CVA
Discrimination and identification between Curcuma

longa and Curcuma xanthorrhiza. [150]

PCR: principal component regression; PLS: partial least squares regression; HCA: hierarchical cluster analysis;
PCA: principal component analysis; CVA: canonical variate analysis.

Dhakal et al. [146] proposed an FT-MIR model to identify the adulteration of yellow
turmeric (Curcuma longa) with white turmeric (Curcuma zedoaria) and Sudan red G dye.
A total of 50 yellow turmeric-white turmeric samples were prepared at concentrations of
10%, 20%, 30%, 40%, and 50%: in addition, 50 yellow turmeric-Sudan red G samples at
concentrations of 1%, 5%, 10%, 15%, 20%, and 25%. Data were collected in the MIR spectra
region and further processed using a PLS regression. PLS regression model was able to
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estimate adulteration with both Sudan red G dye (R2 = 0.97 and RMSEP = 1.3%) and white
turmeric (R2 = 0.95 and RMSEP = 3.0%) [146].

Yeung et al. [151] conducted a bibliometric study of 18,036 articles published on the
biological activity of the main active compound of turmeric: curcumin (diferuloylmethane),
and its derivatives, also called curcuminoids. Due to the medicinal interest of these
compounds (which can also determine the quality of turmeric) several methods have
been proposed to identify them. For instance, Wulandari et al. [147] implemented FT-MIR
spectroscopy along with PLS to predict the curcuminoid content in turmeric from different
regions of Java Island in Indonesia. Spectra were collected in 4000–650 cm−1 spectral region.
The predicted concentration values were compared with the actual measures obtained
by HPLC, resulting in a high correlation coefficient >0.98. Siregar et al. [149] measured
curcumin and desmethoxycurcumin in a pharmaceutical formulation. FT-MIR spectra were
subjected to several optimizations, including wavenumber selection and derivatization, to
obtain the best prediction models (through PLS regression) for the relationship between
actual curcuminoid values determined by HPLC and values calculated by FT-MIR. The
coefficient of determination for calibration and validation in the two compounds was >0.99,
which indicated an acceptable accuracy of the method [149].

Another application of FTIR analysis was proposed by Rohaeti et al. [150], who applied
FT-MIR spectrometry to differentiate between yellow turmeric (Curcuma longa) and Java
turmeric (Curcuma xanthorrhiza) from different regions of Indonesia. Samples of 35 dried
and 35 powdered turmeric species were taken. FT-MIR spectra were recorded in the re-
gion of 4000–400 cm−1. PCA and CVA were computed for species discrimination using
2000–400 cm−1 spectral region data, achieving suitable accuracy in species discrimina-
tion. On the other hand, Gad and Bouzabata [148] tested an FT-MIR model coupled with
PCA and HCA algorithms to classify 30 Curcuma samples by origin (Egypt and Algeria).
Curcuminoid content (curcumin, desmethoxycurcumin, and bisdemethoxycurcumin) was
previously quantified by HPLC, and then PCR and HCA algorithms were then applied
to estimate variations. However, the FT-MIR model could not discriminate between the
Egyptian and Algerian samples. The authors attribute the results to both species containing
the same curcuminoids but in different concentrations.

4.6. Other Spices

Recent studies have successfully applied FT-MIR spectroscopy on other spices (black
pepper, paprika, oregano, garlic, onion, and star anise) to detect adulterants (Table 6). For
instance, Lohumi et al. [152] used the 1800–0650 cm−1 spectral region to detect adulteration
in paprika with Sudan I dye, performing a hybrid linear analysis to develop the discrim-
ination model for pure and adulterated samples. McGoverin et al. [153] quantified the
adulteration of ground black pepper with buckwheat and millet at concentrations of 5–95%
(w/w) through a PLS algorithm, using spectral regions of 3050–2800 and 1770–550 cm−1.
In addition, they compared results from the FT-MIR and NIR models. Other authors
implemented multivariate analysis models based on FT-MIR and NIR spectra to assess
adulteration in black pepper, garlic, onion, and star anise [30,33,154,155].

Table 6. Applications of FT-MIR spectroscopy in quality control of other spices of commercial interest.

Spectral Range
(cm−1) Sampling Technique Algorithm Purpose of the Analysis Reference

Black pepper

3050–2800
1770–550 Diamond ATR PLS

Comparison of NIR and MIR techniques to
quantify the level of adulteration with buckwheat

and millet in black pepper.
[153]

4000–400 DRIFT
PCA

GA-SVM
PLS-DA

Classification of pure pepper and pepper
adulterated with sorghum or Sichuan pepper

(5–50%).
[156]
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Table 6. Cont.

Spectral Range
(cm−1) Sampling Technique Algorithm Purpose of the Analysis Reference

3800–2800
1800–400 Diamond ATR PCA

OPLS-DA

Comparison between NIR and MIR to detect
adulteration of black pepper with peels, pinheads,

spent material, papaya, and chili seeds.
[155]

4000–720 Ge ATR PCA
Application of microscopy and FT-MIR

spectroscopy to detect organic and mineral
adulterants in black pepper.

[157]

Paprika

1800–650 Diamond ATR HLA Detection of paprika adulteration with Sudan I dye. [152]

3300–2700
1800–400 Diamond ATR PCA

SIMCA

Detection of paprika adulteration with adulterants
(Sudan I and IV, lead chromate, lead oxide,

among others).
[158]

4000–400 Diamond ATR
SO-PLS-LDA
SO-CovSel-

LDA

Authentication of Senise bell pepper and detection
of adulteration with ordinary paprika. [159]

Oregano

3999–2800
1800–550 Diamond ATR PCA

OPLS-DA
Detection of oregano adulteration with olive,
hazelnut, myrtle, cistus g, and sumac leaves. [160]

4000–600 Diamond ATR PCA
PLS

FT-MIR detection of adulteration in oregano and
quantification by LC-MS/MS. [161]

Garlic powder

4000–650
1500–650

1666–1508
Diamond ATR

PLS
PLS-SR
PLS-VIP

Prediction of adulteration of garlic powder with
cornstarch (1–35% w/w). [162]

4000–550 Diamond ATR PCA
OPLS-DA

Comparison of NIR and MIR for the detection of
different adulterants in garlic. [30]

Onion powder

4000–650 Diamond ATR PCA
PLS

Quantification of onion adulteration with
cornstarch (1–35% w/w) using NIR and

MIR spectroscopy.
[33]

Star anise powder

4000–400 KBr pellets PCA
LDA

Comparison of NIR and MIR spectroscopy and the
combination of both techniques to detect

adulteration of star anise with
lower-quality species.

[154]

PLS: partial least squares regression; PCA: principal component analysis; GA-SVM: genetic algorithm optimized
support vector machine; PLS-DA: partial least squares discriminant analysis; OPLS-DA: orthogonal partial least
square discriminant analysis; HLA: hybrid linear analysis; SIMCA: soft independent modeling of class analogy;
SO-PLS-LDA: sequential and orthogonalized partial least squares linear discriminant analysis; SO-CovSel-LDA:
sequential and orthogonalized covariance selection linear discriminant analysis; PLS-SR: partial least squares
regression with selectivity ratios; PLS-VIP: partial least squares regression with variable importance in projection;
LDA: linear discriminant analysis.

5. Conclusions

The commercialization of coffee, cocoa, and spices faces a severe problem; due to
adulteration, it is increasingly difficult to find pure products. This situation affects food
companies’ revenues and consumers’ health, making it imperative to implement fast and
simple techniques for quality control, for instance, IR spectroscopy. The present review
summarized the applications of FT-MIR spectroscopy in conjunction with multivariate
analyses for quality control of coffee, cocoa, and spices of high economic value such as
saffron, vanilla, turmeric, among others.
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FT-MIR spectroscopy and multivariate analysis models have been successfully devel-
oped to discriminate between pure and adulterated products, with the ability to quantify
the level of adulteration, classify diverse spices according to geographical origin or variety,
and measure the content of a specific bioactive compound. Nevertheless, the effectiveness
of each model depends on several factors such as the number and variability of samples,
sampling technique, spectral regions employed, the analytical technique for compounds
quantification, spectral pretreatments, and multivariate analysis algorithms. Increasing the
spectra sample size may improve the model’s reliability.

The previously reviewed studies showed that FT-MIR spectroscopy is a reliable,
fast, simple, non-destructive, and environmentally friendly technique for quality control,
authentication, and traceability of coffee, cocoa, and spices. However, it has been barely
implemented in cocoa and spices of high economic value, for example, vanilla, oregano,
garlic, onion, and star anise. For spices such as cardamom, cinnamon, cloves, cumin,
and ginger, there were no reports of the use of FT-MIR spectroscopy for quality control.
This represents a great area of opportunity for further research studies. Another area
of opportunity for research suggested is to highlight the detection limits of the method
because although FT-MIR spectroscopy has demonstrated detection capacity up to ppb for
adulteration of other types of food, it would be important to know the detection limit in
the adulteration of spices since in the research reviewed in this work few authors report
such values, this would help to establish the field of application of the method.
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