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Monitoring of antimicrobial resistance in commensal Escherichia coli (N = 3430) isolated
from slaughtered broilers, laying hens, turkeys, swine, and cattle in Poland has been run
between 2009 and 2012. Based on minimal inhibitory concentration (MIC) microbiological
resistance to each of 14 tested antimicrobials was found reaching the highest values for
tetracycline (43.3%), ampicillin (42.3%), and ciprofloxacin (39.0%) whereas the lowest
for colistin (0.9%), cephalosporins (3.6 ÷ 3.8%), and florfenicol (3.8%). The highest
prevalence of resistance was noted in broiler and turkey isolates, whereas it was rare
in cattle. That finding along with resistance patterns specific to isolation source might
reflect antimicrobial consumption, usage preferences or management practices in specific
animals. Regression analysis has identified changes in prevalence of microbiological
resistance and shifts of MIC values. Critically important fluoroquinolone resistance was
worrisome in poultry isolates, but did not change over the study period. The difference
(4.7%) between resistance to ciprofloxacin and nalidixic acid indicated the scale of
plasmid-mediated quinolone resistance. Cephalosporin resistance were found in less
than 3.8% of the isolates but an increasing trends were observed in poultry and MIC
shift in the ones from cattle. Gentamycin resistance was also increasing in E. coli of
turkey and cattle origin although prevalence of streptomycin resistance in laying hens
decreased considerably. Simultaneously, decreasing MIC for phenicols observed in cattle
and layers isolates as well as tetracycline values in E. coli from laying hens prove
that antimicrobial resistance is multivariable phenomenon not only directly related to
antimicrobial usage. Further studies should elucidate the scope of commensal E. coli as
reservoirs of resistance genes, their spread and possible threats for human and animal
health.
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INTRODUCTION
Bacterial resistance to antimicrobials has always been intriguing
academic communities. Although high-tech methods are being
available still there are gaps in understanding how bacteria can
cope with chemicals, how they develop resistance strategies and
transfer them between bacterial cells, species, or hosts. Some of
the crucial restrictions are complexity of microbiota present in
various ecosystems (Allen et al., 2013; Perchec-Merien and Lewis,
2013) and studies focused on selected issues at a given point of
time (Dahmen et al., 2012; Wasyl et al., 2012). Human mobility
and easy transfer of goods in globalized world further tangles up
epidemiology of resistance (SVARM, 2012).

Resistant bacteria can compromise public and animal health
and lead to severe economic losses in animal production (Morfin-
Otero et al., 2012; Tadesse et al., 2012). Antimicrobial resis-
tance affecting humans might develop either in public health
area or food production chain where it can be transmitted
from resistant bacteria to humans via several pathways, includ-
ing direct contact with animals or indirect transfer via foods
(EFSA, 2009). Monitoring of resistance in bacterial pathogens
such as Salmonella aims at the timely counter-actions to combat

life or welfare threatening infections (Morfin-Otero et al., 2012).
Eradication, hygiene, and public awareness have diminished
the major epidemiological threats. Subsequently, the number of
pathogens available for antimicrobial resistance testing becomes
insufficient. Commensal bacteria such as E. coli, give an alterna-
tive (Tadesse et al., 2012; Allen et al., 2013). Although there are
some pathogenic phenotypes (Pitout, 2012), most of randomly
selected E. coli from human or animal gut flora might be con-
sidered as non-pathogenic indicators for antimicrobial resistance
(Kaesbohrer et al., 2012; Tadesse et al., 2012). The advantages
of resistance monitoring in commensals result from their high
prevalence, simple and efficient isolation procedures (Allen et al.,
2013) and, compared to pathogenic bacteria, limited possibility
for clonal spread.

Methods used for resistance detection should fit into the pur-
pose of the testing. Novel molecular techniques offering optimal
sensitivity for detection and characterization of resistance mecha-
nisms, might be cost and time-consuming for routine application
in clinical settings (Van Der Bij et al., 2012). Finding of resistance
determinant in a bacterium might not correspond to its pheno-
typic resistance and vice versa (Ozaki et al., 2011; Wasyl et al.,

www.frontiersin.org August 2013 | Volume 4 | Article 221 | 1

http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/about
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/Antimicrobials,_Resistance_and_Chemotherapy/10.3389/fmicb.2013.00221/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=DariuszWasyl&UID=76571
http://community.frontiersin.org/people/AndrzejHoszowski/103546
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=MagdalenaZajac&UID=95657
http://community.frontiersin.org/people/KrzysztofSzulowski/103553
mailto:wasyl@piwet.pulawy.pl
http://www.frontiersin.org
http://www.frontiersin.org/Antimicrobials,_Resistance_and_Chemotherapy/archive


Wasyl et al. Resistance in commensal Escherichia coli

2012). Therefore, classical microbiological methods are preferred
for monitoring purposes (De Jong et al., 2012; EFSA, 2012b; EFSA
and ECDC, 2012; Tadesse et al., 2012). No matter what method
is used, resistance data need to be carefully interpreted. Clinical
breakpoints are useful for assessment of probability of therapeu-
tic success in clinical situation (Morfin-Otero et al., 2012; Van
Der Bij et al., 2012). Epidemiological approach is appropriate
for monitoring of pathogens and commensal bacteria, since it
early detects the changes in resistance (EFSA, 2008). Evaluation of
resistance trends in bacteria might be improved with quantitative
data analyses (EFSA, 2012a; Van Der Bij et al., 2012).

Increase in antimicrobial resistance have led to enhanced
world-wide studies on clinical aspects of resistance and its moni-
toring in both pathogens and commensal bacteria being potential
reservoir of transmissible resistance determinants and indicator
of antimicrobial use (EFSA, 2008, 2012b; EFSA and ECDC, 2012;
Tadesse et al., 2012; Van Der Bij et al., 2012; Allen et al., 2013;
Schroeter et al., 2013). Country-wide antimicrobial resistance
monitoring in commensal Escherichia coli has been implemented
in Poland since 2009 (Wasyl et al., 2010, 2012). Herewith, the
four-year results are shown with special attention to the temporal
trends analysis (EFSA, 2012a).

MATERIALS AND METHODS
Antimicrobial resistance monitoring of indicator E. coli has been
implemented in broilers, laying hens, turkey, cattle, and swine
slaughtered in Poland.

SAMPLING
On January the numbers of animals slaughtered over the previous
year in each abattoir in the country were reported by veterinary
service. Slaughterhouses contributing to the substantial national
annual production were designated for sampling in the upcoming
year. Two hundred samples per studied animal population were
assigned for sampling evenly distributed over the upcoming 12
months. Characteristics of national production of slaughter ani-
mals, numbers of slaughterhouses and sampling plan criteria were
shown in Table 1. Each sample, consisting of three rectal or cloa-
cal swabs, was taken by veterinary officers from three consecutive,
random animals from slaughter line immediately after slaughter.
Transport medium cotton swabs were submitted to the laboratory
via courier service and proceeded within a week after collection.
A minimum set of information on the date, location and sample
source was collected and submitted electronically to the central
database designed for managing of the project.

LABORATORY TESTING
Swabs were streaked directly on MacConkey agar. Colonies
showing typical E. coli morphology were confirmed bio-
chemically and a single isolate representing each sample was
selected for antimicrobial resistance testing with microbroth
dilution method (Sensititre, TREK D. S.). Minimal Inhibitory
Concentration (MIC) of 14 antimicrobials (Table 2) represent-
ing beta-lactams and cephalosporins, quinolones and fluoro-
quinolones, phenicols, aminoglycosides, folate-path inhibitors,
tetracyclines and polymyxins were interpreted according to epi-
demiological criteria (EUCAST, www.eucast.org). Non-wild type

(NWT) MICs above the cut-off values were classified as microbi-
ological resistance and the isolate was supposed to carry relevant
resistance determinant. Only phenotypic resistance was consid-
ered and resistance patterns were used to give possible insight into
co-resistance and cross-resistance. Multi-drug resistance (MDR)
was defined with the profile comprising at least one agent in three
or more antimicrobial classes, extensive drug resistance (XDR)—
from at least seven classes, and pan-drug resistance (PDR)—if
antimicrobials from all but one tested classes were included in the
profile (Magiorakos et al., 2012).

STATISTICAL ANALYSIS
The prevalence of resistance was calculated as a fraction of isolates
with microbiological resistance, within 95% confidence interval
(95% CI). Temporal trends for each study population and all
tested compounds besides colistin were assessed on qualitative
and quantitative results using regression analysis (EFSA, 2012b).
Qualitative results were analysed in logistic model, whereas lin-
ear regression was applied for log-2 MIC data. The p-values lower
than 0.05 indicated significant trends graphically displayed on bar
graphs (Figures 1–6).

RESULTS
During four-year study the number of animals slaughtered in
Poland was steadily increasing although the number of slaughter
plants was declining (Table 1). The adopted slaughter capac-
ity thresholds and the numbers of selected abattoirs have been
adjusted to reach finally from 70% (swine) to 99% (turkeys and
laying hens) of national yearly production. The samples were col-
lected at 439 abattoirs, on 770 (53%) days of the study period.
Considering sample source (target animal), slaughterhouse ID,
and sampling date, 3165 sampling events were identified and the
calculated index of diversity (D = 0.9999) confirmed satisfactory
randomization. Sampling efficacy reached 92% of 4000 planned
incidents with 93.2% E. coli isolation rate. The target number of
170 isolates (EFSA, 2008) was achieved for all animal types but
laying hens slaughtered after laying period (Table 1). As much as
70 out of 638 (11.0%) layer isolates were retrieved from animals
imported from the Netherlands (N = 21), Germany (N = 17),
Slovakia (N = 11), and Austria, Belgium, Czech Republic, Latvia
and Lithuania. Imported samples were rarely (≤0.6%) recorded
in other animal species but cattle.

MIC distributions of tested compounds were shown in
Table 2. Microbiological resistance to all antimicrobials was iden-
tified at variable frequencies ranging from 0.9% (colistin) to
43.3% (tetracycline) but it differed considerably between antimi-
crobials and source of isolation (Figures 1–6). Temporal trends
in prevalence of microbial resistance were found in 9 out of 65
tested antimicrobial/isolation source combinations (p[Q]-values
shown on Figures 1–6) and in 7 further occasions MIC shifts were
recorded (p[MIC]-values).

The average ampicillin resistance varied considerably from
75.5% in broiler isolates to 8.1% in those from cattle. Similar
pattern but at several times lower frequencies was observed for
cephalosporins. An increasing resistance to those antimicrobials
was found in poultry isolates, but also MIC shift toward higher
cephalosporin values was noted in cattle isolates (Figure 1).
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Table 1 | Descriptive characteristics of studied populations relevant for sampling planning, number of samples collected and E. coli isolates

used in the study.

Characteristics Target animal Year

2008 2009 2010 2011 2012

Number of animals
slaughtered in
Poland

Broilers 554846197 578970522 633640413 666313527 723764340
Layers 29550379 26353151 33890429 37311263 39056653

Turkeys 27244356 22926577 25339326 25287042 27780566

Swine 19525920 17420288 19488804 20038278 20094157

Cattle 1601569 1492360 1580467 1523384 1578773

Number of
slaughterhouses in
Poland

Broilers 178 159 160 156 155
Layers 51 44 43 40 37

Turkeys 37 34 29 26 24

Swine 912 706 694 682 662

Cattle 440 355 349 351 340

Slaughter capacity
threshold*

Broilers 3650000 2200000 2100000 2 200 000
Layers 70000 100000 50000 30 000

Turkeys 700000 250000 100000 90 000

Swine 19300 35000 39000 45 000

Cattle 3600 4750 4800 4 950

Number of abattoirs
designated for
sampling and their
contribution to
annual slaughter
capacity (%)**

Broilers 47 (80%) 61(85%) 66 (90%) 63 (90%)
Layers 7 (50%) 20 (95%) 20 (99%) 27 (99%)

Turkeys 15 (80%) 21 (95%) 23 (99%) 22 (99%)

Swine 200 (80%) 109 (70%) 94 (70%) 81 (70%)

Cattle 91 (80%) 79 (80%) 78 (80%) 72 (80%)

Number of samples
collected and
proceeded

Broilers 180 186 192 195
Layers 162 194 181 179

Turkeys 180 188 194 189

Swine 181 176 189 194

Cattle 174 179 176 191

Number of tested
E.coli isolates

Broilers 171 170 170 171
Layers 157 169 155 157

Turkeys 173 170 170 180

Swine 178 170 172 190

Cattle 173 171 173 190

*Minimal number of animals slaughtered at abattoir to consider designation of slaughterhouse for sampling.
**Estimated contribution (%) of designated abattoirs to annual national production of slaughtered animals.

Nalidixic acid and ciprofloxacin resistances were observed mostly
in poultry (on average at 74.0 and 79.8% in broilers, 53.8 and
61% in turkey, and 35.7 and 42.6% in layers), 6.9 and 10.4% in
swine and 3.0 and 3.3% in cattle isolates. No temporal trends were
found both on qualitative and quantitative results (Figure 2). The
medium chloramphenicol resistance reached the highest values in
turkeys and broilers (20.3 and 17.3%, respectively). Much lower
levels were found in pigs (7.7%) and the lowest in laying hens
(3.3%) and cattle isolates (1.4%). Florfenicol values stretched
to approximately half as much in the case of chlorampheni-
col. Decreasing MIC values (Figure 3) were observed in layers
(chloramphenicol and florfenicol) and cattle isolates (chloram-
phenicol). Streptomycin resistance reached the highest average
values in broilers (53.2%), turkeys (49.4%), and pigs (43.0%),

whereas much lower in layers (16.5%) and cattle isolates (8.1%).
Kanamycin and gentamycin resistance levels were several times
less frequent in comparison to streptomycin. The temporal trends
analysis indicated a decrease of streptomycin resistance in lay-
ing hen isolates, an increase of gentamycin resistance in turkeys
and shift in gentamycin MIC among cattle isolates (Figure 4). To
exemplify the shift within wild-type population: 18% of isolates
tested in 2009 showed MICGen ≤0.25 mg/L and 39% MICGen ≤ 1
mg/L whereas in 2012 those MIC values were noted in 2% and
47%, respectively. Sulfamethoxazole resistance was observed in up
to 59.4% broiler and 54.1% turkey isolates, 35.6% in swine, 23.4%
in layers and 13.7% cattle isolates. NWT trimetoprim values
were generally by 10% (cattle, layers) or 20% lower than those
observed for sulphonamides. The increasing trend was noted only
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FIGURE 1 | Microbiological resistance to beta-lactams and cephalosporins.

for sulfamethoxazole in turkey isolates (Figure 5). The highest
average resistance was found in turkey (73.9%) and broiler iso-
lates (63.3%). Swine and layers isolates were resistant at 42.8%
and 26.0% whereas 10.0% in cattle. Diminishing MIC values were
noted in laying hens E. coli (Figure 6): the lowest tested concen-
tration of 1 mg/L was found at 48% E. coli isolated in 2009 and
75% of the ones from the end of study period. Colistin resistance
was the less frequent (Table 2), ranging from ≤0.4 to 1.6% (data
not shown).

Of the 348 resistance profiles 164 were observed in the iso-
lates originating from broilers, 111 from layers, 185 from turkeys,
120 from swine, and 56 from cattle. As much as 177 profiles
were observed in single isolates, whereas 18 most frequent pro-
files (Table 3), each represented by at least 30 isolates, gathered
48% of E. coli (N = 1086) resistant to at least one compound.
Each of them profiles tend to show up in E. coli originated
from given animal population, i.e. Smx in cattle, Str and StrTcy
in swine, NalCip in Gallus gallus (both broilers and layers),
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FIGURE 2 | Microbiological resistance to quinolones and fluroquinolones.

AmpNalCipChlStrSmxTmpTcy in slaughter poultry (broiler and
turkey), or AmpNalCipStrKanSmxTmpTcy in broiler isolates.
The source of E. coli isolation considerably influenced the com-
plexity of resistance patterns (Table 4). MDR profiles were the
least frequent in cattle (6.9 ÷ 11.2%) and approximately three
times more frequent in swine and layer isolates. Up to 70.3 and
80.6% of, respectively, turkey and broiler isolates were MDR.
The more complex the profiles were, the more frequently they
occurred among turkey isolates: XDR and PDR profiles were at
the similar frequencies found in broilers and turkeys. Two the
most comprehensive profiles, each combining all tested com-
pounds but colistin or florfenicol, were observed in E. coli
originating from turkey (data not shown).

DISCUSSION
Multiple resistance monitoring systems have been introduced
world-wide (Bronzwaer et al., 2008; Deckert et al., 2010;
Ozaki et al., 2011; Morfin-Otero et al., 2012; Tadesse et al.,
2012). Current study, although sampling involved only a sparse
fraction of animals slaughtered in the country, due to har-
monized methodology and comparable numbers of random
isolates collected regularly over the study period (SVARM, 2012;
Tadesse et al., 2012) offers direct comparison between isolates

from different sources, geographical locations and time frames
(MARAN, 2012; Schroeter et al., 2013). The use of commensal
intestinal E. coli as indicator for the presence of resistance
determinants in bacterial flora is considered a key component
of surveillance programs both in food-producing animals and
wildlife (De Jong et al., 2012; EFSA and ECDC, 2012; SVARM,
2012; Allen et al., 2013). The frequency of resistance is consid-
ered a marker of selection pressure exerted by antimicrobial use
in the host animal population (MARAN, 2012; SVARM, 2012;
Allen et al., 2013). Resistant isolates found in current study in
samples collected from imported animals (data not shown) indi-
cate animal trade as a vector of resistance dissemination (Wasyl
et al., 2012). The reflection of antimicrobial usage policies in
different animal husbandry has been noted in current results.
Most (79.9%) of cattle E. coli showed no resistance (Table 4).
Since those isolates originated mostly from adult cattle (medium
age at slaughter: 46 months, max. 214 months; data not shown)
it might be presumed that some animals were slaughtered due
to insufficient milk productivity and had not been treated with
antimicrobials due to restriction on milk during withdrawal
period. On the opposite, poultry might be treated until few
days before slaughter and thus high resistance levels were found:
only 5.1% of broiler and 11.3% of turkey isolates showed no
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FIGURE 3 | Microbiological resistance to phenicols.

resistance (Table 4). Some correlation between source of isolation
and resistance profile complexity was noted. The most relevant
one was increasing number of extensively and pan-drug resis-
tances in turkey isolates compared to broilers. Those public health
relevant resistances (Magiorakos et al., 2012) were rarely detected
in isolates from layers, pigs and cattle. The antimicrobial con-
sumption data support that observation as well as some resistance
pattern overlap with preferences of antimicrobial usage in dif-
ferent animal species (EMA, 2012; Krasucka et al., 2012). Low
prevalence of resistant E. coli in adult cattle or frequent tetracy-
cline, penicillins, sulphonamides, and trimetoprim resistances in
pig isolates were also reported from other countries (MARAN,
2012; SVARM, 2012). Finding of specific resistance profiles in iso-
lates originating from defined animal population (Table 3) might
further support the selective effect of antimicrobial usage. Based
on broad time and geographical sampling frame as well as PFGE
typing of a selection the isolates (data not shown), the clonal
spread of certain resistance phenotypes might be neglected.

Interpretation criteria as an essential part of resistance mon-
itoring should also be addressed. Epidemiological cut-off values
are often criticized by clinicians (De Jong et al., 2012). Herewith
it has been proved, that besides being appropriate for the iso-
lates originating from non-diseased animals, current approach

gives a great opportunity for temporal trend analysis. Resistance
trend analysis is often made on interpreted data (Kronvall, 2010;
Kaesbohrer et al., 2012; Morfin-Otero et al., 2012; SVARM, 2012;
Tadesse et al., 2012; Van Der Bij et al., 2012). The advantages
of quantitative analysis of MIC values have been recently raised
(EFSA, 2012a). To our knowledge, present study is one of the
few full-scale MIC distributions explored with trend analysis
(Lundin et al., 2008). Increasing trends observed both on qual-
itative and quantitative level were detected in poultry isolates
being resistant to beta-lactams, cephalosporins, aminoglycosides,
and sulphametoxazole. Analysis on MIC shifts gave possibility
for early detection of resistance trends (Lundin et al., 2008).
Surprisingly, decreasing MIC values were found in layers isolates
for chloramphenicol, florfenicol, and tetracycline, as well as chlo-
ramphenicol in E. coli from cattle. That finding is in disagreement
to the general perception of antimicrobial resistance as emerging
problem (Collignon et al., 2009) and should be of relevance for
clinical surveys (De Jong et al., 2012).

Even though no temporal trends were noted in quinolone
and fluoroquinolone resistance, its prevalence in poultry isolates
is worrisome (Figure 2). The MIC values higher than clini-
cal breakpoint (≥0.5 mg/L) found in 19.4% of non-pathogenic
isolates (Table 2) indicate potential clinical consequences.
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FIGURE 4 | Microbiological resistance to aminoglycosides.

The compounds are considered critically important for human
medicine (Collignon et al., 2009), but the mechanisms behind,
namely step-wise chromosomal resistance due to gyrase and
topoisomerase IV genes mutations, may not be shared between
bacteria (Hordijk et al., 2012). Plasmid mediated resistance was
less common, but of possible importance (EFSA, 2008; Veldman
et al., 2011). The 4.7% difference between microbiological resis-
tance to ciprofloxacin and nalidixic acid might indicate the scale
of the problem that peaked up to 8.8, 9.6 and 10.0% in, respec-
tively, broiler, layer and turkey E. coli isolated in 2012. Such

high occurrence of plasmid mediated determinants in Poland has
already been reported (Veldman et al., 2011).

E. coli resistance to cephalosporins results from various trans-
missible and chromosomally encoded mechanisms (Dahmen
et al., 2012; Wasyl et al., 2012). The observed levels of cefotaxime
(3.8%) and ceftazidime (3.6%) NWT MICs (Table 2) indicate on
both animal reservoirs and imperfection of cephalosporin resis-
tance screening in random commensal E. coli. The previous stud-
ies showed that selective screening might result in 10-fold increase
of isolates conferring ESBL or ampC-type resistance (Wasyl et al.,
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FIGURE 5 | Microbiological resistance to folate-path inhibitors.

FIGURE 6 | Microbiological resistance to tetracycline.

2010). Interestingly, the resistance determinants differed from the
ones found in humans (Empel et al., 2008; Dahmen et al., 2012;
Wasyl et al., 2012). Resistance to ampicillin, ranked the second
highest (43.3%) and reaching 86.0% of broiler isolates in 2012,

may also compromise critical importance in human and animal
use. Such high prevalence might result from both long period
of application of the old antimicrobial class, and co-selection
of resistance mechanisms by other compounds. Remarkably, the

www.frontiersin.org August 2013 | Volume 4 | Article 221 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Antimicrobials,_Resistance_and_Chemotherapy/archive


Wasyl et al. Resistance in commensal Escherichia coli

Table 3 | The 18 most common resistance patterns found in E. coli.

Resistance pattern No [%*] of isolates

Broilers Layers Turkeys Swine Cattle Total

AmpNalCipStrSmxTmpTcy 64 [47%] 14 51 [38%] 4 3 136

NalCip 40 [31%] 65 [50%] 22 2 2 131

Tcy 8 12 29 48 [44%] 13 110

AmpNalCipTcy 31 [37%] 17 32 [39%] 2 1 83

Smx 4 15 11 14 33 [43%] 77

Amp 11 22 [37%] 2 17 7 59

StrTcy 4 4 42 [75%] 6 56

AmpTcy 11 12 24 [44%] 6 1 54

AmpNalCip 21 [43%] 16 [33%] 11 1 49

AmpStrSmxTmpTcy 14 [32%] 3 7 17 [39%] 3 44

StrSmxTcy 1 1 34 [79%] 7 43

AmpNalCipChlStrSmxTmpTcy 16 [39%] 4 21 [51%] 41

AmpNalCipStrTcy 16 [42%] 7 12 [32%] 3 38

Str 2 1 30 [88%] 1 34

AmpNalCipStrSmxTcy 17 [50%] 5 10 2 34

AmpNalCipSmxTmpTcy 25 [74%] 3 6 34

AmpStrSmxTcy 9 7 14 [42%] 3 33

AmpNalCipStrKanSmxTmpTcy 17 [57%] 1 9 2 1 30

*Percentage of the isolates representing a profile is shown if ≥ 30%.

Table 4 | Complexity of resistance patterns by source of E. coli isolation.

Resistance patterns Source of E. coli isolation (No of tested isolates)

Broilers Layers Turkeys Swine Cattle Total

(682) (638) (693) (710) (707) (3430)

Wild-type (no
resistance)

% 5.1% 39.3% 11.3% 35.9% 79.9% 34.5%
95% CI 3.5 ÷ 6.8% 35.6 ÷ 43.1% 8.9 ÷ 13.6% 32.4 ÷ 39.4% 77.0 ÷ 82.9% 32.9 ÷ 36.1%

Multi-drug
resistance (≥3
antimicrobial
classes)

% 80.6% 31.0% 70.3% 33.7% 9.1% 44.8%
95% CI 77.7 ÷ 83.6% 27.4 ÷ 34.6% 66.9 ÷ 73.7% 30.2 ÷ 37.1% 6.9 ÷ 11.2% 43.2 ÷ 46.5%

Extensive-drug
resistance (7 ÷ 9
antimicrobial
classes)

% 11.7% 3.3% 13.3% 0.8% 0.3% 5.9%
95% CI 9.3 ÷ 14.1% 1.9 ÷ 4.7% 10.7 ÷ 15.8% 0.2 ÷ 1.5% 0.0 ÷ 0.7% 5.1 ÷ 6.6%

Pan-drug
resistance (8 ÷ 9
antimicrobial
classes)

% 1.6% 0.2% 1.9% 0.1% 0.0% 0.8%
95% CI 0.7 ÷ 2.6% 0.0 ÷ 0.5% 0.9 ÷ 2.9% 0.0 ÷ 0.4% 0.0 ÷ 0.0% 0.5 ÷ 1.0%

resistances are very dynamic since 8 out of 12 increasing trends
were noted in beta-lactams and cephalosporins (Figure 1). Some
dynamics were observed also in tetracyclines (decreasing MIC val-
ues in layer isolates) and sulfametoxazole (increasing resistance
in turkeys isolates). Those compounds, including sulphonamides
combinations with trimethoprim, have been used for decades
and are still of clinical importance (EFSA, 2008; Pedersen et al.,

2009; Van Der Bij et al., 2012) although resistance has usually
ranked amongst the highest both in human and animal E. coli
(Deckert et al., 2010; De Jong et al., 2012; Kaesbohrer et al., 2012;
SVARM, 2012; Tadesse et al., 2012). Therapeutic applications of
colistin, another decades-old antimicrobial, was limited due to
high toxicity. Currently it has been re-discovered as a last resort
drug for control of multidrug resistant gram-negative bacteria

Frontiers in Microbiology | Antimicrobials, Resistance and Chemotherapy August 2013 | Volume 4 | Article 221 | 10

http://www.frontiersin.org/Antimicrobials,_Resistance_and_Chemotherapy
http://www.frontiersin.org/Antimicrobials,_Resistance_and_Chemotherapy
http://www.frontiersin.org/Antimicrobials,_Resistance_and_Chemotherapy/archive


Wasyl et al. Resistance in commensal Escherichia coli

(Collignon et al., 2009; Pogue et al., 2011). The observed resis-
tance (0.9%) was found either alone or as MDR component
(data not shown) and should be considered highly important
(Collignon et al., 2009). The aforementioned levels and trends
of resistance might suggest, that the concept of higher resis-
tance against older antimicrobials compared to newly introduced
compounds (Tadesse et al., 2012) is not entirely justified.

Streptomycin has been used extensively in animals and
resistance is common in commensal and pathogenic E. coli
(Hendriksen et al., 2008; Pedersen et al., 2009; Stannarius
et al., 2009; SVARM, 2012; Tadesse et al., 2012). Though the
resistance testing is tricky and multiple genes are involved,
the compound is useful epidemiological marker for various
resistance phenotypes, and it should be considered important
besides minor clinical importance of streptomycin in humans
(EFSA, 2008; Collignon et al., 2009). Noteworthy, layer iso-
lates revealed the only decreasing trend on interpreted data
found in current study (Figure 4). The remaining aminoglyco-
sides showed much less resistance, with prevalence comparable
to other countries and the highest values observed in turkey
isolates (Kaesbohrer et al., 2012; MARAN, 2012; SVARM, 2012;
Tadesse et al., 2012).

Different levels of chloramphenicol (10.1%) and florfenicol
(3.8%) resistance allowed at rough differentiation of background
mechanisms (Bronzwaer et al., 2008; EFSA, 2008) commonly
associated with mobile genetic elements playing major role in
dissemination of multiple antimicrobial drug resistance (Tadesse
et al., 2012). Chloramphenicol resistance can smoothly evolve

under selective pressure (Toprak et al., 2011), but presumably due
to its ban for animal use, a diminishing MIC values were observed
in layer and cattle isolates (Figure 3). Resistance to florfenicol, a
veterinary used derivative remains low and might even decrease.

Our study has shown that antimicrobial resistance is an ever
evolving issue driven by antimicrobial usage pressure. It was
proved by variable resistances observed in commensal E. coli
from different slaughter animals and increasing resistance trends
observed in several occasions. However, decrease in proportion of
microbiologically resistant isolates, as well as diminishing MIC
values indicate on complex and multivariable aspects of resis-
tance. Definitely E. coli may act as reservoir of resistance genes
for other bacteria, including pathogenic bacteria (Veldman et al.,
2011; Dahmen et al., 2012; Wasyl et al., 2012). Current results
might be considered reliable background for assessment of effects
of antimicrobial usage in animal and indicate the needs and areas
for in-depth research on resistance mechanisms, their develop-
ment and spread
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Zając M and Szulowski K (2013)
Antimicrobial resistance in commensal
Escherichia coli isolated from animals at
slaughter. Front. Microbiol. 4:221. doi:
10.3389/fmicb.2013.00221
This article was submitted to Frontiers
in Antimicrobials, Resistance and
Chemotherapy, a specialty of Frontiers in
Microbiology.
Copyright © 2013 Wasyl, Hoszowski,
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