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Over the past few decades, tremendous advances in the prevention, diagnosis, and
treatment of cancer have taken place. However for head and neck cancers, including oral
cancer, the overall survival rate is below 50% and they remain the seventh most common
malignancy worldwide. These cancers are, commonly, aggressive, genetically complex,
and difficult to treat and the delay, which often occurs between early recognition of
symptoms and diagnosis, and the start of treatment of these cancers, is associated with
poor prognosis. Cancer development and progression occurs in concert with alterations
in the surrounding stroma, with the immune system being an essential element in this
process. Despite neutrophils having major roles in the pathology of many diseases, they
were thought to have little impact on cancer development and progression. Recent
studies are now challenging this notion and placing neutrophils as central interactive
players with other immune and tumor cells in affecting cancer pathology. This review
focuses on how neutrophils and their sub-phenotypes, N1, N2, and myeloid-derived
suppressor cells, both directly and indirectly affect the anti-tumor and pro-tumor immune
responses. Emphasis is placed on what is currently known about the interaction of
neutrophils with myeloid innate immune cells (such as dendritic cells and macrophages),
innate lymphoid cells, natural killer cells, and fibroblasts to affect the tumor
microenvironment and progression of oral cancer. A better understanding of this dialog
will allow for improved therapeutics that concurrently target several components of the
tumor microenvironment, increasing the possibility of constructive and positive outcomes
for oral cancer patients. For this review, PubMed, Web of Science, and Google Scholar
were searched for manuscripts using keywords and combinations thereof of “oral cancer,
OSCC, neutrophils, TANs, MDSC, immune cells, head and neck cancer, and tumor
microenvironment” with a focus on publications from 2018 to 2021.
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INTRODUCTION

Head and neck cancers (HNCs) are the seventh most common
cancer worldwide and have a high mortality rate, with 177,384
deaths occurring in 2018, and a poor prognosis, with a 5-year
relative survival rate of 68%. This survival rate is known to be
poorer in developing countries (1–4). Oral cancer is often
included in head and neck cancer statistics and represents 48%
of HNC cases, with oral squamous cell carcinoma (OSCC) being
the most common malignant lesion (approximately 90% of these
cases) (5, 6). The OSCC develops in the oral cavity (namely, the
lips, gums, lining of the cheeks and lips, front two-thirds of the
tongue, floor of the mouth under the tongue, and roof of the
mouth) and oropharynx (7). Despite advances in diagnosis and
the availability of diverse treatment modalities, the global 5-year
OSCC survival rate remains below 50% (8). Generally, the data
support that with an earlier diagnosis comes a higher chance of
survival with treatment. As patients with early-stage oral cancer
have a 75% survival rate at 5 years, this decreases sharply to only
a 35% survival rate for patients with advanced stages at diagnosis
(9). This makes timely diagnosis and treatment essential for a
good prognosis with OSCC. Though the oral cavity can be easily
examined and assessed by direct visual inspection, most OSCC
cases are diagnosed at an advanced stage (10). This most likely
arises from the low rates of dental visits per year by people [e.g.,
on average, 56% of the Australian population sees a dentist once
per year (11)], and most oral cancers commence as a painless
surface lesion with erythema, minor elevation, and typically
mimics benign processes in the mouth (12). Once lesions
become intense masses, symptoms such as altered mucosa
lining sensation, persistent sore throat, or ear infection, can
appear, which then prompts medical intervention (9).

The etiology of OSCC is complex and is associated with
several risk factors involving the interplay of the whole immune
system, and recently, neutrophils have become the focus of
several investigations as a pivotal cell in cancer development,
which is the focus of this review. Identification of these factors
has a significant impact on the prevention and early detection of
cancer development. Although there are many risk factors
associated with OSCC, alcohol and tobacco consumption,
namely, smoking cigarettes, cigars, pipes, and chewing tobacco,
are associated with 75% of OSCC tumors. Among the different
compounds of cigarette smoke, nicotine is well known for its
biological effects on the brain and other organs such as the oral
cavity (13). Though nicotine is commonly acknowledged as non-
carcinogenic, it is always accompanied in tobacco by carcinogens
such as nitrosamines [i.e., 4-(methylnitrosamino)-1-(3-pyridyl)-
1-butanone (NNK) and N’-nitrosonornicotine (NNN)] (14). It
has been shown that binding of nitrosamines to the nicotinic
acetylcholine receptor promotes cell proliferation and creates a
microenvironment for tumor growth (15). Overall, tobacco users
have a five-fold increased risk of developing oral cancer and a 10-
fold increase in developing laryngeal cancer in comparison to
non-users (16). Significantly, smoking increases the neutrophil to
lymphocyte ratio (NLR) a known prognostic marker, in cancer
patients, leading to poor prognosis (17). Alcohol is known to
Frontiers in Immunology | www.frontiersin.org 2
decompose the lipid composition of the epithelial cell membrane
of the oral mucosa, thus facilitating carcinogen penetration (18).
Frequent use of alcohol alone may result in OSCC via three
mechanisms: (i) DNA adduct formation, (ii) interference with
the DNA-repair mechanism, and (iii) generation of ethanol-
related reactive oxygen metabolites (19). Alcohol use is known to
affect the NLR of HNC patients, leading to poor prognosis (20).
The consumption of alcohol alongside tobacco is known to have
a multiplicative impact on increasing the risk of oral cancer,
especially when both products are used on a regular basis (21).

Chronic viral infections of human cells can induce mutagenesis,
potentially commencing cellular transformation and giving rise to
malignant disease (22). Human papillomavirus (HPV) infection
has recently been associated with the carcinogenesis of OSCC. In
particular, HPV-16 is frequently isolated from oropharynx cancers
of the tonsils and base of the tongue (23). It is estimated that 15–
20% of all OSCC are related to high-risk HPV infection, which is
the most common sexually transmitted virus (22). Likewise, HPV-
DNA can be found in up to 70% of oropharyngeal squamous cell
carcinomas (OPSCCs), particularly localized to the tonsils (24). As
a result of poor oral hygiene, gingival inflammation may facilitate
HPV penetration through the oral epithelial superficial layers to
invade the basal layer (25). The association of HPV status and
neutrophil infiltration in OSCC or OPSCC tissues has yet to be
fully elucidated. However, one study by Li et al. (26) found that
HPV positive OSCC patients had low levels of neutrophils, in part
due to HPV positive OSCC cells expression resulting in low levels
of the neutrophil chemotactic factor IL-8. Although studies have
found that neutrophil levels are lower in HPV positive OSCC/HNC
patients, other studies of patients have found the opposite or no
significant association, indicating the complexity of this association
and the requirement of further investigations to understand this
relationship (27–30). In addition to HPV, Epstein–Barr virus
(EBV), an oncogenic double-stranded DNA virus, is known to be
involved in neoplastic transformation in oral cancers such as
nasopharyngeal carcinoma (31). Nearly 60% of OSCCs were
EBV genome positive (32) and increased expression of EBV
correlates with poor OSCC prognosis (33, 34). Compounding
this is that a high EBV DNA titer has been found to correlate
with a high NLR and reduce overall survival (35). Most
epidemiological studies show that HNC, and specifically oral
cancer, typically occurs in the fifty to seventy-year-old age group
(36). Nevertheless, there are reports that show 5% of HNC patients
are in younger age groups (37). This correlates with higher rates of
smoking and use of other drugs in younger age groups (38), and
more recently, the increased prevalence of HPV (37).

More than 700 bacterial species are reported to be part of the
bacterial flora in the oral cavity. In a healthy oral cavity, bacteria
interact with each other and maintain a “good” balance.
However, through poor oral hygiene, diet, or infection, this
balance is broken, causing dysbiosis, which favors the growth
of certain oral pathogens, leading to diseases such as caries and
periodontal disease (39). Recent studies have confirmed a close
link between OSCC and oral bacteria, which may present a fresh
view and new potential targets for diagnosis and treatment of
OSCC (40, 41). A study using a 16S rRNA V3-V5 marker gene
June 2022 | Volume 13 | Article 894021
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approach to compare oral bacterial DNA isolated from
oropharyngeal and oral cavity squamous cell carcinoma
patients and healthy subjects demonstrated the comprehensive
relationships between OSCC and specific oral bacteria (42). Also,
several studies have shown that oral bacteria such as
Porphyromonas gingivalis and Fusobacterium nucleatum
influence the development and progression of OSCC by
altering the microbiota, which contributes to cancer
development by enhancing cell proliferation, inhibiting
apoptosis, and improving tumor invasion and metastasis (43,
44). It has been observed that P. gingivalis induces an increase in
the oral tumor cell proliferation rate by modifying the expression
levels of oncogenic-relevant a-defensin genes (45). Furthermore,
P. gingivalis infection in OSCC patients has been positively
correlated with increased levels of tumor-associated
neutrophils and poor prognosis (46).

Many other factors are associated with OSCC, such as gender,
previous cancer, prolonged sun exposure, poor oral hygiene, poor
diet, family history, and various genetic mutations. Generally,
OSCC is 2–5-fold more common in men (47). People who have
previously had oral cancer have a greater risk of developing further
oral cancer, particularly if alcohol and/or tobacco use is continued.
OSCC develops from pre-existing, possibly malignant disorders
like oral erythroplakia, lichenoid dysplastic lesions, and
leukoplakia (48). Furthermore, combinations of specific genetic
mutations and polymorphisms have been associated with an
increased risk and development of oral cancers (49, 50). The
multitude of risk factors and mechanisms that may lead to OSCC
demonstrate the complex nature of the disease and the interplay of
neutrophils with these factors and other immune cells and
mechanisms in the initiation and development of OSCC is an
area of research that requires investigation.

In addition to all the above-mentioned predisposing conditions,
there are metabolic factors that can increase the risk of oral cancer.
High concentrations of reactive oxygen species (ROS) lead to
oxidative stress, which plays a crucial role in the destruction of
key cellular components, such as DNA, proteins, and cell
membranes. Because of these destructive mechanisms, ROS may
contribute to the initiation and progression of multistage
carcinogenesis (51). Oxidative stress is a key factor in the
pathogenesis of cancer and can arise from poor nutritional habits,
mainly a diet low in vegetables and fruits, which are rich sources of
antioxidants, and lifestyle choices and practices (52, 53). In one
study, patients with HNC had high oxidative stress and reduced
antioxidant defense (54). Furthermore, OSCC patients had
significantly higher levels of ROS (55). Given that neutrophils are
major producers of ROS and neutrophil infiltrate increases in OSCC
tissues lead to poor prognosis, this may be a novel therapeutic target.

Following the initiation of oral cancer, its development and
progression at specific sites is heavily influenced by the immune
system (56). It is now understood that specific cells of the
immune system can have anti- and pro-tumor effects (57).
With the development of immunotherapies to complement the
standard care treatments of surgery, chemotherapy, and
radiotherapy, it has become increasingly important to know
how specific immune cells influence tumor growth,
Frontiers in Immunology | www.frontiersin.org 3
progression, and metastases in OSCC. It is evident that many
of the risk factors for OSCCmay be associated with the presence/
infiltration of neutrophils in the tumor, but how this cell
population interacts in the tumor environment and with other
immune cells has received little attention. This review will focus
on describing the interplay of neutrophils and major
subpopulations of cancer-associated immune cells and other
factors, focusing from tumor initiation to metastatic
colonization in OSCC.
TUMOR MICROENVIRONMENT
AND IMMUNE EVASION

Several studies have supported the synergistic role of the tumor
microenvironment (TME) in oral cancer development (58). The
TME in HNSCC comprises many different cell populations, such
as tumor cells, tumor stromal cells, namely, stromal fibroblasts,
endothelial, and various infiltrating immune cells (neutrophils,
macrophages, regulatory T cells, myeloid-derived suppressor
cells, natural killer cells, platelets, and mast cells), and
heightened non-cell components of the extracellular matrix
(ECM) such as collagen, fibronectin, hyaluronan, laminin,
among others (57, 59–61). Within the TME, malignant cells
interact with the surrounding and infiltrating cells synergistically
to promote cancer progression and that both the innate and
adaptive immune responses contribute to tumorigenesis (62, 63).
In the initial stages of tumor development, cytotoxic immune
cells such as natural killer (NK) and CD8+ cytotoxic T cell
lymphocytes (CTLs) identify and kill the more immunogenic
cancer cells (64). Cancer cells that are less immunogenic and go
undetected by the immune system are therefore positively
selected and the cancer grows. As the neoplastic tissue
progresses to a clinically evident tumor, different subsets of
inflammatory cells impact the fate of the tumor (57). Although
N1 neutrophils, M1 macrophages, dendritic cells (DCs), T helper
1 (Th1), and CTLs are involved in anti-tumor immunity (65, 66),
certain immune cells such as N2 neutrophils, myeloid-derived
suppressor cells (MDSC), M2 macrophages, tolerogenic DCs, T
helper 2 (Th2), and T regulatory cells (Tregs) play an essential
role in aiding and supporting cancer cell growth (65).

Understanding the mechanisms of how cancer cells avoid the
immune system is a significant and on-going challenge in
oncology. There are several well described mechanisms, albeit
with a T cell and DC focus, by which tumors avoid the immune
system and limit effective anti-tumor immunity by the host, these
being: (i) induction of Treg cells (CD4+ CD25+ CTLA4+ GITR+

FOXP3+) that can suppress tumor-specific CD4/CD8 T cells
(67); (ii) production of immunosuppressive cytokines, e.g.,
interleukin (IL)-10 (IL-10) and transforming growth factor
beta (TGF-b) (68); (iii) decreased MHC-I expression due to
gene loss via structural changes or b2-microglobulin synthesis
alteration; (iv) induction of dendritic cell (DC) anergy; (v)
inhibiting DC maturation via producing and releasing
granulocyte–macrophage colony-stimulating factor (GM-CSF),
IL-6 and IL-10 by tumor cells; and (vi) defective MHC-I antigen
June 2022 | Volume 13 | Article 894021
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presentation via attenuation of the costimulatory molecule B7-1
(CD80) (69). It has been shown that CD8+ T cell tolerance can be
induced by Gr-1+ immature myeloid cells (ImC) isolated from
tumor-bearing mice (70). IL-6 has a suppressive action on DC
maturation, which was attributed to the activation of the
transcription factor STAT3 (71). IL-10 is thought to reduce co-
stimulatory molecule expression on immature DC, resulting in
tolerogenic APCs (72). Although these studies have a
lymphocyte focus, these key cytokines (IL-6, IL-10, TGF-b, and
GM-CSF) stimulate myeloid cells and activate the STAT3
signaling pathway in neutrophils and other myeloid cells such
as macrophages (68, 71–74). All of these aid tumor growth and
immune evasion, thus highlighting the complexity in cancer and
the need to view the impact of one cell or chemokine/cytokine on
the whole immune response and recognize that one cell ‘class,’
e.g., neutrophils, will have many faces/phenotypes in cancer
(Figure 1) (73).

The type, proportion, and activation state of tumor
infiltrating lymphocytes and myeloid cells are becoming
increasingly important as prognostic markers for many
cancers. A favorable prognosis is associated with a number of
differing immune factors such as: high levels of memory CD8+ T
cells, high expression of Th1 cytokines, i.e., interferon gamma
(IFN-g) and IL-1, the development of a tertiary lymphoid
Frontiers in Immunology | www.frontiersin.org 4
structure (TLS) associated with the tumor, increased levels of
cytotoxic mediators (granzymes, granulysin), low neutrophil–
lymphocyte Ratio (NLR) and low to moderate vascularization of
the tumor (75). Poor prognosis is associated with the lack of TLS,
infiltration of neutrophils (particularly N2), M2 macrophages,
and extensive vascularization (76). In many solid cancers, high
levels of tumor-infiltrated T cells are associated with a good
prognosis (77); in contrast, the influx of neutrophils and tumor-
associated neutrophils (TANs), and high levels of macrophage
infiltration, particularly the phenotype of tumor-associated
macrophages (TAMs), are linked with a poor prognosis and a
reduction in overall survival (78).
NEUTROPHILS: CELLS WITH A
MULTITUDE OF ROLES

In the context of cancer, neutrophils have had less attention by
comparison to other immune cells because it was thought that the
lifespan of neutrophils is too short (7–10-hour circulating half-life
in humans) to impact cancer development and progression (79).
However, cytokines released by tumor cells, such as G-CSF, IL-1b,
IL-6, or tumor necrosis factor (TNF), have been proposed to
FIGURE 1 | Effect of neutrophils and other immune cell sub-phenotypes on tumorigenesis. Immune cells such as CD8+ T, M1 TAMs, DCs, NK, and N1 TANs exhibit
an anti-tumor response and aid in tumor regression. On the other hand, tumorigenic cells such as Treg, M2 TAMs, tolerogenic DCs, N2 TANs, and MDSCs, exhibit
pro-tumor response and aid in tumor progression. There is complex interplay within the anti- and pro-tumor cell groups, as well as interaction of neutrophils with
these cell groups to drive tumorigenesis in the TME ecosystem.
June 2022 | Volume 13 | Article 894021
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prolong neutrophil lifespan, indicating that neutrophils may have
a significant impact on cancer (80, 81). Recently, it has been shown
that uncoupled biological and chronological aging of neutrophils
contributes to the progression of cancer and promotes advanced
stages of malignant disease (82). Using a mouse squamous cell
carcinoma cell line (SCC VII), we showed a noteworthy positive
association between the RNA expression levels of formyl peptide
receptor 1 (FPR1), an established marker gene of neutrophils, and
of C-X-C motif chemokine receptor 4 (CXCR4), whose gene
product increases during neutrophil aging on the surface of
these immune cells, with higher tumor stages (83, 84).
Activation of the NLRP3 inflammasome in perivascular
macrophages by tumor-released Damage-associated molecular
patterns (DAMPs) such as S100A8/9 induce the synthesis of
inflammatory mediators that upregulate adhesion and signaling
molecules on the surface of microvascular endothelial cells, in turn
promoting the trafficking of aged neutrophils to the perivascular
space (84). Following antibody-mediated depletion of aged
neutrophils, a significant decrease in the growth of tumors was
observed in experimental HNSCC (84). Aged neutrophils are
related to a more pro-tumorigenic state. They support cancer
cell proliferation via the release of neutrophil elastase (84, 85). The
neutrophil-to-lymphocyte ratio (NLR) has recently been
introduced as a better prognostic factor for survival in several
types of solid tumors, including OSCC (86–89), as opposed to
neutrophil levels alone (90), although the mechanisms involved in
high NLRs (typically >3) are yet to be determined (91, 92). Several
studies have found that higher NLR showed higher mortality rates
compared with those with lower NLR and was associated with
more advanced or aggressive cancer (93–95). In general,
neutrophilia appears to be linked with a poor prognosis in
cancer. However, the inverse might also be true to some extent
in the context of antibody therapy, which has emerged as an
important weapon in the anticancer armament (96–99).
Recombinant technology presents huge opportunities to design
antibodies to meet clinical requirements, including the reduction
of immunogenicity (100). For example, antibodies can prevent
tumor growth factors or their receptors, trigger immunologic
attack on the tumor, or be used to provide payloads, for
example, radioisotopes, cytotoxic drugs or toxins, and
nanoparticles (101, 102).

It is known that the formation of neutrophil extracellular
traps (NETs) activates platelets and stimulates thrombosis (103),
and interestingly, an increased risk of cancer-associated venous
thromboembolism (VTE) has been reported in numerous types
of cancer, including OSCC (104). Previous studies have shown
that NETs capture and operate as adhesion substrates for cancer
cells, and using this process promotes metastatic dissemination
(105). Park et al. (106) have shown that targeting NETs with
DNase I-coated nanoparticles efficiently reduces metastasis in an
in vivo cancer model, confirming that neutrophils and NET
production are an important mechanism in cancer progression
(106). A recent study investigating the myeloperoxidase (MPO)
and histone expression using immunohistochemistry showed
NETs in the tumor tissue of patients with OSCC (107). It has
been shown, in OSCC patients, that the interaction between
Frontiers in Immunology | www.frontiersin.org 5
cancer cells and neutrophils increases NET formation via the
PI3K/Akt/PBK pathway (108). This co-existence of NETs and
cancer demonstrates that the presence of NETs may be a marker
of poor prognosis, highlighting their potential as a target for
cancer therapy (109).

A novel prognostic model of HNSCC patients based on six-
NET-related genes (Annexin A3 (ANXA3), lactotransferrin
(LTF), colony-stimulating factor 2 (CSF2), glyceraldehyde-3-
phosphate dehydrogenase (GAPDH), selectin P ligand
(SELPLG), and cytochrome b-245 beta chain (CYBB)) was
constructed that might be beneficial for developing
personalized treatment directed at neutrophils (110). Irregular
ANXA3 expression is associated with the development,
occurrence, metastasis, and drug resistance of cancers (111).
The LTF inhibits the development and release of NETs, which
might be associated with the anticancer role of the gene (112).
These studies indicate the potential clinical approaches for
targeting neutrophils as a therapy in cancer treatment.

Polymorphonuclear granulocytes (PMN) from the peripheral
blood of patients with late stage HNC showed a significantly
lower inducible production of reactive oxygen species (ROS) and
reduced spontaneous apoptosis compared with PMN from
healthy donors (113). However, another clinical study showed
there was an acceleration in the apoptosis of circulating PMNs of
oral cavity cancer patients due to higher caspase-8 activity and
elevated activity of the TRAIL-mediated mitochondrial cascade
(114). Though this data may seem conflicting, it does indicate
that peripheral blood PMN from HNSCC patients and healthy
donors show distinct functional differences.

Several studies have shown that neutrophils have various and
conflicting roles in cancer. After transmigration into tumor
tissue, neutrophils [referred to as tumor-associated neutrophils
(TANs)] go through dramatic changes in their activity and
phenotype, depending on the cytokines and growth factors
they encounter in the TME. Because of the minor size
of primary tumors in HNC, data pertaining to TANs are
limited (115). In a European gastric cancer cohort study,
immunohistochemical staining of myeloperoxidase was used to
show a correlation between TAN density and survival in women
but not in men. These findings indicate a possible sex-specific
prognostic effect of TANs (116, 117). In two independent clinical
cohorts, the ratio of CD8+ T cells to TANs within the tumor was
associated with anti-PD1 monotherapy failure in non-small cell
lung cancer (NSCLC) patients, indicating that neutrophil
antagonism may be a sustainable secondary therapeutic
approach to boost ICI treatment outcomes (118). Recently, an
association between the resistance of mismatch repair-deficient
tumors to anti-PD-1 monotherapy and abnormal neutrophil
accumulation within the tumor was reported (119).

TANs express CD11b+ Ly6Cint Ly6Ghi in mice and CD11b+

CD14− CD66b+ CD15hi in humans (120). Like the M1/M2
macrophage phenotype, TANs are suggested in cancer to exist
in two polarization states, these being the anti-tumor (N1) or
pro-tumor (N2) phenotypes (121). Regardless of the growing
interest in TANs in recent years, our current understanding of
the role of neutrophils in tumor development is primarily based
June 2022 | Volume 13 | Article 894021
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on murine models of cancer. In a human cancer population, low-
density neutrophils (LDN) (N2 like) and high-density
neutrophils (HDN) (N1 like) both express CD11b, CD66b, and
CD15, but LDN express these at a higher level (122). Several
studies in OSCC have shown neutrophils to express high levels of
one or more of these markers in human cancer patients,
consequently leading to poor prognosis (26, 123, 124).
Furthermore, it has been shown that it is feasible to polarize
blood-derived primary human neutrophils toward N1- and N2-
like phenotypes in vitro (125). Also, human neutrophils
incubated under a tumor-mimicking in vitro environment
were found to highly express the typical N2 receptor CXCR2
on their surface and secreted elevated amounts of IL-8 (125).
Thus, although human neutrophils do not have definitive N1 and
N2 markers as in mice, there is, potentially, a N1 and N2 like
neutrophil, i.e., HDN and LDN, respectively, which would
appear to play the same role in humans. However, there is
significant debate around human N1 and N2 neutrophils as a
study by Brandau et al. (126) found that in peripheral blood
human HNC, lung, bladder, and ureter cancer patients had a
CD66+ PMN population but based on their LDN and HDN
profile, the CD66+ LDN cells expressed low levels of CD11b and
CXCR2. Further studies will be needed to investigate whether
humans have N1 and N2 populations, as in mice the N1 and N2
phenotypes have a profound effect on cancer development, and
from the few studies in humans that have described a N1-like or
N2-like neutrophil phenotype they appear to also have a
profound effect on tumor immunity.

At the early stages of tumor development, neutrophils mostly
remain located at the edges of the tumor and have an N1
phenotype, eliminating cancerous cells and limiting metastatic
seeding. As the tumor progresses, neutrophils are often found
deeper within the tumor and transition toward a more aggressive
N2 phenotype, enabling tumor growth to be supported (127). A
humanized mouse model of hepatocellular carcinoma (HCC)
showed that CCL2+ and CCL17+ chemokines, which are part of
the N2 signature, promote macrophage (F4/80+) and regulatory
T (Treg) cell (FoxP3+) infiltration into the TME by activating the
MAPK and PI3K signaling pathways, which stimulate
neovascularization, enhance growth and metastasis, and
contribute to sorafenib (a kinase inhibitor drug) resistance
(128). This switch of N1 to N2 with the maturation of cancer
is very reminiscent of the M1 and M2 switches in TAMS,
strongly suggesting that there is synergy between the immune
cells and their respective functions and roles in cancer/tumor
development. In the earliest stages of cancer, TANs stimulate T-
cell proliferation and IFN-g release (129), while in established
tumors, TANs are immunosuppressive and linked with a more
pro-tumor phenotype with tumor progression (130). In OSCC,
P. gingivalis infection contributes to the enhanced CXCL8 and
CCL2 secretion in the TME, which in turn recruits CD66b+

TANs to the site of neoplastic cells and the promotion of tumor
development (131, 132). This strong immune induction of
CXCL2, CXCL8 from neutrophils by P. gingivalis is well
known in oral disease research and may aid in our
understanding of how this bacterium is associated with a poor
prognosis in OSCC patients (131, 132).
Frontiers in Immunology | www.frontiersin.org 6
It has been shown that N2 neutrophils contribute to tumor
growth by several mechanisms such as increased expression of
pro-angiogenic genes (MMP9, VEGF) with absent IFN-b and is
acquired by neutrophils following the TGF-b treatment/
exposure (121, 133–135). MMP-9 is a protease produced
predominantly by neutrophils (N2 neutrophils in mice) and
located in its tertiary granules (136) and is involved in elevated
cancer cell proliferation, angiogenesis induction, tumor growth,
inhibition of cancer cell apoptosis, promotion of neutrophil
extravasation, and migration into tissues by the degradation of
the extra-cellular matrix (137, 138). An in vitro study using two
oral squamous cell carcinoma cell lines (UT-SCC-43A and UT-
SCC-43B) showed that the expression of MMP-2 and MMP-9
was downregulated in both cell lines after being incubated with
human neutrophil peptide (HNP)-1 (a N1 neutrophil produced
peptide), indicating a protective role of HNP-1 against the spread
of metastatic cells (139). The antitumor mechanisms of another
peptide, melatonin (Mel), are linked with anti-proliferation,
apoptosis promotion, migration, invasion inhibition, and anti-
angiogenesis (140). TANs were suppressed by Mel in a MMP-9-
dependent manner in OSCC (141). These studies indicate that
targeting MMP-9 expression is a possible therapeutic avenue
to explore.

The serine protease neutrophil elastase (NE), located in
neutrophil azurophilic granules (142), promotes the detachment
of tumor cells through the degradation of the adhesion molecule
E-cadherin, decreasing the stability of the tumor and increasing
metastasis. Significant elastase expression has been shown to be
upregulated in OSCC (143, 144). The elastase and serine protease
inhibitor Secretory Leukocyte Protease Inhibitor (SLPI) was
considerably reduced in OSCC compared with normal oral
epithelium, and cancer cells treated in vitro with SLPI had
reduced invasive ability, suggesting that SLPI is a therapeutic
lead as it may decrease many tumor-promoting events (145).
Another, neutrophil targeting therapy may be TGF-b blockade or
IFN-b treatment as both promote neutrophil reversion to a
cytotoxic N1 subset while expressing high levels of intercellular
adhesion molecule 1 (ICAM1) and TNF-a and increasing NET
formation (146, 147). Taken together, new novel cancer therapies
may involve modulation of neutrophil function through
alterations of the tumor microenvironment by blocking TGF-b
activity or enhancing IFN-b activity instead of depleting specific
neutrophil subsets such mature and immature low-density
neutrophils (LDN) that accumulate continuously with cancer
progression (148).

It has been shown that an increased neutrophil-to-
lymphocyte ratio (NLR) is linked with poor survival in patients
undertaking chemoradiotherapy or radiation for nasopharyngeal
carcinoma (149). Another study revealed that in patients with
nasopharyngeal carcinoma, NLR was a significant predictor of
both survival and response to chemoradiotherapy (150). Several
retrospective cohort studies have evaluated the prognostic
significance of NLR in patients with oral squamous cell
carcinoma (95, 151–153). They found that a low NLR was the
only independently favorable marker of both overall survival and
distant control in patients with OSCC; in contrast, a high NLR
was associated with worse overall survival. These studies suggest
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that preoperative NLR in the peripheral blood is an important
prognostic factor for OSCC and is valuable in predicting
OSCC development.
THE ANTI-METASTATIC ROLE
OF NEUTROPHILS

Although numerous cancer studies support the pro-tumorigenic
role of neutrophils, there is evidence that they also remove
cancerous cells and limit metastatic seeding. Cytotoxic action
of neutrophils towards cancer cells is mostly evident in early
stages of tumor development in the form of N1 TANs, and killing
has been shown to require a high level of target specificity (79).
To induce tumor cell apoptosis, activated neutrophils are
required to identify cancer cells as targets through Receptor for
Advanced Glycation End products (RAGE)-Cathepsin G
(directly) (154) or in an antibody dependent fashion (ADCC)
(155). High expression of RAGE is observed in OSCC patients
and is associated with depth of invasion (156, 157). It has been
shown that RAGE expression is responsible for migration,
invasion, and MMP-9 production in patients with OSCC, thus
representing a possible therapeutic candidate in treating OSCC
patients by enhancing N1 activity (158). After cancer cell
identification, neutrophils then need to have physical contact
with the tumor cells in order to release cytotoxic mediators such
as myeloperoxidase (MPO), H2O2, reactive oxygen species
(ROS), and proteases (159). Neutrophil cytotoxicity is Ca2+

dependent and is mediated by the transient receptor potential
cation channel, subfamily M, member 2 (TRPM2), a
ubiquitously expressed H2O2-dependent Ca2+ channel (160).
TRPM2 expression is increased in cancerous tissues, making
tumor cells more susceptible to neutrophil cytotoxicity (161).
Using a breast cancer model, it has been shown that reduced
expression of TRPM2 in tumor cells allowed neutrophil immune
evasion but also led to tumor growth retardation, albeit
accompanied by an increase in metastatic potential (162).
Inhibiting the overexpression of TRPM2 in human tongue
squamous samples with the small interfering RNA technique
(shRNATRPM2) resulted in enhanced apoptosis of SCC cells and
reduced the migratory abilities of SCC cells (163). Studies have
shown that TRPM2 expression is elevated in circulating tumor
cells (CTC) compared with the primary tumor, rendering CTC
more susceptible to neutrophil cytotoxicity (162). Neutrophils as
well as secreting H2O2 are able to suppress metastasis via their
expression of thrombospondin 1 (TSP1) (164) and MET proto-
oncogene, encoding the tyrosine kinase receptor for Hepatocyte
Growth Factor (HGF), which regulates invasive growth (165,
166). TSP1 can be induced in neutrophils by a peptide derived
from prosaposin, a precursor of sphingolipid activator proteins
(164). It is reported that MET, induced by tumor inflammatory
stimuli such as TNF-a , i s essential for neutrophil
chemoattraction and cytotoxicity in response to its ligand
hepatocyte growth factor (HGF). C-MET-HGF stimulation
leads to neutrophil transmigration across an activated
endothelium and the production of inducible nitric oxide
Frontiers in Immunology | www.frontiersin.org 7
synthase (iNOS). Subsequently, MET/HGF-dependent nitric
oxide release by neutrophils assists in cancer cell killing, which
greatly dampens tumor growth and metastasis (165). It has been
shown that hypoxia activates HGF/c-Met signaling in a hypoxia-
inducible factor-1 (HIF-1) dependent manner, leading to the
invasive growth of cancer cells through activating the PI3K/Akt
pathway (167). These studies indicate that targeting the HIF-1a/
c-Met signaling pathway using synthetic small-interfering RNA
could be a useful new approach to the treatment of
OSCC patients.
MYELOID-DERIVED SUPPRESSOR CELLS
(MDSCs)—PATHOLOGICALLY
ACTIVATED NEUTROPHILS?

Myeloid-derived suppressor cells (MDSCs) have been described
in humans and mice and occur as two main sub-groups:
monocyt i c MDSCs (Mo-MDSCs) , g ranu locy t i c or
polymorphonuclear MDSCs (G-MDSCs/PMN-MDSCs), and a
third sub-type termed early MDSCs (eMDSCs) and their
discovery has been recently reviewed (168). Of the two main
sub-groups, polymorphonuclear myeloid-derived suppressor
cells (PMN-MDSCs) and neutrophils share the same origin cell
type, the differentiation pathway, and are phenotypically and
morphologically alike, with both being identified in oral
cancer patients (169–171). A recognized distinguishing feature
of PMN-MDSCs is that they have been reported to be
more immunosuppressive than immature neutrophils (172).
Currently, several studies have attempted to distinguish PMN-
MDSCs from activated immature or mature neutrophils as the
heterogeneity of PMN-MDSCs means that they are
indistinguishable from activated neutrophils as they share the
same phenotypic markers: CD14− CD15+ CD66b+ CD16+ and
CD11b+ CD33+ HLA-DR− (168, 173–176). Recently, for human
PMN-MDSCs, the lectin-type oxidized LDL receptor 1 (LOX1)
has been suggested as a distinguishing marker (177). In mice, the
proportion of MDSCs has been shown to increase significantly
within the tumor microenvironment (178) and represents potent
suppressors of antitumor immunity (179). To regulate an
immunosuppressive response, TANs and MDSCs block T-cell
proliferation by releasing ARG1 and modulate PD-L1/PD-1
signaling, a potential tumor escape mechanism (Figure 2)
(180, 181).

In a murine cancer model granulocytic myeloid-derived
suppressor cells (G-MDSCs also known as PMN-MDSCs) and
TANs induced CD8 T-cell apoptosis via the TNF-a pathway and
NO production, thereby promoting a tumor-supportive
environment (182). Further, using the established 4-
nitroquinoline 1-oxide (4NQO)-induced oral cancer mouse
model, Chu et al. (170) showed that there was a significant
progressive increase in the proportion of MDSCs in the spleens
and peripheral blood of 4NQO-treated mice compared to control
mice, suggesting that MDSCs contribute to oral cancer
progression (170). MDSCs were initially defined in HNSCC
patients as immature CD34+ cells presenting the ability to
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suppress the activity of T cells (183, 184). Another study showed
that CD34+ cells in HNSCC patients can be differentiated into
cells that phenotypically and functionally resemble dendritic cells
(185). Though MDSCs (pathogenically activated neutrophils)
have been originally recognized for their immune-suppressive
function in cancer, lately their presence has been associated with
other activities within the TME, including promotion of tumor
angiogenesis, degradation of extracellular matrix, and the
formation of premetastatic niches (186, 187). The role of
PMN-MDSCs in cancer and immunity, how they interact with
other immune cells to affect their actions, is currently being
defined and thus are probably a major foci of novel therapeutics,
treatments and prognostic and diagnostic factors (168).
MACROPHAGES AND NEUTROPHILS: AN
IMMUNOLOGICAL PARTNERSHIP AIDING
CANCER GROWTH

The crosstalk between tumor cells and infiltrated neutrophils and
macrophages can promote and drive tumor growth and metastasis
(188). Arising from a common progenitor lineage, the multi-layered
roles of TANs and TAMs are implicated in almost every step of
tumor growth and metastasis. Both TAMs and TANs use multiple
overlapping pathways to crosstalk with T cells, including
Frontiers in Immunology | www.frontiersin.org 8
engagement of immune checkpoints and secretion of cytokines,
resulting in tumor immune escape, as well as angiogenesis and
invasion (189, 190). It is known that activated neutrophils provide
signals for the activation, maturation, and recruitment of
monocytes/macrophages, NK cells, and DCs by releasing IL-8,
TNF-a, macrophage inflammatory protein-1a (MIP-1a), and
MIP-1b, indicating that neutrophils play a central role in the
involvement of these three major cell phenotypes in immunity
(191–194).Murine neutrophils secrete myeloperoxidase (MPO) and
have a direct tissue damaging effect. They are also recognized by
tissue resident macrophages expressing macrophage mannose
receptors (MMRs) (195, 196). This recognition of MPO by
MMR+ macrophages activates macrophages, which in return
overproduce neutrophil survival factors, namely, IL-1, IL-6, IL-8,
TNF-a, and GM-CSF, which activate neutrophils and upregulate
their survival mechanisms (191, 197). Though limited direct
evidence that supports TAN and TAM interaction through MPO
and the MMR is available, high density MPO-positive neutrophil
infiltration has been reported in colorectal cancer (198).
Intriguingly, this neutrophil and macrophage interplay results in
an increase in neutrophil half-life/survival, which is a feature of N2
neutrophils, TANs, and PMN-MDSCs. However this dynamic
requires further investigation. The importance of murine
neutrophil MPO has been shown using a novel tripeptide MPO
inhibitor [N-acetyl lysyltyrosylcysteine amide (KYC)], which
diminished lung tumor burden, suggesting that targeting
FIGURE 2 | Tumorigenic role of TANs (N2) and MDSCs in the suppression of T-cell responses. N2 TANs differentiate into MDSC, an activated and more
immunosuppressive neutrophil phenotype. Both N2 and MDSC produce Arg 1 and upregulate PD-L1 to cause T-cell anergy by modulating PD-L1/PD-1 signaling.
N2 and MDSC also produce nitric oxide (NO) which initiates the TNF-a pathway to induce CD8+ T-cell death, via apoptosis. N2 and MDSC hinder anti-tumor T-cell
function by anergy and apoptosis and promote tumor progression.
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neutrophil MPO is a novel cancer treatment (199). A cytokine
impacting the activation of macrophages and neutrophils is TGF-b,
which as well as being produced by many infiltrating cells in the
TME, is also highly expressed by cancer cells, including OSCC cells
(200). It is thought that the interplay of TGF-b with macrophages
and neutrophils generates M2-like and N2-like cells suggests a close
relationship between TAMs and TANs in the same TME and the
possibility that recruitment of macrophages by neutrophils may lead
their N2-like polarization (201). However, studies must confirm
whether the crosstalk between TANs and TAMs in the TME is
comparable to the known interactions between neutrophils and
macrophages in a non-tumoral chronic inflammatory environment.

Despite the significant role of macrophages in promoting host
defenses, their inappropriate or extended activation can lead to
immune dysregulation and the promotion of cancer. The role of
macrophages in tumor progression and interaction with other
infiltrating immune cells is yet to be completely clarified, partly
because of the plasticity of macrophages and the conflicting roles
of their different phenotypes. In response to malignant cell-
derived growth factors and chemokines including colony-
stimulating factor-1 (CSF-1) (202), VEGF-A (203), chemokine
(C–C motif) ligand such as CCL2 (MCP1) (204), CCL18, CCL20
(MIP3a), and CXCL12 (SDF1), bone-marrow derived monocytes
or tissue-resident macrophages are recruited into the tumor site
and are then termed Tumor Associated Macrophages (TAMs)
(205). CSF-1 in binding to its receptor on monocytes and
macrophages ((macrophage colony-stimulating factor receptor
(M-CSFR)) is known to have a critical role in differentiating the
phenotypes of macrophage subsets in tumors (206, 207).
Significantly, murine neutrophils and MDSCs have been
shown to be major producers of CSF-1, resulting in
macrophage polarization and an immune tolerant/suppression
phenotype, further strengthening, albeit yet to be proven in
cancer, the interplay of neutrophils and macrophages in the
TME (177, 208).

During carcinogenesis, TAMs mainly exhibit an M1-like
polarization that results in the elimination of the more
immunogenic cancer cells. As the tumor progresses, the
changing composition of the TME provokes an M2-like re-
polarization of TAMs that is pro-tumorigenic and supports
primary tumor growth and metastatic spread (209, 210). The
effect of TAMs on tumor progression can depend on the tumor
nature, the type of TME, and the intra-tumoral location of TAMs
(211). It has been suggested that TAMs can combine the
properties of M1 and M2 macrophages (212). Hence, the
presence of TAMs by themselves does not have prognostic
value, and so an M1/M2 ratio is used. Low and high M1/M2
TAM ratios are associated with poor and good prognosis,
respectively (213). The differentiation to M1 or M2 phenotype
and the ratio of M1/M2 is heavily aided and/or influenced by the
presence and secretion of cytokine/chemokines by neutrophils
and it appears vice versa (214).

This neutrophil/macrophage interplay can be considered a
crucial factor in cancer growth and prognosis as multiple studies
have reported a strong association with the role of M2-like TAM
Frontiers in Immunology | www.frontiersin.org 9
phenotypes and oral cancer aggressiveness (215–219). One of the
predominant TAMmarkers that is correlated with a poor clinical
prognosis is CD163 (220). Indeed, an increase in CD163
expression is seen in advanced OSCC compared with
premalignant lesions (218, 221) and initial tumor stages (216,
220). The ratio between CD163+ and CD68+ (pan macrophage
marker) increases in oral cancer with lymphogenic metastasis
(222). Another TAMmarker, CD206, was correlated with cancer
aggressiveness and clinical prognosis (219). The significance of
CD206 is evident, as a radiotracer specific to CD206 is clinically
used to identify sentinel lymph nodes in oral cancer patients to
aid in OSCC diagnosis and treatment decisions (223).

TAMs promote tumor progression in several different ways.
TAMs not only directly provide structural support for cancer
development but also contribute to tumor induction by
producing signaling molecules and extracellular vesicles. These
vesicles play a significant role in crosstalk between cells by
transferring bioactive cargo such as microRNAs (miRNAs) to
recipient cells (224). TAMs can also directly communicate with
tumor stem cells to support their survival by secreting growth
factors, and in return, tumor stem cells provide essential tumor-
promoting signals to activate TAMs that promote tumorigenesis
(225). Furthermore, TAM-secreted cytokines induce anti-
apoptotic programs in cancer cells (226–228). Following
activation of the STAT3 pathway due to TAM-derived IL-6,
tumor suppressor miR-204-5p expression significantly
decreased, increasing in the anti-apoptotic protein RAB22A
and B-cell lymphoma 2 (Bcl2) expressions in cancer cells (229–
231). Thus, TAMs can enhance cancer cell resistance to
chemotherapy and radiotherapy.

Another crucial role of TAMs in cancer is metastasis. TAMs
allow tumor cell invasion and migration via cathepsins, secreting
matrix metalloproteinases (MMP) and serine proteases, which
alter cell–cell junctions and disturb basal membranes (232).
TAMs either directly or indirectly inactivate T-cell responses
or facilitate immune escape within tumors (233). Direct
strategies include (i) depletion of metabolites essential for T-
cell proliferation such as L-arginine, which is necessary for T-cell
fitness and anti-tumor activity, through the expression of
arginase-1 (ARG1), (ii) production of reactive oxygen species
(ROS), (iii) expression of immune checkpoint ligands such as
programmed cell death ligands (PDL1 and PDL2), cytotoxic T-
lymphocyte-associated protein 4 (CTLA4) (B7-1 and B7-2) and
B7-H4, and (iv) producing anti-inflammatory cytokines such as
IL-10 and TGF-b (209, 234). These well-known macrophage
mechanisms of T-cell inactivation are present in neutrophils,
which are known to express ARG1, ROS, PDL1, and IL-10 (235,
236). It must be noted here that there is debate over whether
human neutrophils produce IL-10. However, Lewkowicz et al.
(237) have shown that in inflammatory settings, human
neutrophils do produce IL-10. Though TAMs predominantly
present pro-tumorigenic roles, the plasticity of macrophages has
been used in a breast cancer model to re-program pro-
tumorigenic TAMs (238). It has been shown that upon
treatment with the class IIa histone deacetylase inhibitor,
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TMP195, TAMs become activated and reprogrammed to an
extremely phagocytic phenotype, resulting in a reduction in
tumor volume (238).

Clinical studies have indicated a link between the recruitment
of TAMs and poor overall survival in OSCC patients and suggest
this could be used as a potential prognostic marker (239, 240).
Immuno-histochemistry analysis of OSCC indicated
considerable TAM infiltration compared to control samples
and the existence of CD68+CD163+(M2) TAMs or CD206+

(M2-like) TAMs were linked with poor overall survival (241–
243). Additionally, CD163+ (M2) TAMs are linked with
chemoresistance in esophageal cancer (244) and primary HPV-
negative HNSCC (245). TAMs can adopt an extensive range of
diverse activation states between M1 (classical) and M2 (non-
classical), expressing both M1 and M2 markers, upregulated
TNF-a (M1) (246), matrix metallopeptidase 9 (MMP-9) (M1)
(246), increased levels of CCL2, CCL5, CXCL9, CXCL10, and
CXCL16 chemokines (M1) (247), upregulated IL-10 (M2) (248),
arginase-1 (Arg1) (M2) (249), and peroxisome proliferator-
activated receptor g (PPARg) (M2) (250). Though the overall
number of TAMs accumulated within a tumor is not considered
in the assessment of clinical prognosis, the ratio of M1/M2 is
considered an important prognostic marker (251, 252). A clinical
cohort study showed that high expression of receptor for
activated C kinase 1 (RACK1) inhibits macrophage
recruitment and decreases the M1/M2 ratio (tumor having a
higher M2 proportion) via the NF-KB pathway, promoting the
development of OSCC, indicating RACK1 and the M1/M2 ratio
are predictors of a poor prognosis in (253). The increased
understanding of the role of TAMs in carcinogenesis is
reflected across many immune cells in the TME and, similarly,
the N1/N2 ratio is currently being investigated as a prognostic
marker and, along with the NLR ratio, there may come a point
whereby we can use several cell-based ratios to inform more
accurate treatment and prognostic outcomes.
CROSSTALK BETWEEN DENDRITIC
CELLS AND NEUTROPHILS

Upon activation by numerous inflammatory stimuli, neutrophils
release several inflammatory proteins (e.g., TNF-a) (254) and
different alarmins such as defensins, cathelicidins (LL-37),
lactoferrin, and high-mobility group box-1 (HMG-B1), with
the ability to stimulate the maturation of immature DCs (255–
258). Alarmins induce the maturation of immature DCs and
their recruitment at the site of inflammation by acting on Gia-
protein-coupled-receptor (GiaPCR) and activating receptors
and also by stimulating the production of chemokines by
leukocytes (259). It has been shown that neutrophil derived a-
Defensins, human neutrophil peptide-1 and -2 (HNP-1 and -2),
contribute to adaptive immunity by mobilizing DCs and T cells
(260). b defensins secreted by neutrophils bind to TLR-4
receptors expressed on immature DCs, promoting their
maturation and the initiation of adaptive immunity (261).
HMG-B1 induces the migration and activation of immature
Frontiers in Immunology | www.frontiersin.org 10
DCs, leading to DC stimulation of T-cell proliferation and T
helper 1 polarization (262). This DC initiation of a T-cell
response is reliant on the binding of neutrophil Mac-1 and
CEACAM1 (carcinoembryonic antigen-related cellular
adhesion molecule-1 or CD66a) to the DC-specific receptor,
DC-SIGN, resulting in the delivery of activation signals and
antigenic molecules to DCs and the initiation of a T-cell response
(263, 264). This cellular adhesion can also regulate neutrophil
proliferation and prolong the survival of neutrophil granulocytes
(265, 266).

Accumulating evidence indicates that DCs play a significant
role in driving immune suppression against tumor-associated
antigens (Figure 3) (267). The migration of DCs is critical for
tumor immune surveillance (268). This includes DCs migrating
to tumor sites, capturing and endocytosing dead tumor cells or
cellular debris, and transporting tumor-associated antigens to
tumor draining lymph nodes (TDLNs), where they induce
tumor-specific T-cell activation (269). DC recruitment to the
TME relies on chemokines such as CCL4, CCL5, and XCL1,
while CCR7 is required for migration of DCs to TDLNs (268).
Neutrophils are known producers of CCL4 and CCL5, so they
would contribute to DC recruitment to the TME (270).
Generally, it is assumed that informative signals within the
TME program DCs into a tolerogenic or immunosuppressive
state rather than an inflammatory state (271, 272). The
infiltration of BDCA3+ cDC1s in the TME has been shown to
be associated with greater T-cell infiltration, improved prognosis
in cancer patients, and better efficacy of cancer immunotherapies
(273), emphasizing the important positive role of cDC1s in
generating antitumor immune response in the TME.

Antitumor immunity has been found to be extremely
dependent upon expression of the type I IFN receptor
(IFNAR1) (274). Thus, administration of type I IFNs (IFN-a,
IFN-b) is considered a treatment strategy in cancer (275) as they
facilitate DC activation, migration, and cross-presentation, thus
enhancing the DC anti-tumor immunity (276). Type I interferon
treatment may also have additional benefits as type I IFN
treatment will aid neutrophil antitumor activity by polarizing
them to the N1 phenotype (146). In an in vitro study it was
demonstrated that sensing of nucleic acids through the cyclic-
GMP-AMP synthase (cGAS)-stimulator of the interferon genes
complex (STING) pathway and interferon regulatory factor 3
(IRF3) contributes to DC activation and IFN-b production in
antitumor immunity (277). DCs can also facilitate the trafficking
of effector T cells into tumors by producing certain chemokines.
For instance, CD8+ T-cell recruitment into the TME is mediated
through the chemokines CXCL9 and CXCL10, which are
produced by tumor-infiltrating cDC1s (278). Neutrophil
migration has been shown in mice and humans to be induced
via a CXCR3–CXCL9 and CXCR3–CXCL10 axis (279–281).
Thus, cDC1s would also recruit neutrophils, and as neutrophils
are also major producers of these two chemokines, there would
be positive reinforcement of CD8+ T cells and further neutrophil
infiltration into the TME (270).

The TME comprises a range of immunosuppressive factors
known to inhibit DC antitumor activity and infiltration,
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promoting immune tolerance and tumor progression (282). A
high concentration of cDC1s within the TME has been correlated
with good prognosis. However, tumor cell-intrinsic factors can
limit cDC1 recruitment (268). It has been shown that active b-
catenin in TME induces low CCL4 expression, leading to a
significant reduction of cDC1 infiltrate and consequently an
increase in tumor growth (283). Additionally, depending on
the release of pro-inflammatory mediators, e.g., cytokines and
granule contents by neutrophils-through NETosis or
degranulation, neutrophils may either suppress or promote T-
cell activation in the context of cancer immunity (284). For
instance, the release of lactoferrin promotes the recruitment and
activation of DC (285), while myeloperoxidase (MPO) and
elastase, which are abundantly expressed by neutrophils, have a
suppressive impact on DC migration and activation, although
the role of neutrophils here is to be elucidated (286). In contrast,
tumor-infiltrating NK cells have induced cDC1s recruitment by
CCL5 and XCL1 production (282), and promote cDC
development and proliferation, with FMS-like tyrosine kinase 3
ligand (FLT3L) (287). However, tumor cells can produce PGE2,
which reduces FLT3L-producing NK cells and pro-inflammatory
chemokine production. This in turn reduces cDC1 infiltration
and the terminal differentiation of pre-DCs, resulting in tumor-
promoting inflammation (288).

Cancer cells secrete IL-6. Although a pro-inflammatory
cytokine, it reduces cDCs and MoDCs differentiation and
promotes tumor DC dysfunction (289, 290). A dual function of
IL-6 and M-CSF in tumor promotion is that they inhibit CD34+
Frontiers in Immunology | www.frontiersin.org 11
progenitor differentiation into DCs but then induce their
commitment towards CD14+ monocytes with an effective
phagocytic capability but lacking APC functionality, thus failing
to mediate allogeneic T-cell proliferation (291). Tumor-derived
IL-6 is reported to be involved in the induction of tolerogenic DC
phenotypes (292), but can switch the monocyte differentiation to
macrophages rather than DCs (293). Several factors, such as IL-
1b, IL-13, vascular endothelial growth factor (VEGF), and
transforming growth factor beta (TGF-b) that are secreted by
TME tumor cells, inhibit cDC maturation and survival and
promote their differentiation into immunosuppressive cells, e.g.,
tumor-associated macrophages (TAMs) and myeloid-derived
suppressor cells (MDSCs) (294). In particular, VEGF can
inhibit FLT3 ligand (FL) activity and suppress cDC
differentiation (295). Treg cells are commonly found in the
TME and produce IL-10 and TGFb, which are two potent
immunosuppressive cytokines resulting in DC dysfunction
(296). Additionally, neutrophils have been shown in OSCC
patients to express IL-10, indicating they would also contribute
to DC dysfunction (297). IL-10 inhibits several aspects of DC
biology, including DC maturation, IL-12 production, and antigen
presentation to T cells (298). Further, it has been shown that IL-
10 provokes a switch from an immunogenic DC profile toward a
tolerogenic DC state and the induction of antigen-specific anergy
in cytotoxic CD8+ T cells (299). Further, Treg produced TGF-b
can inactivate DC function by inhibiting DC maturation (300).

The process of apoptotic cell death plays an important role in
determining immunogenicity as it induces the activation of cDCs
FIGURE 3 | Neutrophil engagement with dendritic cells in the TME can result in immune-suppressive or immune-promotion of cancer pathology. Classical/
conventional DC1 cells (cDC1) are the predominant subtype orchestrating an anti-tumor response through the interplay with N1 TAN, CD8+ cytotoxic T (CD8+ T) and
natural killer (NK) cells. N1s produce several alarmins and cytokines that induce DC maturation, TME recruitment, and the initiation of anti-tumor adaptive immunity.
DCs in-turn induce N1 proliferation and survival through cytokine/chemokine release, Type l IFNs, b-defensins and direct interaction MAC-CEACAM1/DC-SIGN
receptor engagement. N1-induced DCs have a greater propensity to engage with and enhance the functions of anti-tumor CD8+ T cells, Th1, and NK cells to induce
cytotoxic killing of tumor cells. On the other hand, N2 TANs and MDSCs have a suppressive role on DC functions and promote tumorigenic tolerant DCs. Reduction
in N2 produced CCL4 leads to decreased cDC tumor infiltrate, an bincrease in N2 CXCL8 and CLL2 contributes to tumor progression and invasion pathways, N2–
DC cell interaction HMGB1-TIM3, and IL-10 production leads to inhibition of cDCs. The inhibition of cDCs further compromises other anti-tumor immune cells (NK,
CD8+ T) and allows for suppressive cells (N2, MDSC, Treg, tolerogenic DCs) to promote tumor growth.
June 2022 | Volume 13 | Article 894021

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Hadjigol et al. Neutrophils Interactive Cells in Cancer Development
and primes humoral and/or effector T cell-mediated immune
responses (immunogenic cell death) (301). Immunogenic cell
death depends on the alarmin high mobility group protein B1
(HMGB1) (302) as it binds nucleic acids released from dying
tumor cells in the DC endosome, facilitating innate sensing of
dead tumor cell nucleic acids (303). However, these processes are
often inhibited in tumor-infiltrating cDCs through high
expression of the inhibitory receptor T-cell immunoglobulin
and mucin domain 3 (TIM3), which interacts with alarmin
HMGB1, inhibiting anti-tumor responses and reducing the
efficacy of cancer treatments (304, 305). In patients with
resectable non-small cell lung cancer, the ratio of CD66b+

tumor-infiltrating neutrophils (TINs) to CD8+ T cells is
reported as an independent prognostic factor for high tumor
recurrence and poor overall survival (306). In a recent study
conducted in lung adenocarcinoma, it has been shown that
CD66b+ TIN infiltration significantly correlated with TIM3
expression (307). It has been shown that antibody crosslinking
of TIM-3 results in tyrosine phosphorylation and the activation
of the nonreceptor tyrosine kinases, Bruton’s tyrosine kinase
(Btk) and c-Src, which then suppress DC activation and
maturation via inhibition of the NF-kb pathway (308). These
studies emulate the diversity and complexity of tumor immunity
and how several immune cells are interconnected to produce a
single outcome, which needs further work to be fully elucidated.

CD47, a transmembrane protein known as a “do not eat me”
signal, which is highly expressed on tumor cells, interacts with
signal regulatory protein a (SIRPa) expressed on dendritic cells
(309). Engagement of SIRPa by CD47 promotes the
phosphorylation of the immunoreceptor tyrosine-based
inhibitory motif (ITIMs) in the cytoplasmic tail of SIRPa,
which in turn recruits SHP-1 and/or SHP-2 [src homology-2
(SH2)-domain containing protein tyrosine phosphatases] to
dephosphorylate motor protein myosin IIA, thus preventing
phagocytosis (310). Abundant expression of CD47 has been
associated with poor survival in several types of cancers (311).
DCs are more dedicated in employing cytosolic DNA sensing
pathways to connect innate response to adaptive response
following anti-CD47-mediated phagocytosis (310, 312). It has
been shown that blockade of CD47 facilitated the activation of
NADPH oxidase NOX2 in DCs, which in turn prevented
phagosomal acidification and decreased the degradation of
tumor mitochondrial DNA (mtDNA) in DCs (312). A recent
study has shown that oxidized mtDNA from irradiated cancer
cells can translocate to the cytosol of dendritic cells (313),
activating the STING (stimulator of interferon genes)-TBK1
(TANK-binding kinase 1)-IRF3 (transcription factor interferon
regulatory factor 3)-IFN-b pathway enhancing antigen cross-
presentation, CD8+ T-cell activation and antitumor immunity
and resulting in tumor rejection (312, 313). Tumors are known
to produce colony-stimulating factor-1 (CSF-1) which recruits
TAMs, which in turn inhibit DC maturation (314). Additionally,
it has been shown that CSF1 producing neutrophils mediate
immunological tolerance by promoting the development of
proliferating Ly6Clo macrophages with suppressive function
(208). Tumors can also induce DC dysfunction via altering DC
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metabolism, for example, by increasing the accumulation of
truncated fatty acids such as triglycerides in DCs (315). It has
also been shown that a high lipid content within DCs reduces
their ability to activate allogeneic T cells or present antigens,
indicating cancer immune responses can be manipulated,
positively or negatively, by altering the lipid levels in DCs (315).

Several signaling pathways such as b-catenin, signal
transducer and activator of transcription (STAT), and
mitogen-activated protein kinase (MAPK) trigger multiple
immunosuppressive cascades in cancer (316). In addition to
these signaling pathways, the Wnt signaling pathway is
emerging as having a fundamental role in shaping the
functions of DCs in the TME (317–319). Currently, nineteen
Wnt proteins (lipid-modified cysteine-rich glycoproteins)
typically 350–400 amino acids in length and ten cognate
Frizzled (Fzd) receptors have been identified in humans (320).
It has been reported that the Wnt family of ligands is highly
expressed in the TME and that different tumor types have
different composition profiles of Wnt proteins (320). For
instance, Wnt1 is highly expressed in lung adenocarcinoma
(321), while in melanoma (322), and oral carcinogenesis (323),
high expression of Wnt3a and Wnt5a are found. In addition to
affecting DCs in the TME, Wnt3a and Wnt5a, albeit not directly
shown in cancer, affect neutrophil maturation and recruitment,
with Wnt5a being shown to act as a chemoattractant and induce
CXCL8 and CCL2 from neutrophils, two chemokines recently
implicated in OSCC progression and invasion (324–328).
EXTRACELLULAR MATRIX (ECM)
AND CANCER-ASSOCIATED
FIBROBLASTS (CAFs)

In cancer, the extracellular matrix (ECM) is a non-cellular
network consisting of macromolecules such as collagen, fibrous
structural proteins, glycoproteins, growth factors, and
proteoglycans that provide structural and biochemical support
to surrounding cells (329). The formation of deregulated and
disorganized ECM results in the promotion of malignant cell
transformation (330). Several proteases released by neutrophils
can contribute to the continuous remodeling process of the ECM
and mediate immune responses (331). In the context of cancer,
neutrophils release neutrophil elastase (NE) in large quantities
that, through its influential protease activity, can cleave not only
elastin but also other extracellular matrix proteins such as
collagen, laminin, and numerous transmembrane proteins,
which devastate the firm junctions between cells and provoke
the exudation and migration of neutrophils (332, 333). In
addition, boosted NE activity activates matrix-metalloproteinases
(MMPs), which may improve the degradation of ECM and cause
tissue damage (334). It is assumed that upregulation of neutrophil-
derived MMP-8 and MMP-9 can degrade lung structure proteins
such as collagen and elastin to produce bioactive peptides that
stimulate neutrophil chemotaxis through CXCR1/2 receptor
activation, supporting the occurrence of inflammatory cascades
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(335, 336). In an inducible colon tumor mouse model, neutrophil-
secreted MMP-9 stimulates latent TGF-b in the ECM by
damaging the ECM, enhancing TGFb in the TME, and resulting
in suppressing the antitumor T-cell response (337). Cathepsin G, a
serine protease secreted by activated neutrophils, promotes E-
cadherin/catenin complex formation on fibronectin and thereby
induces cell–cell adhesion of MCF-7 human breast cancer cells,
suggesting that cathepsin G plays a role in tumor development
and metastasis (338).

Collagen, laminin, and fibronectin are the main ECM
proteins involved in HNSCC development and progression
(339). Immunohistological studies of different histological
grades of HNSCC indicated a direct relationship between the
presence of collagen/or laminin and the degree of differentiation
of oral squamous cell carcinoma (340, 341). A decreased
distribution of ECM proteins was positively associated with
increasing cancer stages, with the deposition of collagen or
laminin decreasing with higher histopathological grades and an
absence of staining associated with a poor prognosis (342).
Coculturing UMSCC47 cells (OSCC cell line) and neutrophils
was shown to increase UMSCC47 invasion and matrix
degradation (343). In highly invasive primary OSCC tumors,
the expressions of laminin, collagen type IV, and vitronectin
were decreased. In contrast, the expressions of fibronectin and
tenascin were increased, indicating that the composition of
ECMs in OSCC is valuable in predicting tumor behavior (344).

The main function of cancer-associated fibroblasts (CAFs)
main function has been shown to be in preserving the
microenvironment for tumor cell growth and proliferation via
Frontiers in Immunology | www.frontiersin.org 13
the secretion of a large variety of autocrine and paracrine
cytokines and other tumor-promoting factors such as CCL5,
CCL7, CXCL12, CXCL14, epidermal growth factor (EGF),
hepatocyte growth factor (HGF), IL-6, IL-17, and VEGF (61,
345–348) (Figure 4). It has been shown that CCL5 is an effective
inducer of neutrophil recruitment in septic lung injury through
the formation of CXCL2 in alveolar macrophages (349). CCL7
generated by CAFs is the key promoter of OSCC cell migration
and invasion, guides cytoskeletal transformation, and triggers
membrane ruffling and cell dissemination (350). CCL7 exerts its
carcinogenesic properties as a chemoattractant for neutrophils
involved in the formation of the tumor microenvironment (351).
It has been demonstrated that neutrophils are directly angiogenic
by releasing VEGF and HGF (352).

It has been shown that CAFs influence the motility of cancer
cells by inducing epithelial–mesenchymal transition (EMT) via
secreted cytokines in endometrial cancer cells (353). The best
markers used to identify CAFs in the TME are (i) a-smooth
muscle actin (a-SMA), a specific marker of myofibroblasts (354)
and (ii) fibroblast activation protein (FAP) (355). In a clinical
study, a-SMA was upregulated and correlated with poor
prognosis in oral carcinoma (356). Another study found that
upregulation of FAP at the mRNA level in human tongue
squamous cell carcinoma was also linked to poor prognosis
(357). It has been demonstrated that an abundance of
myofibroblasts leads to more aggressive behavior of the
squamous cell carcinomas and is associated with a worse
prognosis in HNSCC patients (358). A strong association
between increased CAF density and higher mortality in mobile
FIGURE 4 | Interaction of cancer-associated fibroblasts in promoting N2 function and tumorigenesis. Cancer-associated fibroblasts (CAFs) induce tumorigenic N2
by various interactions. CAF associated molecules such as TGF-b, CXCR2, and SDF-1a, promote cancer cell expression of CXCL6 and TGF-b, which aid in N2
polarization and TME recruitment. CAF produced IL-6 induces STAT3 signaling pathways that modulates PD-L1/PD-1 interaction between N2 and CD8+ T cells and
aids in tumor cell death resistance. CAF associated chemokine CCL7 also aids in N2 recruitment to TME by chemotaxis. Other CAF associated molecules contribute
to N2 NETosis and the production of proteases such as NE, MMPs, and cathepsin to degrade and remodel ECM and promote tumor invasion and metastasis.
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tongue squamous cell carcinoma has been reported (359).
Numerous immunohistochemical studies have shown that
HNSCC-derived CAFs express high levels of TGFb, hepatocyte
growth factor, and MMPs compared with healthy fibroblasts
(360–362). In the context of the TME, blockade of TGF-b results
in the recruitment and activation of TANs with an antitumor
phenotype, indicating a major role of TGF-b in tumor promoting
N2 polarization (121). This recruitment of neutrophils
upregulates the expression of MMP9 and MMP-9+ neutrophils
play a functional and concomitant role in tumor cell
angiogenesis and intravasation (363).

CAFs might be able to modulate the polarization of TANs. A
recent study showed that CAF-derived cardiotrophin-like cytokine
factor 1 (CLCF1) induces TAN-N2 polarization by increasing the
expression of CXCL6 and TGF-b in tumor cells, thereby
accelerating tumor progression (364). Another study showed that
CAFs recruit neutrophils to tumors by producing stromal cell-
derived factor 1 (SDF-1a, known as CXCL12) (365). Furthermore,
CAFs enhance TAN recruitment in a CXCR2-dependent manner
(366). CAF-derived IL-6 induces the activation of STAT3 pathways
in TANs, which are essential for the survival and function of
activated neutrophils, subsequently suppressing T-cell immunity
and inducing immune tolerance in a PD1/PDL1-dependent
manner within the TME (364). This interaction of CAFs and
neutrophils needs to be explored to understand how cancer
progresses via this interaction and the possibilities to disrupt this
mechanism through therapeutic targeting.
INTERACTION OF NATURAL KILLER (NK)
CELLS AND NEUTROPHILS

Natural killer (NK) cells were first identified as a subpopulation
of innate lymphoid cells (ILCs) and comprise about 5–15% of the
total peripheral blood mononuclear cells (PBMCs) (367).
Though NK cells and ILCs are derived from a common
progenitor cell, NK cell development depends on IL-15-
mediated signaling, whereas IL-7 signaling induces ILC
differentiation (368). NK cells are considered the most efficient
immune cells involved in immunosurveillance as they can target
infected or cancer cells lacking major histocompatibility class I
(MHC-I), marking them for programmed cell death (369). In
fact, NK cells mainly target cells with low MHC-I expression or
cells that express the cell stress markers MIC-A or MIC-B (370).
In contrast, in healthy cells, the binding of MHC-I molecules to
their receptors on NK cells blocks NK cell function (371). In a
large OSCC cohort study, it was found that CD57+ NK
expression is positively associated with high tertiary lymphoid
structures (TLS), indicating higher overall survival rates (372).

NK cells are a heterogeneous population and in mice are
recognized as CD3− NKp46+ or more commonly as CD3−

NK1.1+ lymphocytes. In humans, NK cells have been
categorized into two distinct subpopulations: immature CD3−

CD56bright CD16− cells and mature CD3− CD56dim CD16+ cells
(373). Immature and mature NK cells differ in their functions
and have different sensitivities to activating cytokines. After
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activation by IL-2, IL-15, and IL-12, immature NK cells can
activate systemic antitumor immunity indirectly by modulating
the function of other innate and adaptive immune cells via the
secretion of several cytokines such as IFN-g, TNF-a, GM-CSF,
and chemokines such as CCL1, CCL2, CCL3, CCL4, CCL5, and
CXCL8 (374). It has been shown that neutrophil-derived IL-18,
along with dendritic cell-produced IL-12, is critical for IFN-g
synthesis by NK cells, indicating that neutrophils are essential
activators of NK cells (Figure 5) (375). In patients with severe
congenital neutropenia, the percentage of responding NK cells is
much lower in comparison with healthy control patients,
indicating the significant role of neutrophils in NK cell
maturation and function (376).

The majority (90%) of NK cells in PBMCs, which show less
response to cytokine stimulation, are mature cells. Mature NK
cells have several direct cytolytic mechanisms against tumors and
pathogen-infected cells, which include (i) lysis by cytolytic
granules such as granzyme and perforin, (ii) death receptor
(DR) mediated apoptotic processes such as TNF-related-
apoptosis-inducing-ligand (TRAIL)/TRAIL receptors or
induction of apoptosis by FasL/Fas ligation, and (iii) antibody
dependent cell-mediated cytotoxicity (ADCC) (377, 378). In
tumor models, the cytotoxic activity of NK cells has been
shown to be inhibited by the cell–cell interaction with MDSCs
(pathogenically activated neutrophils), reducing NK cell
activation by IL-2 and perforin production and a significant
decline in the ability of NK cells to attack tumor cells (379).
MDSC-derived nitric oxide impairs NK Fc receptor binding,
leading to reduced ADCC and impaired signal transduction
(Figure 5) (380). In HNSCC patients, inhibition of MDSC
trafficking with SX-682, a small-molecule inhibitor of CXCR1
and CXCR2, enhances NK cell immunotherapy, indicating the
important role MDSCs play in NK cell function in TME (381).

There has been improving evidence that neutrophil‐derived
mediators modulate NK cell effector functions in humans and
mice, and in return, NK cells can modulate the survival,
recruitment, and functional responses of neutrophils
(Figure 5) (376, 382). In a murine colon cancer model (383),
the association between the tumor infiltrate of the neutrophil and
NK cell-mediated antitumor immunity was investigated. It was
demonstrated that there was crosstalk between neutrophils and
NK cells as neutrophil depletion significantly (i) decreased the
frequency of IFN-g+ cells within NK cells, (ii) increased the
fraction of Ki67+ NK cells, and (iii) increased the fraction of dead
NK cells, indicating that neutrophil depletion during
homeostatic proliferation induced NK cell proliferation
accompanied by poor survival of NK cells (383). It has also
been reported that some cytokines from neutrophils (such as IL-
5 and IL-18) are involved in NK cell activation or support the
survival of NK cells. IL-15, expressed in granulocytes including
murine and recently human neutrophils (384), mediates a wide
range of effects on mouse NK cells and is considered an
important cytokine for NK cell maintenance (385) and
homeostatic proliferation (386). It is interesting to note here
that the Chen et al. study (384) detected IL-15 via mRNA
expression (rather than secreted protein) from human
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neutrophils that were under a highly inflammatory condition
(sepsis), indicating that neutrophils may have an inflammatory
phenotype yet to be elucidated and this may have a significant
impact on cell-to-cell engagement. IL-15 and IL-18 in synergy
with IL‐12 produced from dendritic cells are also required for
IFN-g expression by NK cells (387–389). The proinflammatory
heterodimer S100A8/A9 which is constitutively expressed by
myeloid cells, including neutrophils, has been shown to directly
enhance the cytotoxic activity of NK cells through binding to the
receptor for advanced glycation end products (RAGE) (390).

Neutrophil-derived molecules such as azurocidin, cathepsin
G, Defensins, elastase, and lactoferrin enhance NK cytotoxic
activity in humans (391–393). NK cell cytolytic activity, instead
of using an antigen-specific mechanism, is mediated by a broad
repertoire of receptors which are engaged by ligands expressed
on putative target cells (394). These receptors can be categorized
either by their functions as NK cell-activating receptors and NK
cell-inhibitory receptors or by their structure as Killer cell Lectin-
like Receptors (KLRs) and Killer cell Immunoglobulin-like
Receptors (KIRs) (395). Each NK cell typically expresses only a
selection of these receptors, and thus NK-cells are quite
heterogeneous and have a diverse repertoire of different MHC
class I specificities (396). Stimulatory and inhibitory receptor
signaling regulate NK cell activation and the balance between
these two signals controls the outcome of the interaction with the
target cell (397). Normal cells are shielded from killing by NK
cells when signals provided by activating ligands are balanced by
inhibitory signals delivered by self-MHC-I. In contrast, cells
experiencing stress, such as tumor cells, downregulate their
MHC-I expression, a ligand for inhibitory receptors.
Simultaneously, they develop stress-associated molecules,
which act as ligands for activating receptors. Consequently, the
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absence of inhibitory signaling along with the induction of
activating signaling shifts the balance toward NK cell
activation, resulting in cytokine secretion and killing of tumor
cells. This process is known as missing-self recognition (397,
398). A clinical study indicated that the rise in the expression of
CD57+ NK cells in the tumor stroma of OSCC may serve as a
good prognostic marker for the patients (399).

Monomorphic MHC-like molecule, CD1d-restricted T cells
are known as NKT cells, which can be divided into two subsets
based on their TCR repertoire and lipid antigenic profile
specificity; type I and type II (400). Type I NKT cells play a
significant role in regulating immune responses, including
immune surveillance against tumors following stimulation by
exogenous factors such as IL-12 or a-GalCer (401, 402). The
NKT cell and neutrophil relationship has been investigated in
hepatitis (403), renal ischemia–reperfusion injury (404), and
pneumonia (405), and these studies showed that excluding or
blocking NKT cells relieved the injury and reduced neutrophil
infiltration (406). It has been shown that colitis-associated
colorectal cancer was suppressed in NKT cell-deficient CD1d−/−

mice (406). This study suggested that NKT cells essentially act as
an initiator, strongly expressing TNF-a which could stimulate
epithelial chemokine secretion (CXCL1, 2, and 3), thereby
mediating neutrophil recruitment indirectly. Neutrophils in
turn become tissue-damaging through ROS upregulation (406),
leading to colon cancer by causing DNA instability (407). It has
been shown that iNKT cells can indirectly control tumor growth
through targeting tumor-supportive, IL-6-producing, CD1d+

CD68+ tumor-associated macrophages (TAM) (408). Further, a
deficiency in circulating iNKT cells was associated with poor
clinical outcome in HNSCC patients, suggesting their critical
contribution to antitumor immune responses (409, 410).
FIGURE 5 | Neutrophil networks affecting oral cancer outcomes. Neutrophils interact with anti-tumor and suppressive immune cells in the complex TME ecosystem.
TME recruited neutrophils, TANs (tumor-associated neutrophils) polarize to a N1 anti-tumor phenotype in the presence of IFN-b, and to a N2 tumorigenic phenotype
with TGF-b. N1 neutrophils upregulate several molecules such as cathepsin-G, MPO, MIP-1 a/b, IFN- b, TNF-a, IL-8, and TSP-1, to induce other immune cells and
also execute N1 functions such as ADCC, ROS, and iNOS-induced cytotoxicity. N1 induce M1 TAM, NK (IL-18, 1L-15), T cells (IL-12, CCL1, CCL20, MCP-1) and DCs
(LL-37, TNF-a, HMG-B1, defensins, lactoferrin, cell interaction Mac-1/CEACAM1–DC-SIGN). DCs further aid in N1 induced NK via IL-12, and NK aid in N1 induced DC
via CCL5 and XCL1. N1 induced DCs further promote CD8+ T cells and Th1 cells. Interaction of these anti-tumor immune cells with N1 promotes tumor death. On the
other hand, N2 neutrophils promote suppressive cells such as MDSC, Treg, and M2 and function via molecules such as MMP-9, VEGF, TGF-b, NETs, CLL4, and IL-
10. N2 and MDSC inhibit anti-tumor T cells via Arg-1, TNF-a, and NO; and NK cells via NO and CXCR1/2. These lead to tumor growth and metastasis.
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TUMOR MICROENVIRONMENT (TME)
IN THE PATHOGENESIS OF
HNSCC/OSCC

Though HNSCC is linked with intense immune suppression, the
impact of the premalignant and TME on immune reactivity has
yet to be elucidated. Significant infiltration of proinflammatory
immune cells, such as CD163+ TAMs, CD8+ T cells, and NK
cells, has been reported in oral leukoplakia and carcinoma (411–
413). Using a mouse model of 4-nitroquinoline-1-oxide-induced
oral carcinogenesis, De Costa et al. (414) investigated the shift in
the immune cell phenotypes at the premalignant and malignant
stages of HNSCC/OSCC (414). The development of oral
premalignant lesions was shown to be associated with elevated
levels of inflammatory Th1 cells, Type 1 CD8+ T cells (Tc1)
secreting IFN-g and Th17 cells compared with controls and
HNSCC/OSCC-bearing mice, though the number of CD4+

regulatory T cells increased in HNSCC/OSCC-bearing mice
(414). Regarding the inflammatory cytokine profile, it was
shown that premalignant oral lesions are associated with an
increased level of IL-17 as well as IL-23, in comparison with
controls or HNSCC/OSCC, thus supporting the Th17 phenotype
(415). In contrast, HNSCC tissues produce increased levels of
TGF-b and skew normal spleen cells toward the Treg phenotype
(415). Another study demonstrated that premalignant lesion
cells released a panel of proinflammatory mediators including
CCL5, G-CSF, monocyte chemoattractant protein 1 (MCP-1),
and prostaglandin-E2 (PGE2) in comparison to HNSCC/OSCC
cells, indicating that the premalignant microenvironment is
more immune stimulatory than the microenvironment of an
established HNSCC/OSCC (416). In addition, a-SMA (CAF cell
marker) expression was high in premalignant lesions while it is
not observed in normal epithelium (417).

The influx, differentiation, and activation of neutrophils in
the TME is indicative of a functional interaction between
NHSCC/OSCC cells and neutrophils. A study by Trellakis
et al. showed that high infiltration of neutrophils in OSCC is
associated positively with tumor stage and negatively with overall
survival times (418). HNSCC/OSCC cancer cells directly recruit
neutrophils, extend their survival, and stimulate their
inflammatory activity. HNSCC/OSCC cells are reported to be a
crucial trigger for the recruitment of neutrophils as high serum
concentrations of the inflammatory/chemotactic chemokines
CCL4, CCL5, and CXCL8 in HNSCC/OSCC patients (418).
The interaction of neutrophils and HNSCC/OSCC cells was
found to enhance the chemotaxis of neutrophils to the TME
and secretion of MMP-9 and CCL4 by neutrophils, triggering
further recruitment and aiding tumor progression (418).
Elevated MMP-9 has been reported to be at the invasive front
of squamous cell and verrucous carcinomas in the oral cavity,
indicating that MMP-9 expression is a reliable marker for
invasive squamous cell carcinoma grading (419).

The abundance of circulating MDSCs is observed in HNSCC/
OSCC and is associated with advanced stages of cancer (420).
Though inhibiting T-cell activation is a key function of MDSCs,
both in vitro and in vivo studies have demonstrated MDSC-derived
Frontiers in Immunology | www.frontiersin.org 16
caspase-1 promotes the proliferation of HNSCC cancer in a T-cell-
independent manner (421). The increase in MDSCs in HNSCC/
OSCC patients has led to a few studies investigating methods to
target these cells. A study byWeed et al. (422), showed that targeting
MDSCs with tadalafil (10 mg/day) promotes antitumor immunity
by increasing tumor-specific CD8+ T cells in a dose-dependent
manner in patients with head and neck squamous cell carcinoma
(422). Based on the observation that the expression of B7 homolog 3
protein (B7-H3) is an essential immunosuppressive mechanism in
HNSCC, Mao et al. (423) conducted an HNSCC mouse model and
showed that the blockade of B7-H3 decreased the levels of MDSCs
and TAMs, as well as promoted IFN-g secretion of cytotoxic T cells,
resulting in enhanced antitumor immune activity (423). Another
potential therapeutic target that may affect MDSCs is semaphorin
4D (Sema4D), a cytokine expressed by several epithelial
malignancies and known to induce tumor angiogenesis produced
by MDSC resulting in suppression of T-cell proliferation and IFN-g
production (424). Sema4D acts on immature MDSC and DC by (i)
preventing their migration and (ii) inducing considerable increases
in the immune-suppressive profile (425, 426). Although theMDSCs
or neutrophils were not investigated, Zhou et al. (427) have shown
that anti-Sema4D treatment reduced tumor growth and
vascularization in an OSCC xenograft model, demonstrating a
further possibility of targeting MDSCs.

A main contributor of inflammation in HNSCC is CD68+

TAMs, which is correlated with poor clinical outcomes in oral
squamous cell carcinoma patients (428). Several studies confirmed
that OSCC cells could directly suppress antitumor T-cell
immunity through induction of PD-L1 expression on TAMs
(429, 430). A high proportion of M2 macrophages express TGF-
b and IL-10 in oral squamous cell carcinoma which was associated
with a reduced patient survival time (431). TGF-b plays an
important role in tumor-associated neutrophil polarization. It is
shown that in the presence of TGF-b, neutrophils develop the N2
phenotype, which exhibits immunosuppressive and tumor-
promoting activity, whereas blocking this molecule shifts the
phenotype toward N1 (366). A recent study suggested that NET
formation induced by TGF-b in oral lichen planus has substantial
implications for developing oral cancer (432). The enhanced level
of IL-10, which is produced by murine neutrophils (433), and
inflammatory activated human neutrophils (237), leads to adverse
survival in animal models and is associated with a poor prognosis
in cancer patients (434). Genetic variation in IL-10, in particular
IL-10 gene promote -1082 A/G (rs1800870) polymorphism, has
been strongly associated with an increased risk of oral squamous
cell carcinoma (435, 436) but has a non-significant association
with HNC clinical stages and the association with neutrophils has
not been conducted (437).

NK cells are well-known for their strong anti-tumor
immunity, which is often compromised in cancer. Several
studies investigating NK cells in oropharyngeal squamous cell
carcinoma found that high abundance and activity of NK cells
predicted improved survival, indicating that NK cells are a good
prognostic marker for OSCC patients (399, 438). Tumor cells
express NK activating receptor ligands de novo, making them
susceptible to NK cell killing (439). The upregulation of the NK
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cell inhibitory ligand NKG2A on tumor-associated NK cells is
considered one of the biological mechanisms of immune escape
in HNSCC (440). NK cells from the primary tumor present a
different phenotype than NK cells from the blood of the same
HNSCC patients (399). Tumor-infiltrating NK cells significantly
downregulated activating receptors such as NKG2D, DNAM-1,
NKp30, CD16, and 2B4, while over-expressing their inhibitory
receptors (e.g., NKG2A and PD-1) compared with matched
blood NK cells and thereby could not kill target cells and
produce cytokines (61, 399, 441). It has been reported that
tumor-infiltrating NK cells reduce cytotoxicity and produce
significantly less IFN-g (442). In colitis, NKG2A-expressing
NK cells reduce inflammatory neutrophil recruitment and
functions. By extension, it could be possible that the presence
of NKG2A+ NK cells in the TME would dampen N1 neutrophil
anti-tumor activity (443, 444). With this phenotype, NK cells in
the primary tumor would enhance tumor progression and
immune suppression.
CONCLUSION

Cancer such as HNSCC/OSCC is a major health issue globally and,
with high incidence and mortality, it imposes a significant
psychosocial and economic burden on individuals and society.
Despite the clinical success of immunotherapies based on
immune checkpoint inhibitors (i.e., antibodies against the
immune regulators CTLA4 and PD-L1/PD-1), unfortunately, only
a subset of patients respond to this treatment, suggesting that cancer
immune evasion is a major barrier in current immunotherapy. An
immune evasion characteristic that has received less attention is the
crosstalk between distinctive immune cells within the TME and
how this affects clinical outcomes.

Our review highlights that neutrophils do play a significant
role in cancer immunology and that there are major holes in our
Frontiers in Immunology | www.frontiersin.org 17
knowledge of how neutrophils affect tumor immune escape
mechanisms, and a better understanding of this will determine
more appropriate biomarkers for diagnostics and treatment of
cancer. However, the TME represents a complex eco-system
which alters over time, and determining how tumor cells and
other constituents of the TME, such as CAFs, B cells, DC,
macrophages, MDSC, NK cells, and T cells interact with each
other and neutrophils will be challenging (Figure 6). It can be
seen that neutrophils have a role throughout cancer initiation
and progression, recruitment of DC and NK cells and
consequently T cells, N1s then the suppressive N2 and the
formation of MDSCs (activated neutrophils) and their effects.
Although originally maligned in cancer immunology due to their
short half-life, it now appears that neutrophils play a significant if
not pivotal role in cancer pathology through their heterogeneity
phenotypes, N2, TANs, and MDSCs interacting with other
myeloid immune cells to affect disease states and overall cancer
survivability and treatment success (Figure 5). Thus, there needs
to be a focus on neutrophils in cancer, which in turn may yield
significant knowledge gain and lead to more effective and lasting
treatments. Though current evidence supports a pro-tumor role
for neutrophils in OSCC, there may be an anti-tumor role for
neutrophils and there needs to be more research to elucidate the
complexity of the neutrophil mechanisms involved in cancer.
Understanding these immune cell interactions is crucial for a
better understanding of the TME and in treatment provided to
HNSCC/OSCC patients.
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FIGURE 6 | Immunoediting during tumorigenesis. 1. Initiation of cancer with transformation of healthy cells. 2. Robust response from innate and adaptive immune
cells such as N1 neutrophils, CD8+ T, M1 TAM, NK, and cDC1, producing key cytokines IFNg and TNFa to eliminate the cancer cells. 3. Equilibrium between the
immune cell response and cancer growth in the presence of proinflammatory cytokines. Overtime, more resistant tumor variants arise that can evade the immune
response and escape. 4. Tumor growth and progression in the presence of immune suppressive cells such as Tregs, N2 neutrophils, MDSCs, M2 TAMs, and
tolerogenic DCs, producing key anti-inflammatory cytokines 1L-10 and TGF-b. Anti-tumor immune cells are suppressed in this highly tumoricidal environment.
June 2022 | Volume 13 | Article 894021

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Hadjigol et al. Neutrophils Interactive Cells in Cancer Development
FUNDING

The National Health and Medical Research Council (NHMRC)
of Australia and Australian Research Council (ARC) are thanked
for financial support over many years for the immunology,
microbiology, peptide chemistry and chemical biology studies
reported in the authors’ laboratories. NO’B-S is the recipient of
Frontiers in Immunology | www.frontiersin.org 18
NHMRC funding (APP1142472, APP1158841, APP1185426),
ARC funding (DP210102781, DP160101312, LE200100163),
Cancer Council Victoria funding (APP1163284), and the
Australian Dental Research Foundation funding and research
is supported by the Division of Basic and Clinical Oral Sciences
and Centre for Oral Health Research at The Melbourne
Dental School.
REFERENCES

1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al.
Cancer Incidence and Mortality Worldwide: Sources, Methods and Major
Patterns in GLOBOCAN 2012. Int J Cancer (2015) 136:E359–86. doi:
10.1002/ijc.29210

2. Jou A, Hess J. Epidemiology and Molecular Biology of Head and Neck
Cancer. Oncol Res Treat (2017) 40:328–32. doi: 10.1159/000477127

3. Chaturvedi AK, Anderson WF, Lortet-Tieulent J, Curado MP, Ferlay J,
Franceschi S, et al. Worldwide Trends in Incidence Rates for Oral Cavity
and Oropharyngeal Cancers. J Clin Oncol (2013) 31:4550–9. doi: 10.1200/
JCO.2013.50.3870

4. Ghani WMN, Ramanathan A, Prime SS, Yang YH, Razak IA, Abdul
Rahman ZA, et al. Survival of Oral Cancer Patients in Different Ethnicities.
Cancer Invest (2019) 37:275–87. doi: 10.1080/07357907.2019.1635614

5. Nakashima T, Tomita H, Hirata A, Ishida K, Hisamatsu K, Hatano Y, et al.
Promotion of Cell Proliferation by the Proto-Oncogene DEK Enhances Oral
Squamous Cell Carcinogenesis Through Field Cancerization. Cancer Med
(2017) 6:2424–39. doi: 10.1002/cam4.1157

6. Vigneswaran N, Williams MD. Epidemiologic Trends in Head and Neck
Cancer and Aids in Diagnosis. Oral Maxillofac Surg Clin North Am (2014)
26:123–41. doi: 10.1016/j.coms.2014.01.001

7. Daraei P, Moore CE. Racial Disparity Among the Head and Neck Cancer
Population. J Cancer Educ (2015) 30:546–51. doi: 10.1007/s13187-014-
0753-4

8. Sathiasekar AC, Mathew DG, Jaish Lal MS, Arul Prakash AA, Goma Kumar
KU. Oral Field Cancerization and Its Clinical Implications in the
Management in Potentially Malignant Disorders. J Pharm Bioallied Sci
(2017) 9:S23–s5. doi: 10.4103/jpbs.JPBS_109_17

9. Chin D, Boyle GM, Porceddu S, Theile DR, Parsons PG, Coman WB. Head
and Neck Cancer: Past, Present and Future. Expert Rev Anticancer Ther
(2006) 6:1111–8. doi: 10.1586/14737140.6.7.1111

10. Hadzic S, Gojkov-Vukelic M, Pasic E, Dervisevic A. Importance of Early
Detection of Potentially Malignant Lesions in the Prevention of Oral Cancer.
Mater Sociomed (2017) 29:129–33. doi: 10.5455/msm.2017.29.129-133

11. Australian-Institute-of-Health-and-Welfare. Oral Health and Dental Care in
Australia. Canberra: Australian Institute of Health and Welfare (2021).

12. Mashberg A, Samit AM. Early Detection, Diagnosis, and Management of
Oral and Oropharyngeal Cancer. CA Cancer J Clin (1989) 39:67–88. doi:
10.3322/canjclin.39.2.67

13. Sheikh MN, Hanif S, Zia M, Qayyum Z. Effects of Nicotine on an In Vitro
Reconstituted Model Oral Mucosa in Terms of Cytokine Production. J Ayub
Med Coll Abbottabad (2011) 23:80–4.

14. Hukkanen J, Jacob P, Benowitz NL. Metabolism and Disposition Kinetics of
Nicotine. Pharmacol Rev (2005) 57:79–115. doi: 10.1124/pr.57.1.3

15. Xue J, Yang S, Seng S. Mechanisms of Cancer Induction by Tobacco-Specific
NNK and NNN. Cancers (Basel) (2014) 6:1138–56. doi: 10.3390/
cancers6021138

16. Vineis P, Alavanja M, Buffler P, Fontham E, Franceschi S, Gao YT, et al.
Tobacco and Cancer: Recent Epidemiological Evidence. J Natl Cancer Inst
(2004) 96:99–106. doi: 10.1093/jnci/djh014

17. Ogihara K, Kikuchi E, Yuge K, Yanai Y, Matsumoto K, Miyajima A, et al.
The Preoperative Neutrophil-To-Lymphocyte Ratio is a Novel Biomarker
for Predicting Worse Clinical Outcomes in Non-Muscle Invasive Bladder
Cancer Patients With a Previous History of Smoking. Ann Surg Oncol (2016)
23:1039–47. doi: 10.1245/s10434-016-5578-4
18. Feng L, Wang L. Effects of Alcohol on the Morphological and Structural
Changes in Oral Mucosa. Pak J Med Sci (2013) 29:1046–9. doi: 10.12669/
pjms.294.3696

19. Liu Y, Chen H, Sun Z, Chen X. Molecular Mechanisms of Ethanol-
Associated Oro-Esophageal Squamous Cell Carcinoma. Cancer Lett (2015)
361:164–73. doi: 10.1016/j.canlet.2015.03.006

20. Muhaxheri G, Vucicevic Boras V, Fucic A, Plavec D, Sekerija M, Filipovic M,
et al. Multivariate Analysis of Preoperative and Postoperative Neutrophil-to-
Lymphocyte Ratio as an Indicator of Head and Neck Squamous Cell
Carcinoma Outcome. Int J Oral Maxillofac Surg (2018) 47:965–70. doi:
10.1016/j.ijom.2018.02.011

21. Hashibe M, Brennan P, Chuang SC, Boccia S, Castellsague X, Chen C, et al.
Interaction Between Tobacco and Alcohol Use and the Risk of Head and
Neck Cancer: Pooled Analysis in the International Head and Neck Cancer
Epidemiology Consortium. Cancer Epidemiol Biomarkers Prev (2009)
18:541–50. doi: 10.1158/1055-9965.EPI-08-0347

22. Kreimer AR, Clifford GM, Boyle P, Franceschi S. Human Papillomavirus
Types in Head and Neck Squamous Cell Carcinomas Worldwide: A
Systematic Review. Cancer Epidemiol Biomarkers Prev (2005) 14:467–75.
doi: 10.1158/1055-9965.EPI-04-0551

23. Gillison ML, Koch WM, Capone RB, Spafford M, Westra WH, Wu L, et al.
Evidence for a Causal Association Between Human Papillomavirus and a
Subset of Head and Neck Cancers. J Natl Cancer Inst (2000) 92:709–20. doi:
10.1093/jnci/92.9.709

24. Jelihovschi I, Bidescu AC, Tucaliuc SE, Iancu LS. Detection Of Human
Papilloma Virus In Head And Neck Squamous Cell Carcinomas: A
Literature Review. Rev Med Chir Soc Med Nat Iasi (2015) 119:502–9.

25. Dalla Torre D, Burtscher D, Sölder E, Rasse M, Puelacher W. The
Correlation Between the Quality of Oral Hygiene and Oral HPV Infection
in Adults: A Prospective Cross-Sectional Study. Clin Oral Investig (2019)
23:179–85. doi: 10.1007/s00784-018-2425-y

26. Li C, Zhao L, Wang Q, Ma S, Sun J, Ma C, et al. Neutrophils Infiltration and
its Correlation With Human Papillomavirus Status in the Oral Squamous
Cell Carcinoma. Cancer Manag Res (2019) 11:5171–85. doi: 10.2147/
CMAR.S202465

27. So YK, Lee G, Oh D, Byeon S, Park W, Chung MK. Prognostic Role of
Neutrophil-To-Lymphocyte Ratio in Patients With Human Papillomavirus-
Positive Oropharyngeal Cancer. Otolaryngol Head Neck Surg (2018)
159:303–9. doi: 10.1177/0194599818764651

28. Rosculet N, Zhou XC, Ha P, Tang M, Levine MA, Neuner G, et al.
Neutrophil-To-Lymphocyte Ratio: Prognostic Indicator for Head and
Neck Squamous Cell Carcinoma. Head Neck (2017) 39:662–7. doi:
10.1002/hed.24658

29. Fanetti G, Alterio D, Marvaso G, Gandini S, Rojas DP, Gobitti C, et al.
Prognostic Significance of Neutrophil-to-Lymphocyte Ratio in HPV Status
Era for Oropharyngeal Cancer. Oral Dis (2020) 26:1384–92. doi: 10.1111/
odi.13366

30. Valdes M, Villeda J, Mithoowani H, Pitre T, Chasen M. Inflammatory
Markers as Prognostic Factors of Recurrence in Advanced-Stage Squamous
Cell Carcinoma of the Head and Neck. Curr Oncol (2020) 27:135–41. doi:
10.3747/co.27.5731

31. Shimakage M, Horii K, Tempaku A, Kakudo K, Shirasaka T, Sasagawa T.
Association of Epstein-Barr Virus With Oral Cancers. Hum Pathol (2002)
33:608–14. doi: 10.1053/hupa.2002.129786

32. Horiuchi K, Mishima K, Ichijima K, Sugimura M, Ishida T, Kirita T. Epstein-
Barr Virus in the Proliferative Diseases of Squamous Epithelium in the Oral
June 2022 | Volume 13 | Article 894021

https://doi.org/10.1002/ijc.29210
https://doi.org/10.1159/000477127
https://doi.org/10.1200/JCO.2013.50.3870
https://doi.org/10.1200/JCO.2013.50.3870
https://doi.org/10.1080/07357907.2019.1635614
https://doi.org/10.1002/cam4.1157
https://doi.org/10.1016/j.coms.2014.01.001
https://doi.org/10.1007/s13187-014-0753-4
https://doi.org/10.1007/s13187-014-0753-4
https://doi.org/10.4103/jpbs.JPBS_109_17
https://doi.org/10.1586/14737140.6.7.1111
https://doi.org/10.5455/msm.2017.29.129-133
https://doi.org/10.3322/canjclin.39.2.67
https://doi.org/10.1124/pr.57.1.3
https://doi.org/10.3390/cancers6021138
https://doi.org/10.3390/cancers6021138
https://doi.org/10.1093/jnci/djh014
https://doi.org/10.1245/s10434-016-5578-4
https://doi.org/10.12669/pjms.294.3696
https://doi.org/10.12669/pjms.294.3696
https://doi.org/10.1016/j.canlet.2015.03.006
https://doi.org/10.1016/j.ijom.2018.02.011
https://doi.org/10.1158/1055-9965.EPI-08-0347
https://doi.org/10.1158/1055-9965.EPI-04-0551
https://doi.org/10.1093/jnci/92.9.709
https://doi.org/10.1007/s00784-018-2425-y
https://doi.org/10.2147/CMAR.S202465
https://doi.org/10.2147/CMAR.S202465
https://doi.org/10.1177/0194599818764651
https://doi.org/10.1002/hed.24658
https://doi.org/10.1111/odi.13366
https://doi.org/10.1111/odi.13366
https://doi.org/10.3747/co.27.5731
https://doi.org/10.1053/hupa.2002.129786
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Hadjigol et al. Neutrophils Interactive Cells in Cancer Development
Cavity. Oral Surg Oral Med Oral Pathol Oral Radiol Endod (1995) 79:57–63.
doi: 10.1016/S1079-2104(05)80075-7
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Rodriguez-Santamarta T, Domıńguez-Iglesias F, et al. Macrophages in
Oral Carcinomas: Relationship With Cancer Stem Cell Markers and PD-
L1 Expression. Cancers (2020) 12.1764 doi: 10.3390/cancers12071764

216. Mori K, Hiroi M, Shimada J, Ohmori Y. Infiltration of M2 Tumor-
Associated Macrophages in Oral Squamous Cell Carcinoma Correlates
With Tumor Malignancy. Cancers (2011) 3:3726–39. doi: 10.3390/
cancers3043726

217. Wang S, Sun M, Gu C, Wang X, Chen D, Zhao E, et al. Expression of CD163,
Interleukin-10, and Interferon-Gamma in Oral Squamous Cell Carcinoma:
Mutual Relationships and Prognostic Implications. Eur J Oral Sci (2014)
122:202–9. doi: 10.1111/eos.12131
June 2022 | Volume 13 | Article 894021

https://doi.org/10.1080/2162402X.2017.1356965
https://doi.org/10.1002/(SICI)1097-0215(19970220)74:1%3C69::AID-IJC12%3E3.0.CO;2-D
https://doi.org/10.1002/(SICI)1097-0215(19970220)74:1%3C69::AID-IJC12%3E3.0.CO;2-D
https://doi.org/10.1002/(SICI)1097-0215(19971127)73:5%3C663::AID-IJC9%3E3.0.CO;2-V
https://doi.org/10.1002/(SICI)1097-0215(19971127)73:5%3C663::AID-IJC9%3E3.0.CO;2-V
https://doi.org/10.1016/j.ccr.2008.01.034
https://doi.org/10.1002/jcb.27681
https://doi.org/10.1155/2016/5894347
https://doi.org/10.3389/fimmu.2020.553967
https://doi.org/10.3389/fimmu.2021.650105
https://doi.org/10.3389/fimmu.2021.650105
https://doi.org/10.1016/j.intimp.2010.08.012
https://doi.org/10.4049/jimmunol.171.11.6052
https://doi.org/10.1084/jem.178.1.63
https://doi.org/10.1165/ajrcmb/2.4.335
https://doi.org/10.1046/j.1440-1711.2001.01020.x
https://doi.org/10.1007/s00705-009-0371-3
https://doi.org/10.1371/journal.pone.0064814
https://doi.org/10.3390/cancers6021111
https://doi.org/10.3390/cancers6021111
https://doi.org/10.1111/cas.15081
https://doi.org/10.1155/2016/6058147
https://doi.org/10.1002/ijc.24859
https://doi.org/10.1002/ijc.24859
https://doi.org/10.1038/nm.3394
https://doi.org/10.1016/j.celrep.2017.11.014
https://doi.org/10.1126/science.1252510
https://doi.org/10.1002/eji.201344304
https://doi.org/10.1158/0008-5472.CAN-15-0869
https://doi.org/10.1158/0008-5472.CAN-15-0869
https://doi.org/10.1111/ajt.14645
https://doi.org/10.1038/s41577-019-0127-6
https://doi.org/10.1038/s41577-019-0127-6
https://doi.org/10.1172/JCI59643
https://doi.org/10.1016/j.imbio.2016.08.001
https://doi.org/10.1111/j.1365-2249.2011.04515.x
https://doi.org/10.3389/fimmu.2019.01875
https://doi.org/10.1093/rb/rbw041
https://doi.org/10.3390/cancers12071764
https://doi.org/10.3390/cancers3043726
https://doi.org/10.3390/cancers3043726
https://doi.org/10.1111/eos.12131
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Hadjigol et al. Neutrophils Interactive Cells in Cancer Development
218. Ye X, Zhang J, Lu R, Zhou G. Signal Regulatory Protein a Associated With
the Progression of Oral Leukoplakia and Oral Squamous Cell Carcinoma
Regulates Phenotype Switch of Macrophages. Oncotarget (2016) 7:81305–21.
doi: 10.18632/oncotarget.12874

219. Haque ASMR, Moriyama M, Kubota K, Ishiguro N, Sakamoto M, Chinju A,
et al. CD206(+) Tumor-Associated Macrophages Promote Proliferation and
Invasion in Oral Squamous Cell Carcinoma via EGF Production. Sci Rep
(2019) 9:14611–. doi: 10.1038/s41598-019-51149-1

220. Fujii N, Shomori K, Shiomi T, Nakabayashi M, Takeda C, Ryoke K, et al.
Cancer-Associated Fibroblasts and CD163-Positive Macrophages in Oral
Squamous Cell Carcinoma: Their Clinicopathological and Prognostic
Significance. J Oral Pathol Med (2012) 41:444–51. doi: 10.1111/j.1600-
0714.2012.01127.x

221. Kouketsu A, Sato I, Oikawa M, Shimizu Y, Saito H, Tashiro K, et al.
Regulatory T Cells and M2-Polarized Tumour-Associated Macrophages
are Associated With the Oncogenesis and Progression of Oral Squamous
Cell Carcinoma. Int J Oral Maxillofac Surg (2019) 48:1279–88. doi: 10.1016/
j.ijom.2019.04.004

222. Weber M, Büttner-Herold M, Hyckel P, Moebius P, Distel L, Ries J, et al.
Small Oral Squamous Cell Carcinomas With Nodal Lymphogenic Metastasis
Show Increased Infiltration of M2 Polarized Macrophages–an
Immunohistochemical Analysis. J Craniomaxillofac Surg (2014) 42:1087–
94. doi: 10.1016/j.jcms.2014.01.035

223. den Toom IJ, Mahieu R, van Rooij R, van Es RJJ, Hobbelink MGG, Krijger
GC, et al. Sentinel Lymph Node Detection in Oral Cancer: A Within-Patient
Comparison Between [(99m)Tc]Tc-Tilmanocept and [(99m)Tc]Tc-
Nanocolloid. Eur J Nucl Med Mol Imaging (2021) 48:851–8. doi: 10.1007/
s00259-020-04984-8

224. Kogure A, Kosaka N, Ochiya T. Cross-Talk Between Cancer Cells and Their
Neighbors via miRNA in Extracellular Vesicles: An Emerging Player in
Cancer Metastasis. J BioMed Sci (2019) 26:7. doi: 10.1186/s12929-019-0500-6

225. Raghavan S, Mehta P, Xie Y, Lei YL, Mehta G. Ovarian Cancer Stem Cells
and Macrophages Reciprocally Interact Through the WNT Pathway to
Promote Pro-Tumoral and Malignant Phenotypes in 3D Engineered
Microenvironments. J Immunother Cancer (2019) 7:190. doi: 10.1186/
s40425-019-0666-1

226. Ruffell B, Chang-Strachan D, Chan V, Rosenbusch A, Ho CM, Pryer N, et al.
Macrophage IL-10 Blocks CD8+ T Cell-Dependent Responses to
Chemotherapy by Suppressing IL-12 Expression in Intratumoral Dendritic
Cells. Cancer Cell (2014) 26:623–37. doi: 10.1016/j.ccell.2014.09.006

227. Baghdadi M, Wada H, Nakanishi S, Abe H, Han N, Putra WE, et al.
Chemotherapy-Induced IL34 Enhances Immunosuppression by Tumor-
Associated Macrophages and Mediates Survival of Chemoresistant Lung
Cancer Cells. Cancer Res (2016) 76:6030–42. doi: 10.1158/0008-5472.CAN-
16-1170

228. Shiao SL, Ruffell B, DeNardo DG, Faddegon BA, Park CC, Coussens LM.
TH2-Polarized CD4(+) T Cells and Macrophages Limit Efficacy of
Radiotherapy. Cancer Immunol Res (2015) 3:518–25. doi: 10.1158/2326-
6066.CIR-14-0232

229. Xu X, Ye J, Huang C, Yan Y, Li J. M2 Macrophage-Derived IL6 Mediates
Resistance of Breast Cancer Cells to Hedgehog Inhibition. Toxicol Appl
Pharmacol (2019) 364:77–82. doi: 10.1016/j.taap.2018.12.013

230. Yin Y, Yao S, Hu Y, Feng Y, Li M, Bian Z, et al. The Immune-
Microenvironment Confers Chemoresistance of Colorectal Cancer
Through Macrophage-Derived Il6. Clin Cancer Res (2017) 23:7375–87.
doi: 10.1158/1078-0432.CCR-17-1283

231. Zhu X, Shen H, Yin X, Long L, Chen X, Feng F, et al. IL-6r/STAT3/miR-204
Feedback Loop Contributes to Cisplatin Resistance of Epithelial Ovarian
Cancer Cells. Oncotarget (2017) 8:39154–66. doi: 10.18632/oncotarget.16610

232. Ngambenjawong C, Gustafson HH, Pun SH. Progress in Tumor-Associated
Macrophage (TAM)-Targeted Therapeutics. Adv Drug Delivery Rev (2017)
114:206–21. doi: 10.1016/j.addr.2017.04.010

233. Laviron M, Boissonnas A. Ontogeny of Tumor-Associated Macrophages.
Front Immunol (2019) 10:1799. doi: 10.3389/fimmu.2019.01799

234. Poh AR, Ernst M. Targeting Macrophages in Cancer: From Bench to
Bedside. Front Oncol (2018) 8:49. doi: 10.3389/fonc.2018.00049

235. Castell SD, Harman MF, Morón G, Maletto BA, Pistoresi-Palencia MC.
Neutrophils Which Migrate to Lymph Nodes Modulate CD4(+) T Cell
Frontiers in Immunology | www.frontiersin.org 24
Response by a PD-L1 Dependent Mechanism. Front Immunol (2019) 10:105.
doi: 10.3389/fimmu.2019.00105

236. SunR,XiongY, LiuH,GaoC,SuL,Weng J, et al. Tumor-AssociatedNeutrophils
Suppress Antitumor Immunity of NK Cells Through the PD-L1/PD-1 Axis.
Transl Oncol (2020) 13:100825. doi: 10.1016/j.tranon.2020.100825

237. Lewkowicz N, Mycko MP, Przygodzka P, Ćwiklińska H, Cichalewska M,
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