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Controlling network ensembles
Isaac Klickstein 1✉ & Francesco Sorrentino 1✉

The field of optimal control typically requires the assumption of perfect knowledge of the

system one desires to control, which is an unrealistic assumption for biological systems, or

networks, typically affected by high levels of uncertainty. Here, we investigate the minimum

energy control of network ensembles, which may take one of a number of possible realiza-

tions. We ensure the controller derived can perform the desired control with a tunable

amount of accuracy and we study how the control energy and the overall control cost scale

with the number of possible realizations. Our focus is in characterizing the solution of the

optimal control problem in the limit in which the systems are drawn from a continuous

distribution, and in particular, how to properly pose the weighting terms in the objective

function. We verify the theory in three examples of interest: a unidirectional chain network

with uncertain edge weights and self-loop weights, a network where each edge weight is

drawn from a given distribution, and the Jacobian of the dynamics corresponding to the cell

signaling network of autophagy in the presence of uncertain parameters.
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Our ability to numerically solve and implement optimal
controls1–3 has improved greatly this decade, but one
typically must assume that nearly perfect knowledge of

the system is available4. While this is usually not an issue for
mechanical or designed systems5, the optimal control of biolo-
gical systems, or networks, cannot yet provide certain mathe-
matical models6. There are several reasons why the underlying
network structure and parameters may be affected by uncertainty:
(i) our knowledge of the network connections may be imperfect,
e.g., due to noisy measurements, (ii) networks change with time
so a change may occur between the time the network is measured
and the time when a control action is introduced and (iii) mea-
surements performed by different research groups or by the same
group under different environmental conditions may differ from
each other. As an example of (iii), one can find several versions of
the neural network of the worm C. Elegans in the literature7,8 or
the metabolic network of E. Coli9,10, or variations between brain
scans over time of the same individual11. The E. Coli
protein–protein interaction network12 is known to be affected by
higher uncertainty than its metabolic network. Another example
of (iii) is taking into account the effect of the environment on the
transition rate between metabolites13.

While considerable research efforts have been addressed at
designing control laws for biological networks and other net-
worked systems14–21, a main limitation of these approaches is
that an accurate mathematical model of these systems is typically
unavailable. Recent work on applying optimal control to autop-
hagy in cells22 and regulating glucose levels in type 1 diabetes23

required applying the resulting control to many possible reali-
zations of the set of parameters to demonstrate their robustness.
While the optimal control can be derived for any particular
system realization, the resulting control is only optimal for that
system. Instead, here, we derive the optimal control that is
applicable to any one of a large number of possible realizations
simultaneously. This has remained a fundamental open question;
how can an optimal control be applied to systems and networks
affected by uncertainty.

In general, uncertainty can appear in the form of both mea-
surement and process noise affecting the system dynamics. The
prototypical example of uncertainty entering a system is in the

form of additive Gaussian noise, which in the case of a linear
system and quadratic objective function, leads to the solution of
the classical optimal control problem known as the linear-
quadratic-Gaussian regulator24. In the field of stochastic optimal
control25, a control is derived for a system described by stochastic
differential equations.

A classic approach for handling uncertainty is encompassed by
the field of robust control, which is concerned with both model
inaccuracies, such as imperfect knowledge of the system para-
meters, and the effects of exogenous disturbances, which naturally
arise in any experimental setting. The problem of integrating
optimal control and robustness has been dealt with in a number
of classic works26–32. Feedback is known to significantly increase
robustness of the control action33. The use of Lyapunov functions
to design feedback controls for nonlinear systems with guaran-
teed optimality has also been addressed34. However, performing
closed loop control of biological systems is notoriously difficult
due to the lack of availability of real time measurements. Here we
deal with a different problem for which open loop control is
applied to an uncertain system and we are willing to accept an
increase in cost to accommodate for such uncertainty. Instead of
using common approaches such as system identification or
learning, we study how the solution of the optimal control pro-
blem changes as uncertainty (i.e., the number of possible system
realizations) grows and compute scaling relations for how the
solution of the optimal control problem varies in response to
increasing uncertainty. Our results are relevant to systems and
networks, for which identification may not be viable, such as
biological time-evolving systems.

The minimum energy control of complex networks has
recently been used to analyze the controllability of complex
networks14,35,36 and our ability to allocate resources spatially to
perform desired control tasks37–40. The work on controlling
complex networks has currently centered around linear systems,
which typically only provide rough approximations of biological
systems as they normally exhibit multiple attractors. Nonetheless,
examining linear systems has provided useful results18 that can be
used in experiments. Consider the general network ensemble
described in Fig. 1, where the weight associated with each net-
work edge is drawn from a given distribution. For example, for
gene regulatory networks the weight distributions are typically
estimated from a series of expensive measurements, performed in
a noisy environment41–43. The main question we address in this
paper is whether it is possible to design an optimal control
strategy for a network ensemble, like the one presented in Fig. 1.
By network ensemble, we mean a family of weighted, possibly
directed, networks that satisfy a set of constraints44–46, also
sometimes called the canonical weighted network ensemble47.
One possible solution to our proposed problem is to incorporate
robustness in the optimal control strategy so that the strategy is
effective regardless of the particular network realization drawn
from the ensemble. Imagine for example to sample a number of
network realizations A(0),A(2), . . . ,A(N−1) from the ensemble,
such as those networks whose edge weights correspond to the
distributions shown in Fig. 1. This problem is addressed by the
optimal control problem discussed in the remainder of this paper,
with particular focus on the case when N→∞, thus ensuring one
can control a possibly infinite ensemble of systems.

To provide an example of a situation to which our analysis
applies, imagine seeking to control a biological network for which
certain connections are well known and characterized by
experimental measures but other connections are not. For
example, it may be uncertain whether given pairs of nodes are
connected or not, and as a result, the network may exist in many
different configurations based on which connections are present.
Our approach described in the rest of this paper is based on

Fig. 1 A network ensemble described by edge weights each drawn from a
distribution. A network with n= 6 nodes and jEj ¼ 10 directed edges. The
edge weight associated with each edge is not known precisely but is instead
drawn from some distribution indicated by the plots along each edge.
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incorporating such uncertainty in the control action and in
designing a control solution that works for all the possible net-
work configurations. Similarly we can deal with other sources of
uncertainty, e.g., affecting the weights associated with the network
connections.

Results
We consider systems which can be described by the triplet
ðA;B;CÞ where A ¼ fAj 2 Rn ´ njj ¼ 0; ¼ ;N � 1g is a sample
of N square matrices describing a selection of networks from the
network ensemble of interest, each of dimension n-by-n, the n-
by-m matrix B which describes how the inputs are attached to the
system and the p-by-n matrix C describes the relevant outputs of
the system. Each matrix Aj corresponds to a different version of
the system one is trying to control. As the input and output
matrices, B and C, are often designed, we assume that they are
known exactly, but extensions to the case where B and C are also
drawn from a distribution, i.e., for each Aj there is a corre-
sponding Bj and Cj is straightforward. The time evolution of the
states of this systems are described by the following set of N
systems of n scalar linear differential equations.

_xjðtÞ ¼ AjxjðtÞ þ BuðtÞ; xjð0Þ ¼ x0

yjðtÞ ¼ Cxj; j ¼ 1; ¼ ;N
ð1Þ

The ensemble of state matrices may be chosen as weighted
adjacency matrices of graphs as shown in Fig. 1 or as the Jacobian
of a nonlinear system where the parameters of the system are
unknown. Both of these types of systems are investigated in the
examples described later in this paper.

A small example of this type of composite system is shown in
Fig. 2. Consider a five state linear dynamical system whose state
matrix can be described by the adjacency matrix of a network
shown on the top of Fig. 2 where the single control input is
assigned to node 4 (in blue) so B= e4 and there is a single output,

node 5 (in magenta), so C ¼ eT5 , where ek is the kth unit vector.
Two of the edges, drawn with a dash pattern, may or may not
exist in the actual system. The N= 4 possible configurations are
shown along the left hand side of Fig. 2, each of which can be
represented by an adjacency matrix Ak, k= 1,…, 4. The com-
posite adjacency matrix of all possible configurations, denoted ~A,
is a block diagonal matrix with each adjacency matrix, Ak, k=
1,…, 4, assigned along its diagonal. The composite input matrix,
denoted ~B, consists of N copies of the input matrix B stacked on
top of each other. Similarly, the composite output matrix,
denoted ~C 2 RNp ´Nn, consists of N copies of the output matrix C,
placed diagonally in the block diagonal matrix. Thus, the original
system written in Eq. (1) can equivalently be written in terms of
the composite system _xðtÞ ¼ ~AxðtÞ þ ~BuðtÞ and yðtÞ ¼ ~CxðtÞ
where xðtÞ ¼ xT0 ðtÞ � � � xTN�1ðtÞ�

T
h iT

.
The control energy (or effort) of the control input is defined as,

E ¼
Z tf

0
jjuðtÞjj22dt ð2Þ

while the deviation of the control action is defined as,

D ¼ ∑
N�1

j¼0
jjyjðtf Þ � yf jj

2
2 ð3Þ

where yf 2 Rp is some desired final output of the system
regardless of the realization. Note that the accuracy is a variance-
like term if yf is the average final state over the N possible systems.
We would like to design an optimal controller which is able to
balance the control energy in Eq. (2) and the accuracy in Eq. (3)48

of the control action,

min J ¼ ð1� αÞ
2

Dþ α

2
E; α 2 ð0; 1Þ

s:t: _xj ¼ AjxjðtÞ þ BuðtÞ; j ¼ 1; ¼ ;N;

yjðtÞ ¼ CxjðtÞ;
xjð0Þ ¼ x0;

ð4Þ

The optimal control problem in Eq. (4) is solved using Pon-
tryagin’s Minimum Principle, for which the details are shown in
Supplementary Note 1.1. Before presenting the solution, a few
values must be defined. The variable α (1− α) in Eq. (4) measures
the relative weight assigned to the control energy (the deviation)
in the objective function. The solution of the minimum energy
control problem, that is min J ¼ E with assigned terminal con-
straints yj(tf)= yf, is recovered in the limit α→ 048. On the other
hand, setting α= 1 corresponds to assigning a zero cost to the
deviation D, for which trivially the solution is u(t)= 0. This case
is of no interest and thus is not considered here. The matrix that
plays the central role in all of the following results is the Np-by-
Np symmetric positive semi-definite matrix we call the composite
output controllability Gramian (COCG),

�WðtÞ ¼

CW1;1ðtÞCT CW1;2ðtÞCT � � � CW1;NðtÞCT

CW2;1ðtÞCT CW2;2ðtÞCT � � � CW2;NðtÞCT

..

. ..
. . .

. ..
.

CWN;1ðtÞCT CWN;2ðtÞCT � � � CWN;NðtÞCT

2
666664

3
777775
ð5Þ

where the square matrices Wj;kðtf Þ 2 Rn ´ n are the solutions of
the differential Sylvester equation,

_Wj;kðtÞ ¼AjWj;kðtÞ þWj;kðtÞAT
k þ BBT

Wj;kð0Þ ¼On; j; k ¼ 1; ¼ ;N
ð6Þ

evaluated at time t= tf. For k= j, the solution of Eq. (6) is the

Fig. 2 An outline of the method in terms of composite matrices ~A and ~B.
A system that can be described as a network is shown at the top where the
presence of two edges, (2, 3) and (3, 4) is uncertain. Driver nodes are in
blue and target nodes are in magenta. Then make N copies containing each
possible network which contains a combination of those two edges. The
composite adjacency matrix, ~A, is block diagonal with each corresponding
network’s adjacency matrix along the diagonal. The composite input matrix,
~B, consists of N copies of B stacked on top of each other.
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output controllability Gramian for each individual network
configuration. The vector βj ¼ CeAjtx0 � yf , j= 0,…,N−1 is the

control maneuver of the jth system and β ¼ ðβT0 ; ¼ ; βTN�1Þ
T

collects all of the control maneuvers and γj= Cx(tf)− yf, j=
0,…,N−1 is the accuracy of the jth system and γ ¼
ðγT0 ; ¼ ; γTN�1Þ

T
collects all of the accuracy vectors. To find the

unknown accuracy vector γ, we solve the following linear system
of equations,

αINp þ ð1� αÞ �Wðtf Þ
� �

γ ¼ �UðαÞγ ¼ αβ: ð7Þ

With the solution of this linear system, the total cost, the control
energy, and the deviation can be expressed as quadratic forms
(details are contained in Supplementary Note 1.2).

JNðαÞ ¼
αð1� αÞ

2
βTðtf Þ�U

�1ðαÞβðtf Þ

ENðαÞ ¼ ð1� αÞ2βTðtf Þ�U
�1ðαÞ �Wðtf Þ�U

�1ðαÞβðtf Þ
DNðαÞ ¼ α2βTðtf Þ�U

�1ðαÞ�U�1ðαÞβðtf Þ

ð8Þ

Let the eigendecomposition of the composite output controll-
ability Gramian �Wðtf Þ ¼ ΞMΞT where the columns of Ξ, ξk, are
the orthogonal eigenvectors and the diagonal entries ofM, μk, are
the eigenvalues of �Wðtf Þ. We order the eigenvalues in descending
order, that is, μk ≥ μk+1. Note that �UðαÞ and �Wðtf Þ are simulta-
neously diagonalizable which means they share their eigenvectors,
but for each eigenvalue of �Wðtf Þ, μk, there is a corresponding
eigenvalue of �UðαÞ denoted νk= (α+ (1−α)μk). The optimal
cost, control energy and deviation can equivalently be written as
summations in terms of the eigenvalues of �Wðtf Þ defining θk=
βTξk as described in Supplementary Note 1.3,

JNðαÞ ¼
αð1� αÞ

2
∑

Np�1

k¼0

θ2k
αþ ð1� αÞμk

ENðαÞ ¼ ð1� αÞ2 ∑
Np�1

k¼0

θ2kμk
ðαþ ð1� αÞμkÞ

2

DNðαÞ ¼ α2 ∑
Np�1

k¼0

θ2k
ðαþ ð1� αÞμkÞ

2

ð9Þ

respectively. The behaviors of the cost, control energy, and
accuracy in Eq. (9) depend on (i) the projection of the control
maneuver on each of the eigenvectors, θk, (ii) their corresponding
eigenvalues, μk, as well as (iii) the particular choice of relative
weight α.

To determine the behavior of the cost, the control energy, and
the deviation, as expressed in Eq. (9) as a function of N, we make
the following two assumptions:

Assumption 1 : μk � μ0r
k
1; μ0 � c1Np

Assumption 2 : θ2k � max θ20r
k
2; θ

2
c

� �
; θ20 � c2Np

The quantities r1, r2, c1, c2, and θ2c are assumed to be, for large
enough N, invariant with respect to the underlying distribution
from which the matrices A(j) are drawn. Note that the values θ2k,
k= 1,…,N, depend on the final state, yf, and so by choosing a
different yf, the specific values of θ

2
k will also change. Nonetheless,

we have seen that while the specific choice of yf affects the small
fluctuations around the approximation, for N≫ p, the exponen-
tial scaling still holds. For all network ensembles examined by the
authors these assumptions have held true, and their numerical
calculations are presented alongside the results contained in
this paper.

In the following section, we present our main result, that under
the proper choice of α= α(N), as N→∞, the control energy

EN(α) is upper bounded by a constant value (as are the average
deviation DN(α)/N and the total cost JN(α)), as long as Assump-
tion 1 and Assumption 2 hold. The main result of our work
investigates the behavior of the control energy and the average
deviation in Eq. (9) after applying Assumption 1 and 2, which
we call �JNðαÞ (the approximate total cost), �ENðαÞ (the approx-
imate control energy), and �DNðαÞ=Np (the approximate average
deviation) to make clear the dependence on both α and N and
the dependence on the assumptions listed above. In particular, we
derive the appropriate values of α= α(N) so that the control
energy remains finite even in the N→∞ limit while bounding the
average deviation below an arbitrarily small value.

In Supplementary Note 1.4, an upper and lower bound for
�ENðαÞ is derived, namely, �EN;LBðαÞ<�ENðαÞ<�EN;UBðαÞ. These
bounds allow us to investigate the role of α in the N→∞ limit. A
trivial choice of α is one that is independent of N. However, we
show in Supplementary Note 1.5 that such a choice renders the
solution of the optimal control problem infeasible in the large N
limit. Instead, we see that the control energy remains bounded in
the N→∞ limit if and only if lim N!1

ð1�αÞNp
α ¼ b. With this in

mind, we choose the weighting parameter α= α(N) to be,

αðNÞ ¼ Np
Npþ b

; b > 0 ð10Þ

which maps the interval α∈ (0, 1) to b∈ (0,∞) where b= 0
corresponds to α= 1 and b→∞ corresponds to α→ 0. The
values of �ENðαÞ, �DNðαÞ=Np, and �JNðαÞ with the choice of α(N) in
Eq. (10) are shown in Supplementary Note 1.4. In Supplementary
Note 1.5, the approximations can all be shown to be upper
bounded by the following expressions,

�JNðbÞ≤ b
Np

2ðNpþ bÞ c2
1� r

�kþ1
2

1� r2
þ θ2c

" #

�ENðbÞ≤ b2c1 c2
1� ðr1r2Þ

�kþ1

1� r1r2
þ θ2c
Np

r
�kþ1
1 � rNp1
1� r1

" #

�DNðbÞ=Np≤ c2
1� r

�kþ1
2

1� r2
þ θ2c

" #
ð11Þ

From Eq. (11) we immediately see that for any value of b the
upper bounds on both �ENðbÞ and �JNðbÞ approach finite values in
the limit N→∞. Moreover, two important facts follow from the
inequalities in Eq. (11); (i) the upper bound of the control energy
approximation grows quadratically in b and (ii) the upper bound
of the average deviation approximation is independent of b. In
addition, by its definition, the average deviation is a strictly non-
negative value, �DNðbÞ=Np ≥ 0 for b∈ (0,∞). The inequality only
becomes an equality in the limit as b→∞. By taking the deri-
vative of �DNðbÞ=Np with respect to b, the average deviation is
shown to be monotonically decreasing in b in Supplementary
Note 1.5. Thus, there exists a value of b such that the average
deviation can be made smaller than any positive value ϵ.

While the average deviation can be bounded below an arbi-
trarily small value for large enough b, it is important to note that
the upper bound of the control energy grows quadratically in b,
re-expressing the weight that appeared in the optimal control
problem in Eq. (4) as a single parameter trade-off in b. This trade-
off between accuracy and control energy is an important con-
sideration for the scientist to consider when designing the con-
troller. For example, if one is interested in reducing �DNðbÞ=Np
and to do so requires multiplying b by 10, then the upper bound
of the control energy will increase by one hundred.

Through the following examples, the control energy, average
deviation, and total cost are shown to be bounded as stated in
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Eq. (11) as well as that assumptions 1 and 2 hold. As a first
example, we consider the simplest possible network, a unidirec-
tional path graph G ¼ ðV; EÞ which consists of jVj ¼ n nodes,
labeled vj, j= 0,…, n−1, and directed edges ðvj; vjþ1Þ 2 E, j=
0,…, n− 2. There is a uniform loop weight at each node of
weight− p and uniform edge weight s. The control input matrix
B= e0 assigns the single control input to node v0. The loop weight
and the edge weight are assumed to be uncertain, but be drawn
from distributions, from which we sample N adjacency matrices
A(k), k= 0,…,N− 1. Each adjacency matrix, A(k), is a bidiagonal
matrix with−pk along the main diagonal and sk along the first
subdiagonal. To describe the matrix B and C, we define two sets
of nodes; driver nodes D � V and target nodes T � V. The set of
jDj ¼ m driver nodes can be represented as the matrix B where
each column of B has a single non-zero element corresponding to
the index of a driver node. The set of jT j ¼ p target nodes
describes the nodes whose states we are interested in driving to a
particular value at the final time, t= tf. The output matrix C
consists of p rows where the sole non-zero entry in each row
corresponds to the index of a target node19.

An example of the uncertain unidirectional chain graph is
shown in Fig. 3(A) where the single input, labeled u and colored
blue, is connected to the N copies of the driver node v0. Each copy
of node vj is connected to the corresponding copy of the node vj−1,
j > 0. The simplicity of this network and choice of only two
unknown weights removes many of the other complicating factors,
reducing the problem to only 3 variables; the distribution from
which the loop weights are drawn, Pp, the distribution from which
the edge weights are drawn, Ps, and the choice of target nodes
T � V. An example of the four expressions in Assumption 1 and
2 are shown in Figs. 3 (B)-(E). For these simulations, p 2 Uð2; 4Þ
and s 2 Uð0:5; 1:5Þ, where Uða; bÞ is the uniform distribution
between a and b. The set of target nodes in this case is only
T ¼ fv1g and yf= 1. The results shown here are qualitatively the
same for other choices of distributions and/or set of target nodes,
with the only difference being the rates of growth or decay, c1, c2,

r1, r2, and θ2c , as laid out in Assumption 1 and Assumption 2. In
Fig. 3B, the largest eigenvalue of the COCG, μ0, is shown to grow
linearly with the number of systems N where the blue marks are
computed from 10 realizations for each value of N, the black
marks are the average largest eigenvalue and the gray line is the
linear fit computed for the original data. Similarly, in Fig. 3C, θ20 ¼
ξT0 β is also shown to grown linearly with N. Additionally, the
eigenvalues are seen to decay exponentially as stated in Assump-
tion 1, which is shown in Fig. 3D. We also see from Fig. 3E that the
values θ2k decay exponentially for k <�k while they are approxi-
mately constant for k >�k. We emphasize that the flooring of θ2k for
k > �k is not a numerical artifact, as all of our calculations are
performed by using tunable numerical precision and by verifying
accuracy of the results49–51.

As both Assumptions 1 and 2 hold, we can be sure that the
deviation, the control energy, and the total cost remain bounded
in the N→∞ limit. The values used in Assumptions 1 and 2
are found to be approximately c1= 5.70 × 10−3, c2= 0.911, r1=
10−2.04, r2= 10−3.14, and θ2c ¼ 10�6:32 (as shown in Fig. 3B–E).
The deviation, control energy, and total cost as a function of both
N and b (as it appears in Eq. (10)) are shown in Fig. 3F–H),
respectively. We see that as N grows there is little change in the
deviation or the control energy, while as b grows, the deviation
decreases and the control energy increases. In both cases, there is
a range of b where the deviation and control energy change
rapidly, while for very large b the rate of change decreases rapidly.
The total cost grows monotonically as a function of N, while it
appears that as b grows, there is at least one maximum. These
plots are qualitatively similar to those made regardless of the
distributions for the regulation pk and the edge weights sk or the
set of target nodes, where alternative choices only lead to different
values of c1, c2, r1, r2, and θ2c .

Recently, it was shown that the graph distance between driver
nodes and target nodes is an extremely important property when
determining the control energy for single system realizations52,53.
A study on the effect of uncertainty on results previously derived

Fig. 3 An example of the derivations applied to the unidirectional chain graph. A A diagram of a unidirectional path graph of length n= 4 and N possible
realizations with loops−pk and edge weights sk, k= 0,…, N−1. B The largest eigenvalues of the COCG when we choose N realizations, where we see the
linear growth with N. C The associated inner products θ20 ¼ ξT0β, which is also seen to grow linearly. D The eigenvalues for a particular value of N are seen
to decay exponentially. Other choices of N lead to nearly the same decay rate r1. E The associated eigenvectors multiplied by the control maneuver where
we see the exponential decay initially for k<�k and then saturation for k>�k where �k ¼ 4 for this choice of N. F The log average deviation, DN(b)/Np, as a
function of N and b computed using the values found for c1, c2, r1, r2, and θ2c . G, H The log control energy and the log total cost as functions of N and b,
respectively.
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which state that control energy grows exponentially with distance
between a single driver node and a single target node is presented
in Supplementary Note 2. The next model we consider is a linear
system which can be described by a network where the edge
weights are drawn from distributions assigned to each edge. An
example of this kind of network is shown in Fig. 4A where the
distributions each edge weight is drawn from are shown quali-
tatively along the edges with further details collected in Table 1.
We choose delta distributions for three edges which represents
the case where an edge weight is known exactly, uniform dis-
tributions for three edges, triangular distributions for two edges,
defined as T ða; b; cÞ where a < c < b and truncated normal dis-
tributions for the remaining two edges. There is a negative self-
loop at each node drawn from a uniform distribution Uð2; 4Þ.

For this network, we choose nodes 1 and 2 to be driver nodes
and nodes 5 and 6 to be target nodes so that B ¼ ½I2O2 ´ 4�

T and
C= [O2×47D1I2]. The final vector value is chosen to be yf=
[17D11]T and tf is chosen to be large enough such that eA

ðkÞtf x0 is
sufficiently close to zero to be ignored. The largest eigenvalue, μ0,
and associated values θ20, as a function of N, are shown in Fig. 4B,
C where we see the linear increase required by Assumptions 1 and
2. For N= 50, all of the eigenvalues, μk, and associated values θ2k,

for 25 realizations, are shown in Figs. 4D, E, respectively. Again, it
is apparent that the behavior agrees with the requirements laid
out in Assumptions 1 and 2. As both assumptions hold, we can be
sure that DN(b)/Np, EN(b), and JN(b) all approach constant values
in the N→∞ limit. The particular values approached in this limit
depend on the choice of b. The deviation is shown in Fig. 4F and
the control energy is shown in Fig. 4G. We see that, since
∂DN ðbÞ=Np

∂b < 0, as b grows, the slope of the deviation decreases.
Similarly, since ∂EN ðbÞ

∂b > 0, as b grows, so does the control energy.
Finally, the total cost is shown in Fig. 4H, where the different
growth rates are due to the coefficient Np

Npþb that appears in the
approximate expressions derived in Supplementary Note 1.4.

Again, alternative choices of distributions for each edge weight
and loop weight, sets of target nodes, and sets of drivers nodes,
lead to qualitatively similar plots as shown in Fig. 4 except that
the particular rates of increase, or constant values, will change. A
common control goal is driving a nonlinear system near one of its
fixed points using its linearization. Even for the case the system is
not near a fixed point, the linearization can be used in a piecewise
manner as discussed in Kilckstein et al.20. Generically, a con-
trolled nonlinear system is written as,

_xðtÞ ¼ f ðxðtÞ; uðtÞ; ϕÞ ð12Þ
where we assume there are n states, xj(t), j= 1,…, n, and m
control inputs, uj(t), j= 1,…,m and some parameters collected in
ϕ. Near a fixed point, ð�x; �uÞ, such that f ð�x; �u; ϕÞ ¼ 0, then the
behavior of the system is approximately,

δ _xðtÞ ¼ AδxðtÞ þ BδuðtÞ ð13Þ
where δxðtÞ ¼ xðtÞ � �x and δuðtÞ ¼ uðtÞ � �u are the states and

inputs relative to the fixed point and A ¼ ∂f
∂x

���
x¼�x

and B ¼ ∂f
∂u

���
u¼�u

are the Jacobians of f relative to the states x and the inputs u,
respectively, evaluated at the fixed point. The resulting linearized
system can be represented as a network, where directed edges

exist between states xj and xk if
∂f j
∂xk

≠0. Note that the fixed point

Fig. 4 A network with uncertain edge weights. A The diagram of the network with six nodes and 10 edges. Each edge weight is drawn from the
distribution shown in the associated plot, with numerical values for the distributions shown in Table 1. Additionally, there is a negative self-loop assigned to
each node drawn from the uniform distribution Uð2;4Þ. The largest eigenvalues μ0 and associated values θ20 are shown as marks in B and C, respectively,
where the average for each N is shown as a black cross and the gray lines are linear fits. For N= 50, the full spectrum of μk is plotted in D and the
corresponding values θ2k are plotted in E. The gray lines represent the curves found after fitting the expressions in Assumptions 1 and 2. The cost terms
(deviation, control energy, and total cost) for b= 10, b= 100, and b= 1000 are shown in panels F–H, respectively. The black marks are the averages over
the 10 realizations for each value of N and the dashed lines are for the viewer.

Table 1 The distributions from which the edge weights are
drawn for the graph in Fig. 4A.

Edge Distribution Edge Distribution

(1,4) δ(0.5) (1,3) Uð0:5; 1Þ
(1,5) T ð0:1; 1;0:3Þ (2,3) N ð0; 1;0:5;0:1Þ
(3,4) δ(1) (3,5) Uð0:1;0:3Þ
(4,1) T ð0:2;0:4;0:3Þ (4,2) N ð0; 1;0:2;0:2Þ
(5,6) δ(0.75) (6,2) Uð0:2;0:4Þ
The edge weights may be constant, δ, drawn from a uniform distribution, U , drawn from a
triangular distribution, T , or drawn from a truncated normal distribution, N .
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ð�x; �uÞ depends upon the particular set of parameters ϕ, and so the
matrices A and B also depend on the choice of ϕ. If the system of
interest represents something for which taking measurements is
difficult, often many of the parameters are only know approxi-
mately and so any controller derived using one particular set of
control inputs is not guaranteed to be satisfactory for a
different set.

As an example of this type of system, we apply our metho-
dology to a recently published model of autophagy in cells22. The
model contains five internal states which represent the properties
of the cell itself, labeled x1 through x5, and six auxiliary states that
represent the current concentration of drugs which may be
introduced to the cell, labeled w1 through w6. This model consists
of dozens of parameters but here we consider two in particular,
CEN and CNU, which are coefficients that represent the amount of
energy and nutrients available in a cell. As these parameters are
cell dependent, their particular values may vary across multiple
cells. This model was shown to have a stable fixed point for a
range of values of CEN and CNU. We assume that all that is known
about CEN and CNU is that they both lie between 0.1 and 0.6. The
model is linearized about the stable fixed point and the resulting
network is shown in Fig. 5A. In this system, we are interested in
adjusting the amount of drug of type 1 (making w1 the sole driver
node) to regulate the level of autophagy (making x5 the sole target
node) which are color coded accordingly.

The fixed point of the system, about which the linearization is
performed, is computed for 500 random choices of CEN and CNU

selected uniformly from Uð0:1; 0:6Þ and the resulting values are
binned in Fig. 5B, C. Note that despite the parameters being
drawn from uniform distributions, the fixed points are clearly not
uniformly distributed in state space. Additionally, we see in
Figs. 5D, E that μ0 and θ20 grow approximately linearly with N
while in Fig. 5F, G the eigenvalues μk decay exponentially and θ2k
initially decay before saturating, thus Assumptions 1 and 2 hold.

Note that μ0 ~ 105 for the range of N shown, much larger than the
previous examples, but this does not affect the validity of our
derivations. As the assumptions hold, we can be sure of the fol-
lowing three states; (i) that the deviation grows linearly with N
regardless of the choice of b which is shown in Fig. 5H, (ii) the
control energy approaches a constant value, seen in Fig. 5I, and
(iii) the total cost approaches a constant, seen in Fig. 5J, for b=
10, b= 100, and b= 1000.

Qualitatively similar results can be seen for alternative choices
of therapy, that is, rather than choosing only drug 1, one could
instead choose any combination of the six drugs. Also, if more
information is known about the probability of CNU and CEN, then
alternative distributions can be chosen from which these para-
meters are drawn. Next we examine the relationship between the
number of target nodes and the cost. We have seen that con-
trolling network ensembles requires more control energy than
controlling a single network realization. Here we investigate the
relationship between the number of target nodes and the energy
required for controlling the ensemble. We see that in average the
control energy decreases exponentially, as the number of target
nodes is reduced, which indicates feasibility of our approach, as
long as the number of target nodes remains small. To demon-
strate this relationship, for each realization of N uncertain sys-
tems, b is chosen such that DN(b)/(Np) is a constant value
regardless of the set of target nodes. To find b, bisection is used as
DN(b) monotonically decreases with b. The values of b are aver-
aged over target sets of the same cardinality in Fig. 6A and are
seen to grow exponentially as the set of target nodes only grows
linearly. The desired deviation is seen to be achieved in Fig. 6B
where the error bars are smaller than the size of the marks as the
bisection tolerance was set to 10−16. The resulting control ener-
gies are collected and their geometric mean is taken over sets of
target nodes of the same cardinality in Fig. 6C. We see that as the
cardinality of the target node set, jT j, decreases linearly, the

Fig. 5 The Jacobian of a system with uncertain parameters. A The Jacobian of the simplified model of autophagy represented as a network. Red edges
have weights in which CNU appears explicitly and green edges have weights in which CEN appears explicitly, while black edges have weights that may or
may not implicitly depend on CEN and CNU. For 500 choices of CNU and CEN, the stable fixed point is computed and collected in the bar plots in B (for �xk , k=
1, 2, 3, 4) and C (for �x5). Note that even though CNU and CEN are drawn from uniform distributions, the values of the fixed point are not unfiformly
distributed. The largest eigenvalue μ0 and associated value θ20 are shown in D and E for 10 realizations of N random choices of CNU and CEN. For 10
realizations of N= 100, the complete eigendecomposition, μk and θ2k , are shown in F and G where Assumptions 1 and 2 are seen to hold. The resulting
deviation, control energy, and total cost are shown in H–J, respectively.
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geometric mean of the control energy decays exponentially,
leading to the conclusion that small reductions in the set of target
nodes can lead to immense reductions in effort. Finally, the total
cost is shown in Fig. 6D which is seen to decrease linearly as the
number of target nodes is reduced. This can be explained as a
result of our choice to hold DN(b)/(Np) constant which leads to
b ≈ EN(b) so J ~Np. We would like to emphasize that these results
for network ensembles differ from our previous work19, in which
we had reported a similar scaling relationship for single network
realizations, but for the case that the control goal had a con-
strained final position, while here we are allowing some deviation
from the desired final state.

Discussion
The lack of precise information about the mathematics behind
many biological systems motivated us to study optimal control of
uncertain systems represented by network ensembles, where each
edge weight is drawn from a given distribution rather than being
exactly known. A practical application of our analysis is an
experimental situation in which some of the system parameters
are known to lie in a bounded range, but their exact value is
unknown. In the presence of such uncertainty, we are able to
analytically solve an associated optimal control problem. We have
characterized the solution to this problem in the limit of infinitely
many system realizations corresponding to the case the realiza-
tions are drawn from a continuous distribution. We have
then showed how to properly formulate the objective function
to ensure feasibility of the problem as the number of
realizations grows.

We first demonstrated the feasibility of controlling uncertain
linear systems, for the case that the state matrix A may be one of
N possible choices drawn from some possibly continuous dis-
tribution such that the deviation, or variance, of the final state
around some desired final state is maintained below a desirable
threshold. We then extended this analysis to nonlinear systems

with uncertain parameters. An example of such a system studied
in the paper is the cell regulatory network of autophagy. We
assumed that the amounts of energy and nutrient available to the
cells were uncertain, which yielded different fixed points for the
dynamics, about which the equations were linearized. We then
characterized the optimal cost of controlling more and more
realizations of this network (each one corresponding to different
levels of available nutrient and energy). As long as the two
assumptions about the COCG hold, which we have found to be
the case for all systems analyzed, from simple networks to line-
arizations of complicated nonlinear dynamical networks, we have
analytically shown that the average deviation and the control
energy remain finite in the N→∞ limit. This implies the feasi-
bility of deriving a control input, not for a particular system, but
rather for a system described only in terms of distributions,
possibly determined experimentally.

Our main result is that as long as the weighting parameter α(N)
is chosen properly, the cost of the optimal control solution
remains finite. The price to pay for controlling uncertain systems
is a higher cost of the optimal control solution. However, this cost
can be consistently (exponentially) reduced by limiting the
number of target nodes, i.e., the nodes chosen as targets of the
control action.

Methods
Multiple precision. To check assumptions 1 and 2, we required an ability to
compute eigenvalues with additional accuracy not possible using double precision
as they will typically be extremely small. To do this, we implement a few numerical
methods with the multiple precision data type provided in the MPFR library50

which is built on top of Gnu GMP49. Additionally, for multiple precision complex
variables, we use the extension to MPFR called MPC51. The code which we use to
perform the simulations contained in the text is available at the following Github
repository.

Sylvester equations. To find each block of the COCG as defined in Eq. (5), we
solve the Sylvester equation,

AðjÞWj;k þWj;kA
ðkÞT ¼ �BBT ; j; k ¼ 0; ¼ ;N � 1 ð14Þ

where we assume A(j) is negative definite. Let V(j) and D(j) be the complex matrix of
eigenvectors and eigenvalues, respectively, of the jth matrix A(j) so that

AðjÞV ðjÞ ¼ V ðjÞDðjÞ ð15Þ

Then, applying the eigenvector transformation in Eq. (15) to the Sylvester equation
in Eq. (14) yields the solution,

Wj;k ¼ V ðjÞ Yj;k � V ðjÞ�1

BBTV ðkÞ�T
� �� �

V ðkÞT ð16Þ

where the matrix Yj,k has elements equal to the inverse 1
dðjÞa þdðkÞb

where dðjÞa and dðkÞb

are the ath and bth eigenvalue of A(j) and A(k), respectively. The eigenvalues and
eigenvectors are determined using a real Schur decomposition of each A(j) to
reduce it to upper Hessenberg form with a unitary transformation. This is
accomplished using the QR iteration described in Chapter 7 in Golub and Van
Loan54 where the eigenvectors are recovered from the corresponding Schur vectors.
Once the eigenvectors are known, we must solve the complex non-Hermitian
systems of equations V(j)B(j)= B which appear in Eq. (16). The LU decomposition
of each eigenvector matrix is computed as described in Chapter 3 of Golub and
Van Loan54 and stored as each matrix B(j) will appear in N blocksWj,k, k= 0,…,N
− 1. The entire COCG is compiled by pre- and post-multiplying each blockWj,k by
C and CT, respectively.

Symmetric matrix eigen-problems. Once the complete COCG is available, we are
interested in computing the total eigendecomposition. As the COCG is real and
symmetric, we use a symmetric tridiagonal decomposition using Householder
matrices. Once the symmetric tridiagonal matrix is available, we can use QR steps
again to determine the eigenvalues, as well as we can recover the eigenvectors from
the Householder matrices as described in Chapter 8 in Golub and Van Loan54.

To compute the costs more efficiently than using the eigendecomposition, we
use the quadratic form in Eq. (8). This requires solving the linear system in Eq. (7)
which is a symmetric positive definite system of equations. The Cholesky
decomposition of �UðαÞ is computed in order to find the optimal distance away
from the desired distance γ. The procedure we implement is described in Chapter 4
of Golub and Van Loan54.

Fig. 6 Target control of network ensembles. The costs (weighting term b,
deviation DN(b), control energy EN(b), and total cost JN(b)) averaged over
sets of target nodes of the same cardinality for the small network shown in
Fig. 4A. The weighting term b is chosen such that DN(b)/(Np)= 0.1 and the
result is shown in panel A. The deviation is shown in panel B where the
desired value is seen to be achieved. In C, the control energy is shown
where it is clear as the number of target nodes decrease, the control energy
decreases exponentially. The total cost in D is seen to grow approximately
linearly. Error bars represent standard deviation.
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Data availability
Data for each of the figures is available upon request.

Code availability
Code used to generate data is available from the online repository https://github.com/
iklick/controlling_network_ensembles

Received: 14 April 2020; Accepted: 25 February 2021;

References
1. Patterson, M. A. & Rao, A. V. GPOPS-II. Vol. 41, 1–37 (ACM Transactions on

Mathematical Software, 2014).
2. Ross, I. M. & Karpenko, M. A review of pseudospectral optimal control: from

theory to flight. Ann. Rev. Control 36, 182–197 (2012).
3. Ross, I. M. A Primer On Pontryagin’s Principle In Optimal Control (Collegiate

Publishers, 2015).
4. Kirk, D. E.Optimal Control Theory: An Introduction (Courier Corporation,

2012).
5. Karpenko, M., Bhatt, S., Bedrossian, N., Fleming, A. & Ross, I. M. First flight

results on time-optimal spacecraft slews. J. Guid. Control Dyn. 35, 367–376 (2012).
6. Haefner, J. W.Modeling Biological Systems: Principles and applications 2nd

edn (Springer Science, Business Media, 2005).
7. White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. The structure of the

nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc.
Lond. Seri. B Biol. 314, 1–340 (1986).

8. Varshney, L. R., Chen, B. L., Paniagua, E., Hall, D. H. & Chklovskii, D. B.
Structural properties of the caenorhabditis elegans neuronal network. PLoS
Comput. Biol. 7, e1001066 (2011).

9. Reed, J. L., Vo, T. D., Schilling, C. H. & Palsson, B. O. An expanded genome-
scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biology 4,
R54 (2003).

10. Feist, A. M. et al. A genome-scale metabolic reconstruction for Escherichia coli
K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information.
Mol. Syst. Biol. 3, 121 (2007).

11. Chavez, M., Valencia, M., Navarro, V., Latora, V. & Martinerie, J. Functional
modularity of background activities in normal and epileptic brain networks.
Phys. Rev. Lett. 104, 118701 (2010).

12. Butland, G. et al. Interaction network containing conserved and essential
protein complexes in escherichia coli. Nature 433, 531–537 (2005).

13. Beguerisse-Díaz, M., Bosque, G., Oyarzún, D., Picó, J. & Barahona, M. Flux-
dependent graphs for metabolic networks. npj Syst. Biol. Appl. 4, 32 (2018).

14. Liu, Y.-Y., Slotine, J.-J. & Barabási, A.-L. Controllability of complex networks.
Nature 473, 167–173 (2011).

15. Tang, Y., Gao, H., Zou, W. & Kurths, J. Identifying controlling nodes in
neuronal networks in different scales. PLoS ONE 7, e41375 (2012).

16. Liu, Y.-Y., Slotine, J.-J. & Barabási, A.-L. Control centrality and hierarchical
structure in complex networks. PLoS ONE 7, e44459 (2012).

17. Yuan, Z., Zhao, C., Wang, W.-X., Di, Z. & Lai, Y.-C. Exact controllability of
multiplex networks. New J. Phys. 16, 103036 (2014).

18. Yan, G. et al. Network control principles predict neuron function in the
Caenorhabditis elegans connectome. Nature 550, 519 (2017).

19. Klickstein, I., Shirin, A. & Sorrentino, F. Energy scaling of targeted optimal
control of complex networks. Nat. Commun. 8, 15145 (2017a).

20. Klickstein, I., Shirin, A. & Sorrentino, F. Locally optimal control of complex
networks. Phys. Rev. Lett. 119, 268301 (2017b).

21. Gambuzza, L. V., Frasca, M. & Latora, V. Distributed control of
synchronization of a group of network nodes. IEEE Trans. Automat. Control
64, 365–372 (2019).

22. Shirin, A. et al. Prediction of optimal drug schedules for controlling
autophagy. Sci. Rep. 9, 1428 (2019a).

23. Shirin, A., Della Rossa, F., Klickstein, I., Russell, J. & Sorrentino, F. Optimal
regulation of blood glucose level in Type I diabetes using insulin and glucagon.
PLoS ONE 14, e0213665 (2019b).

24. Åström, K. J. Introduction To Stochastic Control Theory (Courier Corporation,
2012).

25. Stengel, R. F. Stochastic Optimal Control: Theory And Application (John Wiley
& Sons, Inc., 1986).

26. Anderson, B. D. and Moore, J. B.Optimal Control: Linear Quadratic Methods
(Courier Corporation, 2007).

27. Dahleh, M. A. and Diaz-Bobillo, I. J. Control of Uncertain Systems: A Linear
Programming Approach (Prentice-Hall, Inc., 1994).

28. Zhou, K., Doyle, J. C., Glover, K. et al. Robust and Optimal Control, Vol. 40
(Prentice hall New Jersey, 1996).

29. Kimura, H., Lu, Y. & Kawatani, R. On the structure of h infinity control
systems and related extensions. IEEE Trans. Automat. Control 36, 653–667
(1991).

30. Stoorvogel, A. A. The h Infinity Control Problem: A State Space Approach.
Department of Electrical Engineering and Computer Science University of
Michigan (Prentice-Hall, 1992).

31. Freeman, R. and Kokotovic, P. V. Robust Nonlinear Control Design: State-
space And Lyapunov Techniques (Springer Science, Business Media, 2008).

32. Vidyasagar, M. Control System Synthesis: A Factorization Approach, part ii.
Vol. 2, 1–227 (Morgan & Claypool publishers, 2011)..

33. Nagy, Z. K. & Braatz, R. D. Open-loop and closed-loop robust optimal control
of batch processes using distributional and worst-case analysis. J. Process
Control 14, 411–422 (2004).

34. Haddad, W. M. and Chellaboina, V.Nonlinear Dynamical Systems And
Control: A Lyapunov-based Approach (Princeton University Press, 2011).

35. Yan, G., Ren, J., Lai, Y.-C., Lai, C.-H. & Li, B. Controlling complex networks:
how much energy is needed? Phys. Rev. Lett. 108, 218703 (2012).

36. Yan, G. et al. Spectrum of controlling and observing complex networks. Nat.
Phys. 11, 779–786 (2015).

37. Li, G. et al. Minimum-cost control of complex networks. New J. Phys. 18,
13012 (2016).

38. Li, G., Ding, J., Wen, C. & Huang, J. Minimum cost control of directed
networks with selectable control inputs. IEEE Trans. Cybern. 4431–4440
(2018).

39. Summers, T. H., Cortesi, F. L. & Lygeros, J. On submodularity and
controllability in complex dynamical networks. IEEE Trans. Control Netw.
Syst. 3, 91–101 (2016).

40. Tzoumas, V., Rahimian, M. A., Pappas, G. J. & Jadbabaie, A. Minimal actuator
placement with bounds on control effort. IEEE Trans. Control Netw. Syst. 3,
67–78 (2016).

41. Davidson, E. H. A genomic regulatory network for development. Science 295,
1669–1678 (2002).

42. Farkas, I. J., Jeong, H., Vicsek, T., Barabási, A.-L. & Oltvai, Z. N. The topology
of the transcription regulatory network in the yeast, Saccharomyces cerevisiae.
Phys. A Stat. Mech. Appl. 318, 601–612 (2003).

43. Mochizuki, A. An analytical study of the number of steady states in gene
regulatory networks. J. Theor. Biol. 236, 291–310 (2005).

44. Bianconi, G. The entropy of randomized network ensembles. Europhys. Lett.
81, 28005 (2007).

45. Bianconi, G. Entropy of network ensembles. Phys. Rev. E 79, 036114 (2009).
46. Anand, K. & Bianconi, G. Gibbs entropy of network ensembles by cavity

methods. Phys. Rev. E 82, 011116 (2010).
47. Gabrielli, A., Mastrandrea, R., Caldarelli, G. & Cimini, G. Grand canonical

ensemble of weighted networks. Phys. Rev. E 99, 030301 (2019).
48. Shirin, A., Klickstein, I. & Sorrentino, F. Optimal control of complex

networks: balancing accuracy and energy of the control action. Chaos 27,
041103 (2017).

49. Granlund, T. and the GMP development team. GNU MP: The GNU Multiple
Precision Arithmetic Library 6th edn (Samurai Media Limited, 2020).

50. Fousse L., Hanrot G., Lefèvre V., Pélissier P. & Zimmermann P. MPFR: A
multiple-precision binary floating-point library with correct rounding. ACM
Transactions on Mathematical Software 33, (2007).

51. Enge, A., Gastineau M., Theveny P. & Zimmerman P. MPC: A library for
multiprecision complex arithmetic with exact rounding. INRIA. version 1.1.0
(2018).

52. Klickstein, I., Kafle, I., Bartaula, S. & Sorrentino, F. Energy scaling with control
distance in complex networks. in 2018 IEEE International Symposium on
Circuits and Systems (ISCAS) 1–5 (IEEE, 2018).

53. Klickstein, I. S. & Sorrentino, F. Control distance and energy scaling of
complex networks. in IEEE Transactions on Network Science and Engineering
(IEEE, 2018).

54. Golub, G. H. & Van Loan, C. F.Matrix Computations, Vol. 3 (JHU Press,
2012).

Acknowledgements
This work has been supported by the National Science Foundation through grants No.
1727948 and No. CRISP- 1541148. The authors thank Franco Garofalo, Francesco Lo
Iudice, and Anna Di Meglio for insightful discussions during the development of this
problem.

Author contributions
F.S. proposed the problem; I.K. developed the theoretical results and performed the
numerical studies; I.K. and F.S. wrote the paper.

Competing interests
The authors declare no competing interests.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22172-6 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:1884 | https://doi.org/10.1038/s41467-021-22172-6 |www.nature.com/naturecommunications 9

https://github.com/iklick/controlling_network_ensembles
https://github.com/iklick/controlling_network_ensembles
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-22172-6.

Correspondence and requests for materials should be addressed to I.K. or F.S.

Peer review information Nature Communications thanks the anonymous reviewer(s) for
their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22172-6

10 NATURE COMMUNICATIONS |         (2021) 12:1884 | https://doi.org/10.1038/s41467-021-22172-6 | www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-021-22172-6
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Controlling network ensembles
	Results
	Discussion
	Methods
	Multiple precision
	Sylvester equations
	Symmetric matrix eigen-problems

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




