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Research in Translation

Hypertrophic scar formation is a 
major clinical problem in the 
developing and industrialized 

worlds. Burn injuries, traumatic 
injuries, and surgical procedures can 
give rise to exuberant scarring that 
results in permanent functional loss 
and the stigma of disfi gurement. Figure 
1 illustrates the scope of the problem. 
Annually, over 1 million people require 
treatment for burns in the United 
States [1], 2 million are injured in 
motor vehicle accidents [2], and over 
34 million related surgical procedures 
are performed [3]. Although the 
incidence of hypertrophic scarring 
following these types of injuries is 
not known, it is a common outcome 
that creates a problem of enormous 
magnitude. Treatment of these 
cases is estimated to cost at least $4 
billion per annum in the US alone 
[4]. The incidence of burns and 
traumatic injuries is even greater in the 
developing world [5]. This review will 
examine the process of hypertrophic 
scar formation, the results of current 
treatments, and areas likely to lead to 
signifi cant advances in the fi eld.

Evolution of Patient Care

Advances over the past 60 years have 
allowed us to extend the lives of 
patients whose injuries would previously 
have been invariably fatal. Fire disasters 
such as those at the Rialto concert 
hall (1930) [6] and the Cocoanut 
Grove nightclub (1942) [7] led to the 
development of new treatments, such as 
fl uid resuscitation, to prevent death in 
the early stages following burn injury. 
World War II led to the development 
of critical care medicine [8], further 
improving the ability to keep those with 
traumatic injuries alive until surgical 
management of their wounds was 
possible. Antibiotics and aggressive 

surgical debridement have also 
contributed to the survival of the great 
majority of burn and trauma patients. 
However, despite advances in life-saving 
technology, progress to prevent the late 
functional and aesthetic sequelae of 
hypertrophic scar formation has been 
slow [9].

Efforts to limit scar formation 
in burn and trauma patients have 
relied largely on immediate skin 
replacement [10] with human split-
thickness allografts or dermal analogs 
such as Integra. Although these 
measures provide excellent barriers 
against infection and mechanical 
trauma, the long-term improvement in 
appearance has been modest [11,12]. 
After healing has occurred, massage, 
pressure therapies, steroids, and 
silicone dressings are frequently used 
to manage the massive scar burden 
in these patients [13]. Many of these 
treatments predate modern medicine 
and their benefi ts remain unclear [11]. 
As stated in a major review on burns 
and scarring, even with state-of-the-art 
care, “hypertrophic scarring remains a 
terrible clinical problem” [11].

One barometer of the futility of 
these attempts at scar modulation is the 
interest in total facial transplantation. 
This procedure has been suggested 
as a measure of last resort for patients 
with severe facial disfi gurement due 
to scar formation [14,15]. However, 
facial transplantation has sparked 
controversy due to the severe 
antigenicity of allograft skin used 
and side effects of the antirejection 
medications required. It is a testament 
to the intractability of this problem 
that such desperate measures are 
currently being considered. When 
full facial transplantation is eventually 
performed, it is likely that the recipient 
will be a patient with facial burns 
and the resulting functional defi cits 
and stigmata of hypertrophic scar 
formation.
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Five Key Papers in the Field
Aarabi et al., 2007 [74] Demonstrates 
that mechanical stress is necessary to 
replicate hypertrophic scar formation in 
the fi rst murine model of the disease.

Ting et al., 2005 [58] Demonstrates that 
the mechanisms regulating skin repair 
are evolutionally conserved over millions 
of years.

Shah et al., 1992 [39] Demonstrates that 
inhibiting infl ammatory mediators such 
as TGF-β can reduce scar formation in 
vivo.

Burrington, 1971 [26] A seminal 
paper in the study of scar formation 
versus regeneration where it was fi rst 
demonstrated that fetal wounds heal 
without scar in utero.

Majno et al., 1971 [57] Illustrates that 
fi broblasts take on contractile properties 
during wound healing, suggesting 
that cutaneous healing may occur in a 
mechanically unique environment.

Research in Translation discusses health interventions 
in the context of translation from basic to clinical 
research, or from clinical evidence to practice.
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Pathophysiology

Clinical experience suggests that 
hypertrophic scarring is an aberrant 
form of the normal processes of 
wound healing [16]. However, 
the etiology of the overexuberant 
fi brosis is unknown. Hypertrophic 
scarring should be distinguished from 
keloid formation, the other major 
form of excessive scarring seen in 
humans. There is stronger evidence 
for genetic predisposition in keloid 
formation than in hypertrophic 
scarring, although both occur 
more frequently in certain groups 
(e.g., people of African and Asian 
descent). Keloids are characterized 
by overgrowth of fi brosis beyond the 

boundaries of the original injury, 
while hypertrophic scars do not extend 
beyond the original wound margins. 
Keloids and hypertrophic scars can 
also be differentiated by established 
histopathological criteria, which 
include differences in collagen density 
and orientation, vascularity, and other 
factors [17,18].

The pathophysiology of 
hypertrophic scar formation involves a 
constitutively active proliferative phase 
of wound healing [16]. Scar tissue 
has a unique structural makeup that 
is highly vascular, with infl ammatory 
cells and fi broblasts contributing to 
an abundant and disorganized matrix 
structure [16]. The net result is that 
the original skin defect is replaced by 

a nonfunctional mass of tissue. Beyond 
these observations, investigations into 
the pathophysiology of the disease 
have been limited by the absence of a 
practical animal model and have relied 
upon the use of human pathological 
specimens [19–21]. These studies are 
problematic in that such specimens 
represent the terminal stages of the 
scarring process and may not contain 
the initiating factors that originally led 
to the development of the disease. The 
few animal models that have been used 
include the rabbit ear [22] and the 
red Duroc pig [23]. While they have 
given us some insight into the genetics 
and pathogenesis of cutaneous fi brosis 
[24,25], it is unclear how closely the 
process of hypertrophic scarring in 
these models resembles that seen in 
humans. Specifi cally, it is unknown 
whether the same factors that initiate 
hypertrophic scarring in these species 
are involved in human disease. 
Further, studies using these species 
have been limited by a paucity of 
molecular reagents available for rabbits 
and pigs. For the aforementioned 
reasons, these observational studies 
have not resulted in notable 
therapeutic advances.

Fetal wound healing has been 
proposed as a vehicle to study skin 
regeneration. Early fetal wound healing 
is characterized by the complete 
absence of scar formation [26]. The 
developing fetus transitions to a 
scarring phenotype during the third 
trimester of gestation [27]. During 
the scarless phase of development, 
both low fi broblast activity and a 
decreased infl ammatory response to 
injury are observed [27]. Experiments 
have shown that local factors in 
wounded skin, rather than systemic or 
maternal factors, are responsible for 
this transition from scarless to scarred 
healing [28–31]. However, it is unclear 
which local factors in the wound 
initiate scar formation and which are 
secondary to the scarring process. 
Thus it has been diffi cult to separate 
cause from effect using the fetal wound 
model.

In both adult and fetal healing, the 
local wound environment interacts 
with the cellular components of 
wound healing and vice versa. The 
local wound environment consists 
of noncellular infl uences such as 
matrix components, oxygen tension, 
and mechanical forces. The interplay 

doi:10.1371/journal.pmed.0040234.g001

Figure 1. Complications of Hypertrophic Scarring
(A) Hypertrophic scars begin as small cutaneous fi brotic regions (arrowheads), which develop into 
gross scars (arrows) over time. Scarring phenotypes vary widely between different parts of the 
body for reasons that are at present unclear. (B) Following burn injury, a patient shows severe joint 
contracture. (C) Radiograph of the same patient shows erosion of the bone secondary to disuse 
and contracture. After years of treatment and physical therapy, this patient will only regain minimal 
hand function.
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between cellular (“seed”) and 
noncellular (“soil”) components is 
complex, with constant feedback 
between the two during the healing 
process (Figure 2). Many therapies 
for hypertrophic scar formation may 
underestimate this complexity by 
focusing on a single component of this 
relationship. Tables 1 and 2 provide a 
review of the multitude of established 
and experimental therapies and their 
proposed mechanisms of action. To 
date, none of these approaches have 
achieved wide clinical adoption [11].

It is unclear whether changes in the 
seed or soil are responsible for the 
phenomenon of hypertrophic scar 
formation. When compared to fetal 
wound healing, adult wound healing 
is a response to injury that sacrifi ces 
the regeneration of original tissue 
for a rapid matrix plug, or scar, that 
protects the organism from infection 
and trauma [16]. This response is 
evolutionarily conserved and allows 
the adult organism to survive despite 
the harsh extrauterine environment. 
However, the possibility exists that 
regenerative capacity can be restored 
in adults, and that wound healing 
could proceed with a recapitulation of 
the original skin architecture rather 
than with the patching characteristic 
of scar formation. In the next section 
we will consider existing and proposed 
therapies for hypertrophic scar 
formation using this framework.

Therapeutic Approaches: 
Targeting Infl ammatory Mediators

The infl ammatory response is a 
normal component of the wound 
healing process, serving both as an 
immunological barrier from infection 
and as a stimulus for fi brosis to close 
the site of injury. Observations from 
human pathological specimens and 
from healing fetal wounds suggest 
that a robust infl ammatory response 
may underlie the excessive fi brosis 
seen in hypertrophic scar formation 
[16,18]. Mast cells, macrophages, and 
lymphocytes have all been implicated 
in this process [16,18]. For example, 
mast cells have been shown to directly 
regulate stromal cell activity in vitro 
[32] as well as to be strongly associated 
with the induction of fi brosis in vivo 
[33]. Mechanical activity, age-specifi c 
changes, and delayed epithelialization 
have all been implicated as inciting 
factors for this intense infl ammatory 
response.

While the phenomenology of the 
myriad cytokines involved in wound 
healing is vast, the discussion of some 
key regulators of the scarring process 
is unavoidable. Following cutaneous 
injury, endothelial damage and platelet 
aggregation occur resulting in the 
secretion of cytokines including the 
transforming growth factor (TGF)-β 
family, platelet-derived growth factors 
(PDGF), and epidermal growth 

factors (EGF) [11,16]. These cytokines 
stimulate fi broblast proliferation 
and matrix secretion, and induce 
leukocyte recruitment. Leukocytes, 
in turn, reinforce fi broblast activity, 
fi ght infection, and increase vascular 
permeability and ingrowth. They 
do this acting through the TGF-
β family, fi broblast growth factors 
(FGF), vascular endothelial growth 
factors (VEGF), and other factors 
[11,16]. Prostaglandins [34] and 
SMAD activation [35] also increase 
infl ammatory cell proliferation and 
impair matrix breakdown [36]. 
Increased levels of TGF-β1 and β2 as 
well as decreased levels of TGF-β3 have 
been associated with hypertrophic 
scarring through infl ammatory cell 
stimulation, fi broblast proliferation, 
adhesion, matrix production, and 
contraction [37,38]. Consistent with 
these observations, anti-infl ammatory 
agents (cytokine inhibitors, 
corticosteroids, interferon α and β, and 
methotrexate) have been used with 
some success to reduce scar formation 
[11,39]. Novel antifi brotic agents are 
also in development to target specifi c 
mediators of the scarring process 
[40,41].

Increased vascular density, extensive 
microvascular obstruction, and 
malformed vessels [25,42] have also 
been observed in hypertrophic scars. 
These structural changes may account 
for the persistent high infl ammatory 

Table 1. Selection of Currently Available Therapeutics for the Treatment of Hypertrophic Scarring

Therapy (Manufacturer) Category Active Principle Level of Evidence

Rose hip oil (various) Natural remedies Unknown Anecdotal

Vitamin E (various) Natural remedies Unknown Anecdotal

Corticosteroids (various) Pharmaceutical Unknown; may be anti-infl ammatory OBS

Juvista (Renovo) Pharmaceutical Anti-infl ammatory EXP, CT [81]

Neosporin (Pfi zer) Pharmaceutical Antibiotic OBS

Compression garment (various) Wound dressing Unknown; may interfere with mechanotransduction pathways 

and tissue perfusion

OBS, CT [82]

Hydrogel sheeting (Avogel) Wound dressing Unknown; may be anti-infl ammatory EXP, CT [83,84]

Silicone sheeting (various) Wound dressing Unknown; may interfere with tissue perfusion OBS, CT [85,86]

Smoothbeam laser (Candela) Nonablative laser Unknown; may stimulate collagen remodeling OBS [87]

Erbium laser (various) Ablative laser Removes surface of scar OBS, CT [88]

Chemical peel (N/A) Surgical Removes surface of scar OBS, CT [89]

Revision surgery (N/A) Surgical Removes scar OBS, CT [90]

CT, clinical trial; EXP, laboratory data; N/A, not applicable; OBS, observational
doi:10.1371/journal.pmed.0040234.t001
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cell density observed in hypertrophic 
scars. Conversely, persistent 
infl ammation could itself contribute 
to increased vascularity through 
positive feedback loops. Although the 
presence of a robust infl ammatory 
response during scar formation has 
been described, many questions 
remain unanswered. Specifi cally, 
what distinguishes physiological or 
“normal” infl ammation from the 
pathological infl ammation that occurs 
during hypertrophic scar formation? 
What signals act to initiate or stop 
this excessive infl ammatory process in 
scar formation? Until these issues are 
clarifi ed it will be diffi cult to ascertain 
what causal roles infl ammatory 
pathways have in initiating 
hypertrophic scar formation.

Therapeutic Approaches: 
Targeting Epithelial–Mesenchymal 
Interactions

Epithelial cells have important roles 
in normal skin physiology, which 
include acting as stem cell niches and 
participating in complex signaling 
pathways to regulate mesenchymal 
cell function. The net results of these 
functions are the constant renewal 
of skin layers and the regulation of 
matrix deposition and remodeling. 

Cell-based skin substitutes take 
advantage of the regenerative nature 
of skin and are clinically used to cover 
wounds, but their utility in subsequent 
scar formation remains unknown. 
Epidermal stem cells are thought to 
act in concert with mesenchymal cells 
in the dermal papillae, functioning 
to recruit new cells to sites of skin 
regeneration [43,44]. However, 
large traumatic skin defects (such 
as those following burn injuries) 
destroy the resident epidermal 
stem cell population and cannot be 
spontaneously regenerated.

Efforts to isolate and purify 
epidermal stem cells in order to 
prepare them for ex vivo expansion 
and subsequent transplantation 
require the identifi cation of surface 
markers specifi c to these cells 
[45,46]. Elucidation of these markers 
has been challenging, but work is 
progressing [43] and will hopefully 
soon yield methods to easily obtain 
pure populations of cells with high 
proliferative potential.

In addition to their regenerative 
function, epithelial cells act to 
modulate mesenchymal cell 
proliferation and activity in normal skin 
and during wound healing and scar 
formation [47]. In healing wounds, 
epithelial cells promote fi brosis and 

scarring through multiple pathways 
including SMAD, phosphoinositide-3 
kinase (PI3K), TGF-β, and connective 
tissue growth factor (CTGF) [48–51]. 
Epithelial cells stimulate fi broblasts 
during hypertrophic scar formation 
and fi broblasts themselves undergo 
intrinsic changes during the process 
of scarring [52–54]. Subsequently, 
fi broblasts remain in an activated state, 
participating in cytokine autocrine 
loops that maintain fi brosis [52–56]. 
Hypertrophic scar fi broblasts also 
have fundamentally altered profi les of 
cellular apoptosis, matrix production, 
and matrix degradation [52–56]. 
It is unclear whether these altered, 
profi brotic properties are due to 
genetic predisposition or secondary 
to unique conditions present in the 
wound environment.

Therapeutic Approaches: 
Targeting the Physical 
Environment

Following injury, the wound is a 
complex and mechanically unique 
environment [57,58] with multiple 
levels of interaction between cells and 
the surrounding milieu. Fibroblasts 
and keratinocytes respond to the 
density and orientation of collagen and 
other matrix components [59–61]. As 

doi:10.1371/journal.pmed.0040234.g002

Figure 2. Seed versus Soil
Cellular and noncellular factors both play a role during the process of scar formation. Local environmental factors such as mechanical forces, 
extracellular matrix structure and orientation, and oxygen tension act as cellular signals. These signals infl uence the migration, adhesion, extravasation, 
and proliferation of varied cell types. These cells respond and in turn alter the physicochemical environment in which they reside. Keratinocytes 
migrate and multiply, changing the mechanical structure along the wound margin. Fibroblasts increase matrix production and initiate remodeling. 
Endothelial cells take part in neovascularization and regulate the blood fl ow and oxygen tension in the wound. As these cells alter their environment, 
complex feedback mechanisms move the wound healing process through its normal infl ammatory, proliferative, and remodeling phases. Aberrant 
wound healing occurs when environmental or cellular factors are altered. Increased mechanical tension or oxygen dysregulation, for example, can lead 
to a constitutively active proliferative phase, increased matrix deposition, and hypertrophic scar formation.
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a result, cells near the wound margin 
proliferate while those further away 
from the edge of the wound are less 
active [62,63]. At the same time, 
these cells are actively producing 
and remodeling the surrounding 
matrix. It is this delicate balance 
that is responsible for a rapid and 
healthy response to injury and, when 
disturbed, leads to aberrant wound 
healing.

Many cells are known to be 
mechanoresponsive [64,65]. It has 
recently become clear that cells in the 
skin are also able to respond to their 
mechanical environment [66–68]. 
Specifi cally, cell surface molecules such 
as the integrin family are activated by 
mechanical forces, leading to increased 
fi broblast survival as well as to the 
remodeling of deposited collagen and 
fi brin [66,69]. While the intracellular 
signaling involved in this process is 
complex and incompletely understood, 
transcriptional regulators such as AKT 
and focal adhesion kinase (FAK) have 
been found to be essential elements 
[66,69,70]. Keratinocyte proliferation 
and migration are similarly regulated 
by mechanical stress [67,71]. Following 
tissue injury, mechanotransduction 
may serve a biological function to 
signal the presence of a tissue defect. 
Cells experience the highest levels 
of mechanical stress on the edge of 
a monolayer [72] and, in the same 
way, the wound margin experiences 
high levels of mechanical stress [73]. 
These stresses may have evolved to 
stimulate components of wound 
healing and initiate repair. Differences 
in exogenous forces may act to change 
cellular activation in the wound healing 
milieu and, when overactivated, 
lead to hypertrophic scar formation 
[74]. Clinically, we see that these 
expectations hold true. Skin subjected 
to high levels of stress (secondary to 
trauma or joint movement) usually 
demonstrates robust hypertrophic scar 
formation [27,75].

Oxygen tension is another 
component of the physical 
environment that may be important for 
scar formation. Changes in levels of the 
transcription factor hypoxia-inducible 
factor (HIF)-1α during fetal skin 
development are thought to be partly 
responsible for the transition from 
scarless to scarred healing [76,77]. 
Varying levels of HIF-1α in turn result 
in changes in a number of downstream 
proteins including TGF-β3 and VEGF 
[76,78]. Changes in hypoxia signaling 
pathways contribute to the maturation 
of fetal skin and the development of a 
scarring phenotype following wounding 
[77,78]. Changes in oxygen tension 
and increases in reactive oxygen species 
have also been shown to mediate early 
scar formation in tissues such as the 
lung and heart [79,80]. However, the 
observation that scars are normally 
highly vascular is at odds with the 
theory that hypoxia increases scar 
formation, and further work is needed 
to defi nitely establish this relationship. 
What is clear is that the wound 
environment is a powerful modulator 
of scar formation and could potentially 
be manipulated for therapeutic effect.

Conclusion

The complex interplay between 
cell infl ux into the wound bed, 
environmental factors in the 
surrounding skin, and various 
cytokine mediators makes the 
task of manipulating the wound 
environment to promote regeneration 
appear daunting. Presently, most 
therapies consist of a single cell 
type or cytokine being added to the 
healing wound in the hopes that 
this will result in perfect healing. As 
we have described, monotherapy is 
unlikely to be effective. However, it 
is equally improbable that the entire 
web of factors that promote tissue 
regeneration can be incorporated 
into a single therapeutic strategy. It is 
likely that the development of more 

effective therapeutics will require an 
incorporation of known environmental 
factors along with cellular components 
to promote healing. A comprehensive 
strategy taking into account both the 
cellular (seed) and environmental 
(soil) contributions to hypertrophic 
scar formation will have the highest 
likelihood of therapeutic success 
against this currently incurable 
condition.
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