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INTRODUCTION 
 

Cardiovascular diseases are the main cause of death 

worldwide, accounting for 32% of the total number [1]. 

The renin-angiotensin-aldosterone system (RAAS) plays 

a central role in the occurrence of many cardiovascular 

diseases by compromising vascular tension, electrolyte 

balance, and sympathetic nervous activity [2, 3]. 

Angiotensin II (Ang II), a main effector molecule of the 

RAAS, plays a crucial role in the occurrence of various 

cardiomyopathy, such as diabetic cardiomyopathy [4], 

alcoholic cardiomyopathy [5], and ischemia-reperfusion 

injury [6]. Ang II binds to its receptor AT1 or AT2 to 

activate nicotinamide adenine dinucleotide phosphate 

oxidase (NOX) and produce a large number of reactive 

oxygen species (ROS) [4], which leads to oxidative 

stress [5, 7] when the scavenging capacity of the body is 

exceeded. Excessive ROS inactivate various proteins, 

leading to cardiomyocyte apoptosis [8, 9] and 

subsequently loss of contractile tissue and initiation of 

cardiac remodeling and cardiomyopathy [10, 11]. In 

addition, excessive ROS could also promote myocardial 

inflammation and fibrosis to aggravate myocardial 

apoptosis and cardiac dysfunction by activating 
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ABSTRACT 
 

Oxidative stress is the central cause of angiotensin II (Ang II)-induced myocardial injury, and nuclear factor 
erythroid 2-related factor (Nrf2) is the core molecule of the anti-oxidant defense system. We have previously 
demonstrated that sulforaphane (SFN) can prevent Ang II-induced myocardial injury by activating Nrf2; 
however, the underlying molecular mechanism is still unclear. This study aimed to evaluate whether SFN 
prevents Ang II-induced cardiomyocyte apoptosis through acetylation modification of Nrf2. Wild-type and Nrf2 
knockdown embryonic rat cardiomyocytes (H9C2) were exposed to Ang II to induce apoptosis, oxidative stress, 
and inflammatory responses. SFN treatment significantly reduced Ang II-induced cardiomyocyte apoptosis, 
inflammation and oxidative stress. Activation of Nrf2 played a critical role in preventing cardiomyocyte 
apoptosis. After Nrf2 was knockdown, the anti-inflammatory, antioxidant stress of SFN were eliminated. 
Furthermore, Nrf2 activation by SFN was closely related to the decreased activity of histone deacetylases 
(HDACs) and increased histone-3 (H3) acetylation levels in Nrf2 promoter region. These findings confirm that 
Nrf2 plays a key role in SFN preventing Ang II-induced cardiomyocyte apoptosis. SFN activates Nrf2 by inhibiting 
HDACs expression and activation. 
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epidermal growth factor receptor and NF-κB signaling 

pathways [12]. Previous studies have revealed that 

upregulating the expression of intracellular antioxidant 

enzymes, including thioredoxin 2 (Txn-2) and heme 

oxygenase-1 (HO-1), could increase the antioxidant 

capacity of myocardial cells and inhibit myocardial 

injury and ventricular remodeling [13, 14]. However, 

clinical trials have revealed that non-selective ROS 

clearance by ROS scavenger agents is ineffective in the 

treatment of cardiovascular disease [15, 16], which 

implies that upregulation of the endogenous antioxidant 

stress system may be an effective strategy. 

 

Nuclear factor erythroid 2-related factor (Nrf2) is a 

crucial transcription factor for antioxidant stress in vivo. 

Under physiological conditions, the activity of Nrf2 is 

mainly regulated by its negative regulator Keap1. Nrf2 

binding to the Kelch domain of Keap1 mediates its 

ubiquitination and proteasome degradation [17]. When 

the body is under oxidative stress, Nrf2 dissociates from 

Keap1 and is translocated to the nucleus, where it binds 

to the antioxidant stress element (ARE) in the promoter 

region of downstream genes. Hereby, the expression of 

downstream antioxidant genes, including NAD(P)H 

oxidoreductase (NQO1), HO1, and catalase (CAT),  

is upregulated to ameliorate oxidative stress and  

inhibit cell apoptosis [18, 19]. Nrf2 upregulation can 

reportedly prevent a variety of oxidative stress-related 

myocardial injuries. For example, Nrf2 agonists reduce 

endotoxin-induced myocardial injury [20]. Additionally, 

activation of Nrf2/ARE effectively prevents diabetic 

cardiomyopathy [21], myocardial ischemia-reperfusion 

injury [22, 23], and doxorubicin-induced cardiotoxicity 

[24]. Moreover, our previous study confirmed that Nrf2 

upregulation effectively protects against Ang II-induced 

myocardial injury [25]. These results suggest that Nrf2 

may be an effective target to prevent myocardial 

oxidative stress and apoptosis by activating the 

endogenous antioxidant system. 

 

Sulforaphane (SFN) is an isothiocyanate compound 

extracted from cruciferous vegetables, including 

cauliflower and broccoli. As an Nrf2 agonist, SFN 

exhibits antioxidant capacity [26, 27]. Unlike synthetic 

Nrf2 agonists, SFN is derived from natural vegetables 

and is safer. Indeed, SFN prevents myocardial ischemia-

reperfusion injury [28], diabetic cardiomyopathy and 

nephropathy [29], and Ang II-induced cardiomyopathy 

by upregulating Nrf2 [25]. However, the mechanism 

underlying Nrf2 activation by SFN in cardiomyocytes 

requires further exploration. 

 

It has been reported that SFN could modify gene 
expression through epigenetic modification. This is 

because SFN acts as an inhibitor of histone deacetylases 

(HDACs) and upregulates the expression of several 

antitumor genes, such as p21 and Bax [30–32]. In 

prostate cancer model, SFN promotes Nrf2 expression by 

inhibiting CpG island methylation of Nrf2 promoter 

region [33]. In addition, SFN has also been shown to 

inhibit histone acetylation in the Nrf2 promoter region in 

skin tumor transformation [34]. Therefore, this study 

intended to confirm the protective effect of upregulated 

Nrf2 in cardiomyocytes and explore Nrf2 activation by 

sulforaphane-mediated acetylation modification. This 

study provides theoretical and experimental basis for the 

prevention and treatment of Ang II-induced myocardial 

injury. 

 

RESULTS 
 

SFN prevents Ang II-induced cardiomyocyte 

apoptosis 
 

In order to confirm the preventive effect of SFN on 

cardiomyocyte apoptosis, TUNEL staining was 

performed to detect the number of apoptotic cells, and 

western blotting was applied to detect the expression of 

apoptotic proteins, respectively. The results revealed 

that Ang II significantly increases cell apoptosis 

compared with the control group. Meanwhile, the 

number of apoptotic cells in the Ang II/SFN group  

was significantly lower compared with Ang II group 

(Figure 1A). Consistent with this, Ang II significantly 

upregulated the expression of apoptosis-related proteins 

cleaved caspase-3 and cleaved caspase-8 compared with 

the control group. The expression of cleaved caspase-3 

and cleaved caspase-8 were significantly lower in  

the Ang II/SFN group compared with Ang II group 

(Figure 1B, 1C). These findings confirm that SFN  

could protect against Ang II-induced cardiomyocyte 

apoptosis. 

 

SFN inhibits Ang II-induced inflammation and 

oxidative stress 
 

Inflammation and oxidative stress are the two important 

factors of Ang II-induced cardiomyocyte apoptosis that 

aggravate each other. The expression of the inflammatory 

factors NF-κBp65, IKβ, and tumor necrosis factor (TNF)-

α and oxidative stress related indicators 3-nitrotyrosine 

(3-NT) and 4-hydroxy-2-nonenal (4-HNE) were 

determined by western blotting. Ang II significantly 

increased the expression of the pro-inflammatory factors 

NF-κBp65 and TNF-α and dramatically decreased the 

expression of the anti-inflammatory factor IKβ compared 

to the control group. On the contrary, the expression of 

NF-κBp65 and TNF-α were significantly inhibited and 

that of IKβ was significantly enhanced in the Ang II/SFN 
group compared to the Ang II group (Figure 2A–2C). 

Meanwhile, compared to the control group, the 

expression of 3-NT and 4-HNE in the Ang II group were 
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significantly upregulated. However, in the Ang II/SFN 

group, their expression was significantly lower than in 

the Ang II group (Figure 2D, 2E). Collectively, these 

findings suggested that SFN may prevent myocardial 

injury by inhibiting Ang II-induced inflammation and 

oxidative stress. 

 

SFN upregulates Nrf2 expression and function 

 

The results confirm that SFN protect against Ang II-

induced cardiomyocyte apoptosis and is closely 

associated with the inhibition of inflammation and 

oxidative stress. To further explore whether SFN exerts 

protective effect by inhibiting the AT1 expression and 

NOX enzymes activation, we performed real-time PCR 

(qPCR) and western blotting to detect the mRNA and 

protein expression levels of AT1 and p47phox. AT1 

expression was significantly upregulated in the Ang II 

group at the mRNA and protein levels, and was not 

affected by SFN treatment (Figure 2F). The cytoplasmic 

subunit cp47phox is phosphorylated and translocated to 

the cell membrane (mp47phox) to form an active NOX 

complex. Ang II significantly upregulated the ratio of 

mp47phox to cp47phox expression. However, there was no 

difference of the ratio between the Ang II and Ang 

II/SFN groups (Figure 2G). The data suggested that 

 

 
 

Figure 1. SFN prevents Ang II-induced cardiomyocytes apoptosis. TUNEL staining was used to detect the number of apoptotic  

cells (brownish-yellow particles in the nucleus) (A). Western blot was used to detect the expression of cleaved caspase-3 (B), cleaved 
caspase-8 (C). Data were presented as the mean SD (n = 3). *P < 0.05 vs control; # P < 0.05 vs Ang II. 
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Figure 2. SFN inhibits Ang II-induced inflammation and oxidative stress. Western blot was used to detect the expression of 

inflammatory factors NF-κB (A), IKβ (B), TNF-α (C), oxidative stress indicators 3-NT (D), 4-HNE (E). Data were presented as the mean SD  
(n = 3). SFN has no effect on the activation of AT1 and NOX. Western blot and qPCR were used to detect the AT1 expression (F). Western blot 
was used to detect the expression of mp47phox and cp47phox (G). Data were presented as the mean SD (n = 3). *P < 0.05 vs control;  
# P < 0.05 vs Ang II. 
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SFN does not play its antioxidative role by inhibiting 

AT1 and NOX. 

 

Subsequently, we determined Nrf2 transcription and 

expression to determine whether SFN plays its 

antioxidative role through Nrf2. The results revealed that 

Nrf2 expression was not obviously affected by Ang II 

intervention for 24 h. However, compared to the control 

and Ang II groups, Nrf2 transcription and translation 

were significantly upregulated by SFN (Figure 3A, 3B). 

Considering that the phosphorylation of Nrf2 at ser40 

indicates its activation, immunofluorescence staining 

(IF) was conducted to detect the expression and 

distribution of p-Nrf2. Compared to the control and Ang 

II groups, the high p-Nrf2 expression was observed in 

the nuclei of embryonic rat cardiomyocytes (H9C2) in 

SFN and Ang II/SFN groups (Figure 3C). 

 

In addition, Nrf2 activation was reflected by the 

increased expression of antioxidant genes NQO1, HO1, 

and CAT. Therefore, their expression was detected, and 

found that SFN significantly upregulated the expression 

of HO1, NQO1, and CAT compared to the control and 

Ang II groups (Figure 3D), which was consistent with 

the upregulation of Nrf2 expression. These findings 

suggested that the protective effect of SFN on Ang II-

related myocardial injury is closely related to the 

activation of Nrf2 rather than the inhibition of AT1 

expression. 

 

Nrf2 gene knockdown eliminates the preventive 

effect of SFN on Ang II-induced myocardial damage 

 

To explore whether Nrf2 plays a direct role in 

preventing SFN-mediated Ang II-induced myocardial 

damage, we used RNA interference technology to 

silence Nrf2 in H9C2 cells. After siRNA transfection, 

Nrf2 was barely expressed in the cells regardless of 

SFN treatment (Figure 4A). Moreover, HO-1 and 

NQO1 expression were significantly decreased in Nrf2 

siRNA group (Figure 4A). In the Nrf2 siRNA group of 

H9C2 cells, Ang II enhanced the expression of the 

inflammatory factor TNF-α and oxidative stress 

indicator 3-NT, but SFN failed to downregulate the 

expression of these proteins (Figure 4B). Similarly, Ang 

II was able to induce cardiomyocyte apoptosis and the 

expression of the apoptotic protein caspase-3 in the 

Nrf2 siRNA group, but these effects were not reversed 

by SFN (Figure 4C, 4D). 

 

SFN activates myocardial Nrf2 transcription by 

enhancing the histone-3 (H3) acetylation in Nrf2 

promoter region 

 

Histone acetylation loosens the chromatin structure and 

leads to the transcriptional activation of related genes. 

Trichostatin A (TSA), an HDACs inhibitor, was used as 

the positive control. IF showed that H3 acetylation was 

observed in the cardiomyocyte’s nuclei of SFN, Ang 

II/SFN and TSA groups (Figure 5A). Quantitative 

western blot analysis verified a significant increase in 

H3 acetylation in the SFN and Ang II/SFN groups, 

according to the activation of Nrf2 (Figure 5B). 

Chromatin immunoprecipitation (ChIP) analysis further 

confirmed that SFN significantly increased H3 

acetylation in Nrf2 promoter region, which was no 

difference with the overall acetylation of H3 (Figure 

5C). These results indicated that SFN activates Nrf2 by 

increasing H3 acetylation in the Nrf2 promoter. 

 

HDACs jointly regulate histone acetylation levels, and 

it has been confirmed that SFN is an inhibitor of 

HDACs [35]. In view of this, our analysis revealed that 

SFN significantly inhibited global HDACs activity 

(Figure 6A) and the expression of HDAC2, HDAC3, 

and HDAC5 (Figure 6B) compared to the control and 

Ang II groups. In conclusion, these results suggested 

that SFN activates Nrf2 by inhibiting HDACs  

and increasing histone acetylation levels, which may 

play a crucial role in preventing Ang II-induced 

cardiomyocyte apoptosis. 

 

DISCUSSION 
 

It has been previously confirmed that SFN protects 

against Ang II-induced cardiomyopathy through 

activating Nrf2 [25]. However, the intrinsic molecular 

mechanism by which SFN regulates cardiac Nrf2 and its 

relationship with cardiomyocyte apoptosis remain 

unclear. In this study, a series of in vitro experiments 

were conducted to confirm the following: (1) SFN 

prevents Ang II-induced cardiomyocyte apoptosis, (2) 

inhibition of inflammation and oxidative stress is 

important for the protective effect of SFN, (3) Nrf2 is a 

direct target of SFN’s protection on Ang II-induced 

cardiomyocyte apoptosis, and (4) Nrf2 activation by 

SFN is mediated by increased H3 acetylation through 

the inhibition of HDACs activity. Therefore, this study 

provides a theoretical basis for SFN treatment on Ang 

II-induced myocardial injury and provides an effective 

strategy for the treatment of cardiomyopathy. 

 

Excessive activation of oxidative stress is a key cause 

of Ang II-induced myocardial injury [4]. In this study, 

we found that Ang II induced inflammation and 

oxidative stress, which resulted in cardiomyocyte 

apoptosis (Figures 1, 2). As a transcription factor for 

antioxidant stress, Nrf2 upregulates the expression of a 

series of detoxification enzymes and downstream 
antioxidant genes [36–38]. Moreover, downregulation 

of Nrf2 aggravates Ang II-induced cardiac 

hypertrophy [39]. In this study, we found that the 
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Figure 3. SFN up-regulates Nrf2 expression and function. Western blot (A), RT-qPCR (B) were used to detect Nrf2 protein and mRNA 

levels. Immunofluorescence staining was applied to detect p-Nrf2 expression and distribution (red) (C). Western blot was used to detect the 
expression of Nrf2 downstream antioxidant genes HO-1, NQO1, CAT (D). Data were presented as the mean SD (n = 3). *P < 0.05 vs control; # 
P < 0.05 vs Ang II. 
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Figure 4. Nrf2 gene knockdown eliminated the preventive effect of SFN on Ang II-induced myocardial damage. Both Nrf2 

knockdown cell lines and wild-type cell lines were given/not given Ang II, with/without SFN treatment. Western blot detected the expression 
of Nrf2 and downstream antioxidant genes NQO1 and HO-1 (A), TNF-α, 3-NT (B), cleaved caspase-3 (C). TUNEL staining detected apoptotic 
cells (D). Data were presented as the mean SD (n = 3). *P < 0.05 vs control; # P < 0.05 vs Ang II. 
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upregulation of Nrf2 and the downstream antioxidant 

genes NQO1, HO1, and CAT could prevent Ang II-

induced cardiomyocyte apoptosis, and the knockdown 

of Nrf2 aggravates the occurrence of cardiomyocyte 

apoptosis (Figures 3, 4). These results suggest that 

Nrf2-mediated antioxidant defense mechanism plays 

an important role in preventing Ang II-induced 

cardiomyocyte apoptosis. 

The synthetic Bardoxolone Methyl (BM), a Nrf2 

agonist, was used in a phase III trial to prevent diabetic 

nephropathy, but the trial was discontinued owing to 

severe renal and cardiovascular toxicity in patients [40]. 

Subsequently, an increasing number of natural plant- 

and food-derived compounds, such as SFN, curcumin, 

and tocopherol, have shown to activate Nrf2 [41–43]. 

Among these, SFN has been widely studied because of 

 

 
 

Figure 5. SFN activates myocardial Nrf2 by enhancing the acetylation of histone H3 in Nrf2 promoter region. 
Immunofluorescent staining was used to detect Ace-H3 expression and distribution (red) (A). Western blot was used to detect Ace-H3 and 
Nrf2 expression (B). ChIP detected the enrichment of Ac- H3 in Nrf2 promoter region. (C) TSA, a deacetylase inhibitor, was used as a positive 
control. Data were presented as the mean SD (n = 3). *P < 0.05 vs control; # P < 0.05 vs Ang II. 
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its safety and non-toxicity. SFN has been shown to  

exert anticancer and damage-protective effects by 

modulating inflammation, oxidative stress, cell cycle 

and proliferation [44]. SFN can effectively protect 

testis, myocardium and aorta from diabetes-related 

oxidative damage through activation of Nrf2 [21, 45, 

46]. Furthermore, it has been confirmed that SFN 

upregulates Nrf2 to prevent Ang II-induced myocardial 

injury in vivo [25]. Here, in vitro experiments 

demonstrated that SFN inhibited Ang II-induced 

myocardial inflammation, oxidative stress, and apoptosis 

(Figures 1, 2). Additionally, Nrf2 and its downstream 

antioxidant genes were upregulated by SFN (Figure 3). 

However, SFN did not affect the expression of AT1 in 

the cardiomyocytes (Figure 2). Furthermore, in Nrf2 

knockdown H9C2 cells, SFN did not upregulate the 

expression of Nrf2 and its downstream genes  

and prevent Ang II-induced cardiomyocyte apoptosis 

(Figure 4), suggesting that SFN played a preventive role 

in cardiomyocyte apoptosis by directly acting on Nrf2, 

but not on AT1. 

 

Previously, Nrf2 has been regulated through various 

ways, most notably by modifying the cysteine residues 

 

 
 

Figure 6. SFN activates Nrf2 through inhibiting HDACs expression and activity. The HDACs activity kit was used to detect the global 

HDACs activity (A). Western blot was used to detect the expression of HDAC2, HDAC3, HDAC5 (B). TSA, a deacetylase inhibitor, was used as a 
positive control. Data were presented as the mean SD (n = 3). *P < 0.05 vs control; # P < 0.05 vs Ang II. 
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of Keap1 to induce its uncoupling [47]. Furthermore, 

various signalling pathways also contribute to the 

regulation of Nrf2, such as PI3K/AMPK, GSK-3β/Fyn 

and others [48, 49]. In addition, epigenetic modification 

is also an important means of regulating Nrf2 [50, 51]. 

Growing evidence suggests that SFN reactivates the 

transcription of the Nrf2 gene by epigenetic 

modifications, including histone modification. SFN 

increases Nrf2 expression by inhibiting promoter 

methylation of Nrf2, thereby significantly inhibiting 

TPA-induced skin carcinogenesis [34]. In a study on 

prostate cancer cells, SFN was revealed to increase the 

H3 acetylation in the Nrf2 promoter region by inhibiting 

HDACs, thus enhancing Nrf2 expression to exert the 

anticancer effect [33]. 

 

The HDACs family is divided into four classes. Eleven 

family members with highly conserved deacetylase 

domains are considered classic HDACs and fall into 

classes I, II, and IV. Class III members are known as 

sirtuins. Of these, HDAC1–5 are downregulated by 

SFN. Interestingly, SFN has tissue specificity for 

subtypes of HDACs that are downregulated. For 

example, in breast cancer cells, HDAC1–3 are inhibited 

by SFN to induce cell apoptosis [52, 53]; in skin cells, 

HDAC1–4 are regulated by SFN [34]; in the cochlea, 

SFN inhibits HDAC2, 4, and 5 [54]; and in colon 

cancer models, SFN downregulated only HDAC3 to 

prevent DNA damage repair [55]. Importantly, in the 

present study, SFN significantly inhibited HDAC2, 3, 

and 5 expression and HDACs activity in cardiomyocytes, 

thereby increasing H3 acetylation levels in the  

Nrf2 promoter and upregulating Nrf2 expression 

(Figures 5, 6). 

 

In conclusion, SFN plays a protective effect in Ang II-

induced cardiomyocyte apoptosis by inhibiting HDACs 

and increasing the expression of Nrf2 and downstream 

genes (Figure 7). Therefore, SFN or other Nrf2 

activators may be promising candidates for treating 

oxidative stress-related diseases. Recently, clinical trials 

have shown that SFN-rich broccoli sprouts are safe and 

effective in treating allergic asthma and sickle cell 

disease [56, 57]. However, other clinical trials have 

revealed that the Nrf2 activator BM shows cardio-

toxicity when treating diabetes mellitus [58], and 

resveratrol shows no effect on chronic kidney disease 

[59]. It is still believed that drug development of Nrf2 

activators, such as SFN, and clinical trials are worthy of 

further investigation. 

 

 
 

Figure 7. Diagram of the mechanism by which SFN prevents Ang II-induced cardiomyocyte apoptosis. Ang II activates oxidative 
stress by increasing ROS leading to inflammation, oxidative stress and fibrosis in cardiomyocytes. SFN prevent Ang II-induced cardiomyocyte 
apoptosis by inhibiting HDACs to activate Nrf2 and downstream antioxidant genes. 
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MATERIALS AND METHODS 
 

Cell culture 

 

H9C2 cells were purchased from ATCC (CRL-1446, 

MD, Manassas, VA, USA) as previously described [25] 

and cultured in Dulbecco’s modified Eagle medium. 

The ambient CO2 concentration was 5% and the 

temperature was 37° C. SFN (100 nmol/L, Sigma-

Aldrich) was added and incubated for 24 h [21]. 

 

RNA interference experiment 

 

H9C2 cells were inoculated in 6-well plates and 

replaced with antibiotic-free medium one day before 

transfection. Transfection was carried out when the cells 

reached 70–90% confluence. According to the 

instructions of Lipofectamine™ 2000 (Invitrogen) 

reagent, 50 μL OPTI-MEM® was applied to dilute 1.0 

μg DNA and 1.5 μL reagent. The two solutions were 

mixed, kept at room temperature for 10 min, then added 

to the wells, and mixed well. The culture medium was 

replaced 6 h after transfection, and Nrf2 expression was 

detected after two days of continued culture. 

 

qPCR 

 

qPCR was used to analyze the expression of Nrf2, AT1. 

After washing the medium with PBS, 1 mL TRIzol was 

added, and kept at room temperature for 10 min. Total 

RNA was extracted using the TRIzol reagent and used to 

synthesize cDNA using the TransGen Biotech kit. qPCR 

analysis was performed using the Applied Biosystems 

PRISM 7700 Quantitative PCR instrument, Brilliant II 

SYBRs Green PCR Master Mix (Agilent Technologies), 

and specific primers (Nrf2: Mm00477784; AT1: 

Mm00616371; Applied Biosystems). β-actin was used as 

an internal control. 

 

Western blot analysis 

 

Cells were lysed with radio-immunoprecipitation assay 

(RIPA) lysate containing phenylmethanesulfonyl fluoride 

(PMSF) at a volume ratio of 1:10 (sample: lysate) and 

homogenized on ice. Then, the cell lysate was 

centrifuged at 12000 × g for 30 min. The protein 

concentration was measured by the bicinchoninic acid 

assay (BCA) method. SDS-PAGE was performed and 

proteins were transferred to PVDF membranes, which 

were then blocked with 5% skim milk for 1 h. 

Membranes were incubated at 4° C overnight with 

primary antibodies, including cleaved caspase-8, cleaved 

caspase-3, 4-HNE, 3-NT, TNF-α, NF-κB, IKβ, p-P47phox, 

AT1, Nrf2, p-Ser40-Nrf2, HO-1, NQO1, CAT, and 

HDACs subtypes. The membranes were then incubated 

with horseradish peroxidase-labeled secondary antibodies 

(1:2000) diluted with TBST for 1 h at room temperature. 

Color development exposure (ECL ultrasensitive color 

development solution) and protein expression were 

observed. The Image J software (v1.8.0) was used to 

analyze the quantitative densitometry of the bands. 

 

TUNEL staining 

 

TUNEL staining was performed using the Kit 

(Millipore) according to the instructions. The cell slides 

were digested with 20 μg/mL protease K and blocked 

with 50 μL H2O2 at room temperature for 15 min. After 

washing, equilibration buffer was added dropwise for 5 

min, 27 μL of working solution (TDT enzyme) was 

added and incubated for 1 h at 37° C in the dark, and the 

reaction was terminated by adding 50 μL reaction 

termination solution for 5 min at room temperature. 

Then anti-digoxigenin conjugate was added and 

incubated at room temperature for 30 min. DAB was 

developed for color, nuclei were stained using Mayer’s 

hematoxylin, gradient alcohol was used for dehydration, 

xylene was used for transparency, and the slides were 

sealed and observed under a microscope. Ten fields 

were selected per section. Cells with brownish yellow 

particles in the nuclei were considered apoptotic cells. 

The number of positive cells and total number of cells 

in a field were counted using a microscope (400×) to 

calculate the apoptosis rate. 

 

IF 

 

The cells were fixed with 4% formaldehyde and then 

underwent cell permeation. Serum was used to block 

non-specific binding, and the primary antibodies (p-

ser40-Nrf2, Ace-H3) were added. The cells were washed, 

titrated with fluorescently labeled secondary antibody, 

blocked with glycerol, and microphotographed for 

analysis. 

 

ChIP assay 

 

The assay was performed using the EpiquikTM 

Chromatin Immunoprecipitation Kit (Epigentek) 

according to the instructions. H9C2 cells were incubated 

with 1% formaldehyde for 10 min, glycine was used to 

terminate cross-linking, and then 400 µL SDS lysis 

solution containing a protease inhibitor. Cells underwent 

ultrasound crushing and centrifugation to collect the 

supernatant. ChIP dilution buffer, 20 µL 50× IPC, and 

60 µL Protein A Agarose/salmon sperm DNA mixture 

were added to 100 µL of the supernatant, mixed at 4° C 

for 3 h, and centrifuged to obtain the supernatant. 

Monoclonal antibodies (2 µL) against acetylated H3 
were added to the supernatant and incubated overnight at 

4° C. The precipitate was collected by centrifugation and 

washed with solutions in the following order: TSI, TSII, 
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Buffer III, and TE solutions. The eluent was then added 

and the supernatant was collected by centrifugation. 

NaCl (5 mol/L) was used to unlock the crosslinking, and 

the DNA was extracted and recovered. PCR was 

performed using Nrf2 promoter region-specific primers: 

5'-AGGGTCACAGCATTAGG-3' (sense); 5'-ACAGG 

GTTCCTTTCCAT-3' (antisense). 

 

HDACs activity assay 

 

The nuclei of H9C2 cells were extracted using the kit 

(Nanjing KGI Biotechnology Co., Ltd.), and SDS lysis 

solution containing protease inhibitors was added to 

extract the nuclear proteins. The EpigenaseTM HDACs 

colorimetric activity/inhibition direct assay kit 

(Epigentek) was used according to the instructions. 

Briefly, 40 µg water was added to 50 µg nuclear protein 

sample and incubated with 10 µL HDACs substrate and 

10 µL buffer solution at 37° C for 90 min. After washing 

the plates, the detection antibody HO-5 and chromogenic 

solution were added to each sample, and the OD value at 

450 nm was determined. According to the formula, 

HDACs activity (OD/min/mg) was calculated and 

compared with the control group to determine the 

relative activity of HDACs. 

 

Statistical analysis 

 

Two-way ANOVA was performed to compare 

differences among multiple groups, and the Tukey’s 

test was performed to compare differences between 

two groups. P < 0.05 was considered statistically 

significant. 
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