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Epilepsy is the result of a group of transient abnormalities in brain function caused by
an abnormal, highly synchronized discharge of brain neurons. MicroRNA (miRNA) is a
class of endogenous non-coding single-stranded RNA molecules that participate in a
series of important biological processes. Recent studies demonstrated that miRNAs are
involved in a variety of central nervous system diseases, including epilepsy. Although
the exact mechanism underlying the role of miRNAs in epilepsy pathogenesis is still
unclear, these miRNAs may be involved in the inflammatory response in the nervous
system, neuronal necrosis and apoptosis, dendritic growth, synaptic remodeling, glial
cell proliferation, epileptic circuit formation, impairment of neurotransmitter and receptor
function, and other processes. Here, we discuss miRNA metabolism and the roles of
miRNA in epilepsy pathogenesis and evaluate miRNA as a potential new biomarker for
the diagnosis of epilepsy, which enhances our understanding of disease processes.
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INTRODUCTION

Epilepsy is the result of a group of transient abnormalities in brain function caused by an
abnormal, highly synchronous discharge of brain neurons. Its clinical manifestations mainly
include recurrent convulsions and changes in consciousness, which seriously affect the work, daily
activities, and physical and mental health of those afflicted with this disorder (Henshall, 2014).
There are about 50,000,000 cases of epilepsy worldwide, with approximately 9,000,000 cases in
China. Changes in multiple gene patterns in the brain result in the variations in cellular protein
metabolism observed in the brain tissue of patients with epilepsy. The pathological mechanism
of this disorder has not been clearly defined, and the processes related to neuronal apoptosis,
glial regeneration, and the inflammatory response and the molecular mechanisms involved in
the multiple links in the genetic information chain (e.g., gene translation, transcription, and
post-transcription modification) require further investigation. Thus far, almost all transcriptional
and post-transcriptional regulatory mechanisms have been shown to function abnormally during
the onset of epilepsy (the process of a normal brain becoming epileptic), including classical
transcription factors and epigenetic modifications (Becker et al., 2002; McClelland et al., 2011;
Miller-Delaney et al., 2015; Brennan and Henshall, 2018).

MicroRNA (miRNA) is an endogenous non-coding gene that plays a role in post-transcriptional
regulation and gene expression in advanced eukaryotes. Its main mode of action is to inhibit mRNA
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expression by identifying a complementary ribonucleotide
sequence in the 3′-untranslated region (UTR) of the target
messenger RNA (mRNA). Each miRNA may correspond to
mRNAs encoded by hundreds of genes at the same time. Most
miRNAs exhibit strictly regulated expression patterns, usually
tissue-specific or even cell-specific, highlighting the importance
of miRNAs in the time, space, and development stages of specific
gene expression patterns. miRNAs can act as negative regulators
of mRNAs that mediate gene expression (Uğurel et al., 2016).
Therefore, the upregulation of miRNA may downregulate their
target mRNA and the expression of the genetic information
encoded by these mRNAs. The miRNAs of the nervous system
form a complex gene regulatory network, which contains not only
normal physiological regulatory information but also abundant
neurobiological information related to neurological diseases
(Christensen and Schratt, 2009).

In recent years, the emergence of gene chip technology has
further explored the relationship between miRNA and epilepsy,
as well as the treatment and prognosis of epilepsy (Henshall
et al., 2016). Nervous system miRNAs are mainly involved
in inflammatory responses, neuronal necrosis and apoptosis,
dendritic growth, pathological circuit re-formation, glial cell
proliferation, the formation of epileptic networks, impaired
neurotransmitter release and receptor function. In short, a series
of pathological changes in the nervous system eventually form
a repeated excitatory cycle in the hippocampus, leading to the
occurrence and development of epilepsy (Alsharafi et al., 2015;
Pitkänen et al., 2016). In this review, the role of epilepsy-related
pathological mechanisms and the regulatory involvement of
miRNAs will be discussed to provide a new understanding of the
early diagnosis and treatment of this disorder.

miRNAS: EXPRESSION, PRODUCTION
AND MECHANISMS

MicroRNAs are small single stranded RNAs of about 22
nucleotides in length. miRNAs are widely distributed in animals,
plants, fungi, and other multicellular eukaryotes. They are highly
conserved in evolution and mainly located in non-coding regions
of the genome. Although they do not encode proteins, miRNAs
participate in important physiological and pathological processes.
miRNAs can complement and pair with the 3′-UTR region of
target gene mRNA, resulting in mRNA degradation or inhibition
of translation. Thus, they can regulate up to 30% of protein
expression after transcription (Bartel, 2004; He and Hannon,
2004; Bushati and Cohen, 2007).

Most miRNA promoters are recognized by RNA polymerase
II (Pol II), and the initial miRNA transcription products must
undergo splicing and polyadenylation (Winter et al., 2009).
The initial transcription product, called primary miRNA (pri-
miRNA), is about 1000 bp in size (Zeng et al., 2005). In the
nucleus, the endonuclease RNase III-type protein Drosha cuts
the double strand at the base of the pri-miRNA. The stem-
loop intermediate with a phosphate group at the 5′-end of
60–100 bp and a dinucleotide overhang at the 3′-end is the
precursor miRNA (pre-miRNA). Drosha is a non-specific RNase

that cannot recognize pri-miRNA for specific cleavage and must
form a complex with DGCR8 (Pasha) in animals. Specifically,
the pri-RNA substrate is recognized by the double-stranded RNA
binding site on DGCR8, and then Drosha cleaves the RNA
11 bp from the recognition point to generate the pre-miRNA
(Chendrimada et al., 2005; Yeom et al., 2006). Next, Exportin-5,
a transport protein on the nuclear membrane, binds to the pre-
miRNA by recognizing the protruding dinucleotide structure at
the 3′-end of the pre-miRNA, exporting it into the cytoplasm
with the help of Ran-GTP. In the cytoplasm, the pre-miRNA is
recognized by Dicer. The double strand of the spirochete is cut
around the two helical corners from the stem-loop, resulting in
a double-stranded RNA of 19–23 nucleotides that is similar in
structure to small interfering RNA (siRNA). The mature miRNA
comes from one arm of the pre-miRNA, and the other arm
produces a fragment of the same length as the miRNA, namely
miRNA∗. Finally, RNA helicase acts on the miRNA∗ duplex
and undergoes a chain selection process. One strand of the
miRNA∗ of the double RNA is degraded, and the other becomes
the mature miRNA, which enters the RNA-induced silencing
complex (RISC) (Chendrimada et al., 2007).

MicroRNAs are partially complementary to the 3′-UTR
sequences of their target mRNAs. Target mRNA stability is not
affected by the binding of miRNA; however, mRNA expression
after translation initiation is inhibited. miRNAs can inhibit
the extension or termination of translation or degrade newly
synthesized peptide chains from ribosomes (Bazzini et al., 2012).
Recent studies have shown that miRNAs are susceptible to
various forms of RNA editing, including adenosine-to-inosine
(A-to-I) RNA editing. The editing of miRNAs has a profound
impact on the set of target genes that they can regulate. This
type of modification can greatly expand the number of potential
targets a single miRNA family can regulate and change our
understanding of the role of miRNAs in homeostasis and disease
environments (Zhang et al., 2006; Kawahara et al., 2007).

THE ROLE OF miRNAs IN EPILEPSY
PATHOGENESIS

The exact etiology of epilepsy is still controversial. Its
pathogenesis may be closely related to neuronal cell apoptosis,
pathological circuit re-formation, glial fibroblast proliferation
and inflammatory response (Chang and Lowenstein, 2003;
Vezzani et al., 2011), and miRNAs may be involved in the
occurrence and development of epilepsy by regulating these
pathological processes (Cattani et al., 2016; Wang T. et al.,
2017; Korotkov et al., 2020). The potential mechanisms of
miRNA imbalance and the different roles of miRNAs in
epilepsy pathogenesis are discussed below to highlight potential
biomarkers and therapeutic developments (Figure 1).

Neuroinflammation and miRNA
Cerebral tissue injury in patients with epilepsy can promote
the release of inflammatory factors and induce inflammatory
reactions. These inflammatory factors (e.g., interleukin-1 [IL-
1], interferon-α [INF-α], and tumor necrosis factor-α [TNF-α])
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FIGURE 1 | Pathogenic mechanisms and related miRNAs of epilepsy. Red words indicate the upregulated miRNAs and blue words indicate the downregulated
miRNAs.

can destroy the blood-brain barrier and aggravate damage to the
nervous system and also excite neurons and promote repeated
seizures (Vezzani et al., 2016, 2019; Rana and Musto, 2018).

In patients with drug-resistant epilepsy, miR-34c-5p was
significantly downregulated, which might upregulate high
mobility group protein (HMGB1) and IL-1β expression (Fu
et al., 2020). Therefore, the authors of the study pointed
out that decreased miR-34c-5p levels might exacerbate
neuroinflammation in drug-resistant epilepsy and aggravate
hippocampal neuron loss in epileptogenesis.

Toll-like receptor 4 (TLR4) is an important immune receptor
involved in the development of epileptic inflammation by
regulating the expression of nuclear factor-κB (NF-κB), tumor
necrosis factor receptor-related factor 6, and IL-1 receptor-
related kinase 1 (Kan et al., 2019). Elevated expression of IL-1,
IL-6, and INF-α in epileptic foci demonstrates that inflammation
is indeed closely related to the occurrence and development
of epilepsy (Vezzani et al., 2008; Zhou et al., 2017). miR-146a
regulates the expression of NF-κB, IL-1, and INF-α at the post-
transcriptional level and affects the inflammatory reaction after
an epileptic seizure. Increased miR-146a levels in the epileptic
brain may alleviate inflammation, suggesting that miR-146a
may be a target for disease treatment (Aronica et al., 2010;
Tao et al., 2017; Zhang et al., 2018). In preclinical models of
epilepsy, miR-146a also plays an important role in the TLR4
signaling pathway. After a seizure, TLR4 receptors are activated,
and NF-κB enters the nucleus for activation. Activated NF-κB

can upregulate the expression of miR-146a, IL-1, and INF-
α. The increased miR-146a can suppress the activity of NF-
κB, thereby reducing the production of IL-1 and INF-α and
the inflammatory reaction caused by epilepsy (Boldin et al.,
2011; Wang X. et al., 2018). In the refractory temporal lobe
epilepsy (TLE) rat model, miR-146a increased the epilepsy
susceptibility by reducing complement factor H. Thus, reducing
the differential expression of miR-146a induced by epilepsy might
reduce the occurrence of epilepsy (He et al., 2016). Enhanced
miR-146a expression upregulated IL-1β in chronic TLE by
downregulating complement factor H. Therefore, modulating
the miR-146a-complement factor H-IL-1β loop circuit might
be a novel therapeutic strategy for TLE (Li et al., 2018). miR-
146a was up-regulated in the rat/mouse models. However,
considering the differences in its downstream regulated target
genes, miR-146a as a target for the treatment of epilepsy
needs further study.

miR-155 is also associated with the regulation of inflammatory
pathways in epilepsy. In children with chronic TLE, the
expression levels of both miR-155 and TNF-α are increased.
The increased TNF-α levels act as a feedback loop to regulate
miR-155 expression. Thus, these two molecules interact to
mediate the inflammatory process (Ashhab et al., 2013). Ashhab
et al. (2013) confirmed that the expression levels of miR-
155 and TNF-α were increased in children with chronic TLE,
and miR-155 could increase TNF-α expression to enhance the
inflammatory response.
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The expression of miR-27a-3p is significantly increased in
the hippocampus of epileptic rats (Lu et al., 2019). A miR-
27a-3p inhibitor could effectively reduce IL-1β, IL-6, and TNF-
α levels and neuronal apoptosis in the hippocampus of these
rats (Lu et al., 2019). In contrast, expression of miR-125a-
5p is downregulated in the hippocampus of pentylenetetrazol-
induced epileptic rats (Liu Q. et al., 2019). Overexpression of
miR-125a-5p attenuated epilepsy and decreased inflammatory
factor levels in the hippocampus by suppressing calmodulin-
dependent protein kinase IV (CAMK4), suggesting that miR-
125a-5p might represent a novel treatment for epilepsy (Liu Q.
et al., 2019). Lipopolysaccharide (LPS) treatment downregulated
miR-132 levels in vitro (Ji et al., 2018). Overexpression of miR-
132 reduced LPS-induced inflammatory injury, decreased the
phosphorylated levels of kinases in the NF-κB and MEK/ERK
pathways, and attenuated LPS-induced inflammatory cell injury
by targeting tumor necrosis factor receptor-associated factor 6
(TRAF6) (Ji et al., 2018).

To conclude, dysregulated miRNA expression may be
involved in epilepsy pathogenesis by regulating the expression
of inflammatory factors (e.g., IL-1, INF-α, and TNF-α).
Importantly, miR-146a may not only regulate inflammatory
factors involved in the onset of epilepsy but may also
be a biomarker for diagnosing epilepsy and an important
therapeutic target.

Apoptosis and miRNA
Recurrent epileptic seizures can cause neuronal apoptosis, and
the decrease in cell number can reorganize the synapses between
neurons and form abnormal synaptic loops that promote epilepsy
recurrence (Henshall and Simon, 2005). Tivnan et al. (2011)
were the first to demonstrate an association between miR-34
and apoptosis by reducing MAP3K9 mRNA and protein levels.
After an epileptic seizure, the body upregulates the expression
of pro-apoptotic miRNA and downregulates the expression of
anti-apoptotic miRNA to increase cell apoptosis, which affects the
occurrence and development of epilepsy (Hu et al., 2012).

miR-21 can inhibit cell apoptosis (Wang K. et al., 2017). miR-
21 expression in the hippocampus is increased several hours after
a seizure, which might reduce the inhibitory effect on the 3′
UTR region of the neurotrophin-3 and promote cell apoptosis
(Peng et al., 2013). Risbud et al. (2011) demonstrated that the
hippocampal miR-21 levels increased significantly from 2 days
to 3 weeks in epileptic rats. They also found that the active
protein of caspase-3 related to apoptosis signal transmission
and the number of apoptotic cells also increased. Therefore, the
mechanism underlying the role of miR-21 in epilepsy may be by
activating pro-apoptotic genes to promote neuronal apoptosis.

miR-34a is an evolutionarily conserved pro-apoptotic miRNA
that can be upregulated by activated p53. Hu et al. (2012)
reported that miR-34a expression levels are increased in
post-status epileptic rats. They showed that miR-34a was
upregulated during seizure-induced neuronal death or apoptosis,
and targeting miR-34a was neuroprotective and abrogated the
increase in activated caspase-3 protein. miR-141 expression
is also upregulated in patients with epilepsy. In vitro, miR-
141 overexpression induces nerve cell apoptosis, suppresses

proliferation, induces caspase-3/9, Bax and p53 expression, and
reduces silent information regulator 1 protein expression (Liu D.
et al., 2019). miR-128 expression is increased in rats with lithium
chloride-induced epilepsy. Chen et al. (2019) demonstrated
that miR-128 overexpression promoted nerve cell apoptosis,
increased p53, Bax, and cytochrome c protein expression, and
enhanced caspase-3/9 activity. Therefore, anti-miR-128 may be
neuroprotective against epilepsy through the SIRT1/p53/caspase
signaling pathway.

In addition to the role of pro-apoptotic miRNAs in epilepsy,
some anti-apoptotic miRNAs are also differentially expressed
and involved in the pathological mechanism of epilepsy. miR-
184 is an apoptosis regulator that is upregulated in the CA3
subfield of the mouse hippocampus (McKiernan et al., 2012).
McKiernan et al. (2012) showed that miR-184 had anti-apoptotic
effects, which might be achieved by regulating the Numblike
gene. miR-421 is downregulated in hippocampal neurons of
epileptic mice. MYD88 is a target of miR-421. This miRNA
could inhibit apoptosis and autophagy in hippocampal neurons
in epileptic mice by downregulating the TLR/MYD88 pathway
(Wen et al., 2018).

miR-129 expression is decreased in hippocampal neurons in
epileptic rats (Wu et al., 2018). Wu et al. (2018) suggested that
c-Fos was a potential target gene for miR-129, which could
inhibit proliferation and apoptosis of hippocampal neurons in
rats by repressing c-Fos expression through inhibiting the MAPK
signaling pathway.

miR-25-3p is associated with oxidative stress and apoptosis.
Li et al. (2020) found that miR-25-3p was downregulated
concomitant with upregulated OXSR1 expression in the
hippocampus of KA-treated rats. miR-15a expression is also
downregulated in TLE tissues. Upregulated miR-15a significantly
suppresses the apoptosis rate in epileptic cells. In addition, Fan
et al. (2020) demonstrated that miR-15a directly targets GFAP.
Thus, miR-15a upregulation might inhibit cell apoptosis and the
inflammation in TLE by targeting GFAP, providing a potential
therapeutic target for the treatment of TLE.

In general, the available data suggest that different miRNAs
participate in epilepsy pathogenesis or protect neurons
by regulating the level of apoptosis. Modulation of these
differentially expressed miRNAs may provide new strategies for
the treatment of epilepsy.

Glial Cell Dysfunction and miRNA
Glial cells have supportive and protective effects on neurons, and
they are mainly involved in the material metabolism of neurons.
Their dysfunction may be an important cause of epilepsy. For
example, dysfunction of glial cells may interfere with glutamate
homeostasis and uptake, resulting in overexcitation of neurons
and, eventually, epilepsy (Jimenez-Mateos et al., 2015). Reactive
glial cells are also believed to contribute to the development
of epilepsy by regulating brain inflammation and extracellular
matrix (ECM) remodeling (Korotkov et al., 2020). miR-132 is
one of the most commonly upregulated miRNAs in animal TLE
models. Korotkov et al. (2020) demonstrated that the miR-132
expression is increased in the human epileptogenic hippocampus,
particularly in glial cells. By transfecting miR-132 into human
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primary astrocytes, the expression of pro-epileptogenic COX-2,
IL-1β, TGF-β2, CCL2, and MMP3 were decreased, suggesting
that modulating miR-132 expression in astrocytes might be
a potential therapeutic target warranting further investigation
(Korotkov et al., 2020).

miR-155 is abundantly expressed in glial cells, and its
expression is significantly increased in the brain tissue of epilepsy
patients and kainate (KA)-induced epileptic mice. Fu et al. (2019)
noted that abnormal proinflammatory cytokine expression and
microglia morphology could be changed by silencing miR-
155. In addition, a miR-155 antagomir may reduce microglia-
impaired neuron excitability and attenuate KA-induced epilepsy
by inhibiting microglia activation (Fu et al., 2019). Moreover,
inhibition of miR-155 could also attenuate MMP3 overexpression
after IL-1β stimulation in astrocytes, suggesting a possible
strategy to prevent epilepsy via the modulation of glial cells and
reduction of inflammation (Korotkov et al., 2018).

miR-23a is another miRNA for which increased expression is
observed in the hippocampus of epileptic rats. Song et al. (2011)
demonstrated that miR-23a had an effect on glial cell apoptosis.
When miR-23a was inhibited, the expression of its target genes
(STK4 and caspases) was increased, leading to increased glial
cell apoptosis. Therefore, miR-23a might participate in the
development of epilepsy by promoting glial cell proliferation and
blocking glial cell apoptosis (Song et al., 2011).

Pathological Circuit Re-formation and
miRNA
The synapse is a special structure composed of the neuronal
cell body, axon, and dendrite. An external signal stimulates the
growth of dendritic spines and synapse formation. Pathological
circuit re-formation refers to abnormal synaptic connections
caused by brain tissue damage. The pathological neural circuit
formed by this remodeling may lead to recurrent epilepsy (Janz
et al., 2017). Previous studies have suggested that some miRNAs
affect neuron development and pathological circuit re-formation
by regulating protein synthesis, covalently modifying existing
proteins, and reusing membrane receptors after epileptic seizures
(Cattani et al., 2016).

miR-132 is involved in pathological circuit re-formation
and the regulation of dendritic spines. Studies have also
found that miR-132 expression is increased in children
with TLE, speculating that increased miR-132 levels might
affect pathological circuit re-formation and neuronal apoptosis
through the regulation of P250GAP and promote the occurrence
of epilepsy (Jimenez-Mateos et al., 2011; Scott et al., 2012). This
miRNA was first discovered by Nudelman et al. (2010), who
observed that the upregulation of miR-132 expression could
increase neuronal activity in a rat model of pilocarpine-induced
epilepsy. Through a series of complex signal transduction,
miR-132 could inhibit the production of GTPase activating
protein (P250GAP), thereby affecting the pathological circuit
re-formation of hippocampal neurons (Nudelman et al., 2010).
Moreover, increasing miR-132 expression in hippocampal
neurons could induce pathological circuit re-formation, while
inhibiting its expression would have the opposite effect
(Wayman et al., 2008).

miR-124 is a brain-specific miRNA that was originally believed
to be a key regulator of neuronal differentiation and nervous
system development. It is extremely abundant in the brain and
can regulate the growth of neuronal synapses. miR-124 also plays
an important role in epilepsy. Wang W. et al. (2016) found
that miR-124 expression was decreased in patients with epilepsy
and rats after drug induced-seizures. CAMP response element-
binding protein1 (CREB1) is a key regulator in epileptogenesis
(Wang W. et al., 2016). miR-124 directly targets the 3′ UTR of
the CREB1 gene to repress CREB1 expression and abrogate the-
epileptic effect (Wang W. et al., 2016). The EPAC protein is a
guanine nucleotide exchange factor that acts as an intracellular
receptor for cyclic adenylate. Yang et al. (2012) found that a
mutation in the mouse EPAC gene caused abnormal synaptic
transmission, which reduced the spatial and social learning
ability of mice. However, the silencing of miR-124 restored the
cognitive function of the mice, suggesting that miR-124 was
closely associated with pathological circuit re-formation and
could further affect the cognitive function of epileptic mice
(Yang et al., 2012).

miR-134 is a brain-specific, activity-regulated miRNA that has
been implicated in the control of dendritic spine morphology
(Jimenez-Mateos et al., 2012). miR-134 expression is upregulated
in experimental epilepsy models and the human disease.
Inhibition of miR-134 expression could reduce the number of
neuronal spines and degree of pathological damage to brain tissue
after an epileptic seizure (Jimenez-Mateos et al., 2012).

Autophagy and miRNA
The relationship between autophagy and epilepsy has not been
fully clarified. Some studies suggest that autophagy may induce
epilepsy through the mammalian target of rapamycin (mTOR)
pathway or abnormal glycogen accumulation. Some miRNAs
may affect the onset of epilepsy by regulating the process of
autophagy. For example, miR-34a negatively regulates autophagy
and is up-regulated after epileptic status. However, autophagy is
activated after recurrent neonatal convulsions, suggesting that
miR-34a may play an important role in the excitatory toxicity
induced by neonatal convulsions (Gan et al., 2015).

miR-155 induces autophagy through mTOR, and this effect is
more obvious in the young mouse status epilepticus model, which
strongly suggests the existence of this hypothetical pathway in
epilepsy (Wan et al., 2014).

miR-181b expression is decreased in juvenile KA-induced
epileptic rats (Wang et al., 2019). Wang et al. demonstrated that
TLR4 is a direct target of miR-181b. This miRNA can inhibit
the P38/JNK signaling pathway by targeting TLR4, thereby
attenuating autophagy of KA-induced epileptic juvenile rats
(Wang et al., 2019).

Furthermore, as mentioned above, miR-421 could inhibit
the apoptosis and autophagy of hippocampal neurons in
epilepsy mice by down−regulating the TLR/MyD88 pathway
(Wen et al., 2018).

Oxidative Stress and miRNA
Oxidative stress caused by excessive free radical release
is involved in the pathological processes of many
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neurodegenerative diseases. However, the relationship between
oxidative stress and epilepsy has only recently been recognized.
Accumulating evidence demonstrates that oxidative stress is a
key factor in not only the consequences of epilepsy but may
also be involved in the disease pathogenesis. An impaired
antioxidant system, mitochondrial dysfunction, and activation
of the arachidonic acid pathway may be the main underlying
causes of epilepsy pathogenesis. Oxidative stress affects the
expression levels of multiple miRNAs, and, conversely, miRNAs
could regulate many genes involved in the oxidative stress
response. Both oxidative stress and miRNA regulatory networks
influence processes of neurological diseases, including epilepsy
(Konovalova et al., 2019).

miR-23a is one of the most common miRNAs involved in
hippocampal neuronal injuries and spatial memory impairment
in an experimental model of TLE. Zhu et al. (2019) found
that miR-23a was upregulated in the hippocampus after status
epilepticus (SE) in KA-induced TLE mice. In addition, this
change in miR-23a expression was accompanied by hippocampal
oxidative damage. Furthermore, hippocampal oxidative stress
and neuronal injuries could be significantly improved by
inhibiting miR-23a expression with miR-23a antagomirs. Thus,
targeting miR-23a in the epileptic brain might provide a novel
strategy for protecting against hippocampal neuronal injuries in
TLE patients (Zhu et al., 2019).

Previous studies revealed the neuroprotective effect of miR-
134 antagomirs, which could reduce ischemic injury and cause
prolonged seizure suppression (Huang et al., 2014). It was
reported that miR-134 levels were significantly upregulated in
rat brain after KA-induced SE (Gao et al., 2019). A miR-134
antagonist could suppress lesion-induced endoplasmic reticulum
stress and apoptosis-related CHOP expression. Gao et al. (2019)
suggested silencing of miR-134 could modulate the epileptic
phenotype by upregulating CREB, which might be a promising
intervention for the treatment of epilepsy.

The miR-181a-5p expression levels are increased in a lithium-
pilocarpine model of epilepticus in immature rats. Inhibition of
miR-181a-5p might protect the hippocampus against the damage
from an epileptic seizure through various mechanisms, including
oxidative stress. Moreover, inhibition of miR-181a-5p could exert
a seizure-suppressing effect via SIRT1 upregulation, suggesting
a potential role for the miR-181a-5p/SIRT1 pathway in the
development of temporal lobe epilepsy (Kong et al., 2020).

Deregulation of Neurotrophic Factors
and miRNA
Brain-derived neurotrophic factor (BDNF) and its receptor
tropomyosin-related kinase B (TrkB) are involved in the
pathophysiology observed with epilepsy. In recent years, the
miRNAs that may be involved in BDNF-mediated epilepsy have
received increasing attention. miR-155 expression levels were
higher in epilepsy patients compared to the normal controls.
Moreover, Duan et al. (2018) also demonstrated that miR-
155 contributes to the occurrence of epilepsy through the
PI3K/Akt/mTOR signaling pathway. Xiang et al. (2015) found a
dramatic upregulation of miR-132 and BDNF mRNA expression

in the hippocampal neuronal culture model of SE. In addition,
their results suggested that miR-132 promotes epileptogenesis
by regulating BDNF/TrkB signaling. In contrast, neurotrophin-
3 mRNA levels decrease in the hippocampus following SE,
concurrent with an increase in miR-21. Thus, the miR-21
levels in cultured hippocampal neurons are inversely correlated
with neurotrophin-3 mRNA levels, and miR-21 is a candidate
for regulating neurotrophin-3 signaling in the hippocampus
following status epilepticus (Risbud et al., 2011).

miR-103a expression is increased in an epileptic rat model
induced by lithium chloride-pilocarpine treatment. miR-103a
inhibitors induced BDNF expression, increased the number
of surviving neurons, and decreased the number of apoptotic
neurons (Zheng et al., 2019). miR-451 is also upregulated in KA-
induced epilepsy models, and miR-451 knockout improved the
pathological changes in the hippocampus. In addition, miR-451
knockout might inhibit the apoptosis of hippocampal neurons.
Glial cell line-derived neurotrophic factor (GDNF) is a target
gene of miR-451. GDNF overexpression reversed the effect of
miR-451 on KA-induced brain injury and neuronal apoptosis
(Weng et al., 2020).

miRNAs AS BIOMARKERS OF EPILEPSY

For most epilepsy patients, clinicians can give a timely and correct
diagnosis through patient history and clinical manifestations.
Effective biomarkers can help to make the correct diagnosis and
epilepsy classification and provide an opportunity to develop
targeted therapy for epilepsy. Genetic biomarkers, such as the
gamma-aminobutyric acid (GABA) receptor gene, 5-hydroxy
tryptamine (5-HT) receptor gene, sodium channel voltage-gated
type I-alpha (SCN1A) gene, aquaporin-4 (AQP4), and inwardly
rectifying potassium channel (Kir4.1) gene, and inflammatory
biomarkers (e.g., IL-2, IL-6, and TNF-α) may offer help in
diagnosing epilepsy (Symonds et al., 2017). However, the
application of these biomarkers is limited as some results are
inconsistent and lack diagnostic specificity.

MicroRNA can affect the synthesis and molecular structure
of a variety of proteins, and changes in miRNA expression
levels and activity may affect cellular functions (Krol et al.,
2010). Indeed, miRNA expression via oligonucleotides can
easily lead to widespread gene expression changes (Bajan
and Hutvagner, 2020). These properties make miRNAs useful
epilepsy biomarkers and potential new therapeutic targets
(Supplementary Table 1). Avansini et al. (2017) performed
high-throughput sequencing analysis on plasma miRNA from
14 mesial TLE (MTLE) and 13 focal cortical dysplasia (FCD)
samples along with 16 normal controls. They found that miR-
134 was significantly downregulated in the plasma of MTLE
patients, suggesting that decreased hsa-miR-134 expression
could be a potential non-invasive biomarker to support the
diagnosis of patients with MTLE. Other potential circulating
biomarkers are miR-145, miR-181c, miR-199a, and miR-1183,
which were overexpressed in the blood of patients with MTLE
with hippocampal sclerosis (MTLE-HS) (Antônio et al., 2019).
Serum miR-328-3p is also an important peripheral biomarker
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for the diagnosis of MTLE-HS with high area under the curve
(AUC) values when comparing controls to Engel I (90.3%). For
predicting the surgical prognosis of MTLE-HS patients, miR-654-
3p had statistical power as a peripheral biomarker (AUC = 73.6%)
to differentiate Engel I from Engel III-IV patients (Ioriatti
et al., 2020). Wang et al. (2015b) used Illumina HiSeq2000
sequencing to screen for differentially expressed miRNAs in
the serum of 30 epilepsy patients and 30 healthy controls.
They found that miR-106b-5p had the highest diagnostic value
for epilepsy, with a sensitivity of 80.3% and a specificity of
81.2%, suggesting that miR-106b-5p could be used as a non-
invasive diagnostic biomarker for epilepsy (Wang et al., 2015b).
An et al. (2016) recruited 90 epilepsy patients (57 cases of
generalized seizures, 33 cases of focal seizures) and 90 healthy
controls for their study that used a PCR method to detect the
expression levels of four epilepsy-related miRNAs (miR-106b,
miR-146a, miR-194-5p, and miR-301a) in serum. Compared to
the control group, serum miR-106b, miR-146a, and miR-301a
were significantly upregulated in the epilepsy group, while miR-
194-5p was significantly downregulated. In addition, serum miR-
106b and miR-146a expression levels were positively correlated
with the severity of epilepsy. The combined detection of these
two miRNAs in serum had better sensitivity and specificity for
the prediction of epilepsy (An et al., 2016).

miR-129-2-3p is upregulated in the temporal cortex and
plasma of patients with refractory TLE (Sun Y. et al., 2016). With
increasing epilepsy frequency, miR-129-2-3p expression levels
are also upregulated, and the prognosis of patients with epilepsy
is also poor. Therefore, plasma miR-129-2-3p may be used as a
potential non-invasive biomarker for early detection and clinical
prognosis evaluation for refractory TLE (Sun Y. et al., 2016). In
contrast, miR-145-5p expression levels in plasma are significantly
downregulated in patients with refractory TLE. This decreased
expression is positively correlated with the age of onset and
frequency of epilepsy (Shen et al., 2019). Sun J. et al. (2016) found
that the expression levels of miR-30a, miR-378, miR-106b, and
miR-15a in the serum of patients with epilepsy were upregulated
compared to the levels observed during the inter-seizure period.
Among these miRNAs, miR-30a was positively correlated with
seizure frequency but had no significant correlation with sex,
age, and medical history (Sun J. et al., 2016). miR-4521 is
upregulated in the brain tissue and serum of refractory epilepsy
patients. Serum miR-4521 levels may represent a potential
diagnostic biomarker for FCD with refractory epilepsy (Wang
X. et al., 2016). Another study with FCD patients found that the
expression of miR-323a-5p was significantly elevated in the cortex
and plasma of FCD patients with refractory epilepsy, suggesting
that abnormal miR-323a-5p expression could be used to monitor
treatment responses in patients with FCD (Che et al., 2017).
Serum of miR-146a and miR-155 levels are also significantly
upregulated in genetic generalized epilepsy patients. Martins-
Ferreira et al. (2020) suggested that the combined serum levels
of miR-132, miR-146a, and miR-155 could discriminate between
genetic generalized epilepsy patients and controls with high
specificity and sensitivity.

Some circulating miRNAs have been associated with drug-
resistant epilepsy. Wang et al. (2015a) used Illumina HiSeq2000

sequencing technology to analyze the differential expression
of serum miRNAs in 30 drug-resistant epilepsy patients and
30 drug-sensitive epilepsy patients. miR-301a-3p is the most
valuable biomarker for the identification of drug-resistant
epilepsy to date. Multiple regression analysis showed that
downregulated miR-301a-3p expression represents a potential
biomarker for the diagnosis of drug-resistant epilepsy, with a
sensitivity of 81.5% and specificity of 81.2% (Wang et al., 2015a).
Leontariti et al. (2020) demonstrated that miR-134 and miR-
146a serum levels were elevated in patients with drug-resistant
epilepsy. These levels represented a significantly higher risk of
developing drug-resistant epilepsy.

So far, new biomarkers for the diagnosis of epilepsy are still
being evaluated. The expression changes of various miRNAs
identified by expression profiling of circulating miRNA have been
confirmed in epilepsy patients (Antônio et al., 2019; Brennan
et al., 2020). There is evidence that epilepsy is associated with
the expression changes observed in the circulating miRNAs. The
inclusion of more cases and consistent studies of circulating
miRNA detection techniques could enhance the potential of
using miRNAs as biomarkers for epilepsy.

miRNA-BASED THERAPEUTIC
APPROACHES FOR EPILEPSY

With the continuous deepening of the research on the
mechanism of miRNAs involved in epilepsy pathogenesis,
the idea of miRNA-targeted intervention to prevent or delay
the occurrence of epilepsy is valuable. Because a single miRNA
can simultaneously regulate multiple pathways, targeting
a single miRNA may affect many cell processes and, thus,
be an effective intervention strategy following epileptogenic
injury. Many preclinical studies have demonstrated the
function of miRNAs and their potential to treat acute or
chronic epilepsy. The path of clinical transformation has
begun. So far, miRNA-based therapies have been well-tolerated
and have yielded therapeutic effects in preclinical studies
(Supplementary Table 2).

Vagus nerve stimulation (VNS) has proven to be a safe
and effective treatment for refractory epilepsy. This procedure
could activate neuronal and astrocyte a7nAchR and inhibit
the apoptotic and oxidant stress responses. Jiang et al. (2015)
suggested that miR-210 plays an important role in the antioxidant
stress and anti-apoptosis responses induced by VNS, indicating
that the miR-210 is a potential mediator of VNS-induced
neuroprotection against I/R injury. miR-137 is an extremely
rich miRNA in the central nervous system and is believed to
be closely associated with synaptic plasticity. In the pilocarpin-
induced epileptic mouse model, miR-137 overexpression induced
by intrahippocampal injection of a specific Agomir prolonged the
latency period of spontaneously recurring seizures and reduced
the severity of epilepsy (Wang W. et al., 2018). miR-135a silencing
in an experimental temporal lobe epilepsy model reduced seizure
activity at the spontaneous recurrent seizure stage by regulating
Mef2 proteins, which are key regulators of excitatory synapse
density (Vangoor et al., 2019). By Nissl staining, miR-134
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silencing significantly reduced the loss of CA3 pyramidal neurons
and abnormal mossy fiber germination. In addition, EEG and
behavioral analysis showed that miR-134 antagonists had a
palliative effect on experimental epileptic seizures. These results
suggested that silencing miR-134 regulated epileptic phenotypes
by upregulating its target gene CREB (Gao et al., 2019).

Silencing miR-132 inhibited the aberrant formation of
dendritic spines and chronic spontaneous seizures in a lithium-
pilocarpine-induced epileptic mouse model (Yuan et al., 2016).
Experiments with cultured epileptic neurons suggesting that
miR-132 silencing exerted a neuroprotective effect through the
miR-132/p250GAP/Cdc42 pathway (Yuan et al., 2016). miR-
204 directly targets and downregulates TrkB protein in various
diseases (Xiang et al., 2016). Xiang et al. (2016) suggested
that miR-204 overexpression caused anti-epileptogenic effects by
regulating TrkB and its downstream ERK1/2-CREB signaling
pathway. Moreover, Zheng et al. (2016) demonstrated that miR-
219 plays a crucial role in suppressing seizures in experimental
epilepsy models via modulating the CaMKII/NMDA receptor
pathway, and miR-219 supplementation may be a potential
anabolic strategy for ameliorating epilepsy. Furthermore, Qi et al.
(2020) found that miR-494 overexpression could repress RIPK1,
which inactivates the NF-κB signaling pathway, acceleration of
cell proliferation, and suppression of apoptosis in hippocampal
neurons of epileptic rats, attenuating neuronal injury and
epilepsy development.

In mouse models of epilepsy, attempts have been made
to control epilepsy by regulating the expression of miR-146a.
Tao et al. (2017) found that intranasal delivery of miR-
146a mimics could improve epilepsy onset and hippocampal
damage in the acute phase of lithium-pilocarpine-induced
epilepsy by modulating the expression of inflammatory factors.
Intracerebroventricular injection of miR-146a could also relieve
epilepsy in an immature rat model of lithium-pilocarpine-
induced status epilepticus (Wang X. et al., 2018).

In general, multiple miRNAs are potential therapeutic targets
for the treatment of epilepsy; however, there are still some
challenges to their clinical application. First, previous studies
have mostly been performed only in a single model or species.
Thus, the results may need to be verified in models representing
different etiologies or in larger animals. Secondly, it is necessary

to understand the mechanism of miRNA-targeted therapy.
However, the establishment of these mechanisms is limited to
a small number of studies, and the mechanisms have rarely
been verified in vivo. Thirdly, the safety of oligonucleotides
that target brain miRNAs needs to be extensively evaluated in
preclinical studies.

CONCLUSION

Emerging studies have shown that miRNAs are key gene
regulation factors in epilepsy pathogenesis. Indeed, miR-146a
and miR-155 might be critical miRNAs involved in this
disease. Expression differences of circulating miRNAs may be
useful biomarkers for diagnosing, evaluating prognosis, and
predicting treatment response. Differentially expressed miRNAs
can be used to identify changes in the molecular structure and
cellular pathways in epilepsy patients and represent possible
treatment targets. However, the results of multiple studies
on miRNA as biomarkers for epilepsy diagnosis need to be
unified. Regulating pathological genes and interfering with other
pathogenic mechanisms can produce therapeutic effects. Thus,
the development of effective miRNA therapeutics holds great
promise for potential therapeutic strategies for epilepsy.
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