

Article

Molecular and Clinical Characterization of Invasive Streptococcus pyogenes Isolates: Insights from Two Northern-Italy Centers

Carmelo Bonomo ¹, Eva Mannino ², Dafne Bongiorno ¹,*, Caterina Vocale ³, Armando Amicucci ⁴, Dalida Bivona ¹, Davide Guariglia ⁴, Emanuele Nicitra ¹, Grete Francesca Privitera ⁵, Giuseppe Sangiorgio ¹, Stefania Stefani ¹ and Simone Ambretti ³,⁴

- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95124 Catania, Italy; carmelo.bonomo@phd.unict.it (C.B.); dalida.bivona@phd.unict.it (D.B.); emanuele.nicitra@phd.unict.it (E.N.); giuseppe.sangiorgio@phd.unict.it (G.S.); stefania.stefani@unict.it (S.S.)
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; eva.mannino01@universitadipavia.it
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; caterina.vocale@aosp.bo.it (C.V.); simone.ambretti3@unibo.it (S.A.)
- Department of Medical and Surgical Sciences, Section of Microbiology, University of Bologna, 40136 Bologna, Italy; armando.amicucci85@gmail.com (A.A.); davide.guariglia@studio.unibo.it (D.G.)
- Department of Clinical and Experimental Medicine, Department of Mathematical and Computational Science, University of Catania, 95124 Catania, Italy; greteprivitera@gmail.com
- * Correspondence: dafne.bongiorno@unict.it

Abstract: Streptococcus pyogenes (Group A Streptococcus, GAS) is a Gram-positive pathogen responsible for both superficial and invasive infections (iGAS), with increasing global incidence in recent years. This study aims to characterize the molecular and clinical features of iGAS cases in Bologna and Imola (Italy) between 2022 and 2024. Thirty-five invasive isolates were analyzed through whole-genome sequencing (WGS) to investigate the distribution of emm types, antimicrobial resistance (AMR) genes, and virulence factors. Clinical and epidemiological data were retrospectively collected and analyzed. The majority of cases (80%) were recorded in 2023, predominantly among patients aged over 65 (60%). Bloodstream infections were present in 97.1% of cases, and comorbidities such as diabetes and immunosuppression were common. Empirical antibiotic therapy often involved penicillin/ β -lactam inhibitors, while oxazolidinones were the most frequently used in targeted regimens. The in-hospital mortality rate was 20%. Genomic analysis identified emm1, emm12, and emm89 as the most prevalent types, associated with specific virulence profiles and resistance determinants. This study highlights the critical role of *emm* typing and genomic characterization in understanding the pathogenicity of GAS. These findings contribute to the identification of risk factors for severe outcomes and underscore the need for targeted prevention and treatment strategies in vulnerable populations.

Keywords: *Streptococcus pyogenes*; invasive group A Streptococcus (iGAS); whole genome sequencing (WGS)

Academic Editor: Carmelo Biondo

Received: 10 January 2025 Revised: 25 January 2025 Accepted: 29 January 2025 Published: 5 February 2025

Citation: Bonomo, C.; Mannino, E.; Bongiorno, D.; Vocale, C.; Amicucci, A.; Bivona, D.; Guariglia, D.; Nicitra, E.; Privitera, G.F.; Sangiorgio, G.; et al. Molecular and Clinical Characterization of Invasive Streptococcus pyogenes Isolates: Insights from Two Northern-Italy Centers. Pathogens 2025, 14, 152. https://doi.org/10.3390/pathogens14020152

Copyright: © 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Streptococcus pyogenes (Group A Streptococcus, GAS) is a Gram-positive pathogen responsible for a wide range of diseases, including superficial infections such as pharyngitis and impetigo, as well as severe invasive infections (iGAS) like necrotizing fasciitis, streptococcal toxic shock syndrome, and bacteremia [1,2]. The clinical outcomes of GAS infections

Pathogens 2025, 14, 152 2 of 13

can vary widely, with invasive infections being associated with significant morbidity and mortality, particularly in vulnerable populations such as children, the elderly, and immunocompromised individuals [3]. Epidemiologically, the diversity of circulating emm types plays a pivotal role in the clinical manifestations and spread of GAS infections. Common emm types, such as emm1, emm12, and emm28, are frequently associated with invasive infections, while others may be more prevalent in non-invasive conditions [4,5]. Notably, emm1 strains are often implicated in severe outcomes due to their enhanced production of key virulence factors, such as streptococcal pyrogenic exotoxins and streptolysins [6,7]. Superantigens, such as SpeC, SpeJ, and SmeZ, have been commonly observed in isolates belonging to emm12 mainly responsible for scarlet fever, impetigo, and pharyngitis [8]. emm28, instead, is frequently associated with invasive infections in young women and puerperal infections [9,10]. In recent years, a concerning increase in iGAS cases has been reported globally [11], with notable surges in regions such as Europe, North America, and Australia [12–14]. For example, the UK has observed periodic outbreaks of iGAS, with emm1, emm12, and emm89 being dominant during these episodes [15,16]. Similarly, recent reports from the United States and Canada indicate rising incidence rates among children, linked to a resurgence of certain *emm* types [17–21]. Moreover, several studies have reported similar trends in Italy [22–26] with a prevalence of pediatric cases. This increase has been partially attributed to post-pandemic shifts in population immunity, changes in healthcare access, and evolving strain characteristics [27]. This study focuses on the molecular characterization of iGAS isolates collected in Bologna and Imola (Italy) from 2022 to 2024. By examining the distribution of antimicrobial resistance genes, virulence factors, emm types and emm clusters, the research aims to uncover potential associations between specific genomic features and the severity of clinical outcomes. Moreover, the genomic correlation between the isolates has been investigated to detect possible clusters. Understanding these relationships is critical for elucidating the mechanisms underlying the invasiveness of GAS infections and guiding future strategies for prevention and management.

2. Materials and Methods

2.1. Sample Description and Clinical Data

The present study includes a total of 35 invasive *S. pyogenes* isolates (iGAS) collected between 2022 and 2024 from hospitals located in Bologna and Imola (Italy). Clinical and epidemiological data were retrospectively collected from hospital records and databases reported as frequencies and percentages or as medians and interquartile ranges (IQRs) to describe the baseline characteristics when appropriate. Descriptive analyses were performed using R version 3.6.0 [28].

2.2. Bacterial Growth Conditions

Streptococcus pyogenes isolates were cultured on blood agar and incubated overnight at 35–37 °C in an atmosphere enriched with 5% CO₂ under anaerobic conditions.

2.3. Whole Genome Sequencing (WGS)

Genomic DNA was extracted and Next-Generation Sequencing (NGS) was performed on the Illumina MiSeq (Illumina Inc., San Diego, CA, USA) platform, following previously described methods [29]. Prior to genomic DNA extraction, identification was confirmed by mass spectrometry (MALDI-TOF) employing the Maldi Biotyper Sirius System (Bruker, Billerica, MA, USA).

Pathogens 2025, 14, 152 3 of 13

2.4. Bioinformatic Analysis

Thirty-five paired-end bacterial raw reads were firstly trimmed with TrimGalore (v0.6.10) [30,31] to remove the adapter sequence and then assembled de novo using SPAdes (v.4.0.0) [32]. Draft genome quality was assessed using Fastqc (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/, accessed on 16 April 2024). The fasta built through SPAdes have been inspected for the research of phage-associated virulence factors employing the software geNomad (v.1.8.0) [33]. AMR Genes and Chromosomal Virulence factors have been studied employing several tools: AMRfinder plus (v.3.12.8 with database version 2024-05-02.2) [34], Abricate (v.1.0.1) [35], with the databases NCBI [36], CARD [37], Resfinder [38], ARG-ANNOT [39], MEGARES [40], VFDB [41], and virulencefinder (v2.0) [42]. An 80% quality threshold was set for coverage and identity for AMR genes detection. The ST was calculated with mlst software (v.2.23.0) [43] which employs the PubMLST database [44]. emm cluster and emm type have been inspected with emmtyper software (v.0.2.0) [45,46]. A phylogenetic tree was constructed using mafft (v7.525) [47] with 100 iterations, followed by fasttree (v.2.1.11) [48]. The tree was plotted using the ggtree (v.3.12.0) [49,50] R package. The Heatmap has been created using the R packages ComplexHeatmap (v.2.20.0) [51].

3. Results

3.1. Clinical Results

Between 2022 and 2024, our study identified a total of 35 cases of Group A Streptococcus (GAS) infections. The distribution of these cases varied over the years, with the majority occurring in 2023. Specifically, 28 cases (80.0%) were recorded in 2023, while 3 cases (8.6%) were noted in 2022 and 4 cases (11.4%) in 2024. This temporal spread highlights a significant peak in GAS infections during 2023. The study population consisted of 35 patients with an almost equal gender distribution: 18 females (51.4%) and 17 males (48.6%). The age demographics revealed that the majority of patients were adults over the age of 65, accounting for 21 individuals (60.0%). This was followed by those aged between 35 and 65 years, comprising 9 patients (25.7%). Only a small fraction, specifically three patients (8.6%), were under the age of 18. Geographically, most cases were concentrated in Bologna, with 31 cases (88.6%), while the remaining 4 cases (11.4%) were from Imola. In terms of healthcare settings, the distribution suggests that GAS infections often present as emergencies requiring immediate attention; in fact, the Emergency department handled the largest number of cases, managing 22 patients (62.9%). The initial site of infection varied among patients. The skin was the most common starting point for infections, seen in 17 cases (48.6%). Other notable sites included the oral cavity with four cases (11.4%) and otitis with three cases (8.6%). Bloodstream infections (BSI) were prevalent in nearly all cases, affecting 34 patients (97.1%), underscoring the severity and systemic nature of these infections. Regarding patient comorbidities, more than half of the patients had significant health issues as indicated by a high Charlson Comorbidity Index score (≥5) in 19 patients (54.3%). Diabetes was present in twelve patients (34.3%), and seven patients (20.0%) were immunocompromised, adding complexity to their treatment and management. Moreover, severe outcomes requiring a secondary admission to ICU were reported in 10 cases (28.6%). Treatment regimens varied between empiric and targeted approaches. For empiric therapy, penicillin/β-lactam inhibitors were most commonly used, administered to 18 patients (51.4%), followed by mixed antibiotic regimens for 12 patients (34.3%). For targeted therapy, oxazolidinones were used most frequently in ten cases (28.6%), followed by penicillin/βlactam inhibitors and cephalosporins, each used in eight cases (22.9%). An in-hospital mortality rate of 20.0% was also reported, reflecting the serious nature of GAS infections and the challenges associated with their treatment in vulnerable populations such as older adults with multiple comorbidities. A detailed description of the demographic of the study

Pathogens 2025, 14, 152 4 of 13

population is shown in Table 1. Supplementary Materials (Table S1) show detailed clinical features related to each isolate.

 Table 1. Demographic and clinical characteristics of the study population.

	N = 35	%
Year		
2022	3	8.6%
2023	28	80.0%
2024	4	11.4%
City		
Bologna	31	88.6%
Imola	4	11.4%
Ward		
Cardiology	3	8.6%
Emergency	22	62.9%
Geriatrics	1	2.9%
Hematology	1	2.9%
Infectious Disease	1	2.9%
Intensive Care	1	2.9%
Neonatology	1	2.9%
Neurosurgery	1	2.9%
Otorhinolaryngology	1	2.9%
Pediatrics	1	2.9%
Plastic Surgery Anesthesiology	1 1	2.9% 2.9%
Gender		
Female	18	51.4%
Male	17	48.6%
Bloodstream infection (BSI)		
No	1	2.9%
Yes	34	97.1%
Age		
<18 y	3	8.6%
18–35 y	2	5.7%
35–65 y	9	25.7%
>65 y	21	60.0%
Race		
White	32	91.4%
Black	1	2.9%
Mixed	2	5.7%
Diabetes		
No	23	65.7%
Yes	12	34.3%

Pathogens **2025**, 14, 152 5 of 13

Table 1. Cont.

	N = 35	%
Immunocompromised		
No	28	80.0%
Yes	7	20.0%
Urinary tract infection (UTI)		
No	32	91.4%
Yes	3	8.6%
Charlson Comorbidity Index (age-adjusted)		
Low (0-2)	8	22.9%
Moderate (2–4)	8	22.9%
High (≥5)	19	54.3%
Infection starting site		
Artritis	1	2.9%
Oral cavity	4	11.4%
Osteomyelitis	1	2.9%
Otitis	3	8.6%
Pharyngitis	2	5.7%
Prosthesis	1	2.9%
Skin	17	48.6%
Endocarditis	1	2.9%
Unknown	5	14.3%
Secondary admission to Intensive care unit (ICU)		
No	25	71.4%
Yes	10	28.6%
In-hospital mortality		
No	28	80.0%
Yes	7	20.0%
Co-infection		
No	30	85.7%
Yes	5	14.3%
Empiric antibiotic therapy		
None	1	2.9%
Penicillin/B-latt in.	18	51.4%
Cephalosporin	3	8.6%
Carbapenems	1	2.9%
Mixed	12	34.3%
Targeted antibiotic therapy		
None	7	20.0%
Penicillin/B-latt in.	8	22.9%
Cephalosporin	8	22.9%
Quinolones	1	2.9%
Oxazolidones	10	28.6%
Mixed	1	2.9%

Pathogens 2025, 14, 152 6 of 13

3.2. Bacterial Typing

Among the 35 isolates analyzed, 15 different *emm* types were identified. Multi-locus sequence typing (MLST) revealed a unique sequence type (ST) for each *emm* type, except for ST28, which was associated with both *emm* 1.0 and the subtype *emm* 1.3.

These two *emm* types represent the most common ones, in our sample. Specifically, *emm* type 1.0 was reported for 9 strains (25.6%), whereas *emm* 1.3 was identified in 4 strains (11.14%). These were followed by *emm* type 12 (ST36) and *emm* type 28 (ST458), each of them detected in three strains (8.6%). Other *emm* types included *emm* 75 (ST49), *emm* 87 (ST62), *emm* 89 (ST101), *emm* 90.2 (ST184) and *emm* 3.93 (ST315), each of them represented by two isolates (5.7%). Lastly, the following *emm* types were identified in a single isolate (2.8%) each: *emm* 22 (ST47), *emm* 76.0 (ST50), *emm* 8.0 (ST58), *emm* 63 (ST210), *emm* 77.0 (ST399), and *emm* 480.0 (ST506).

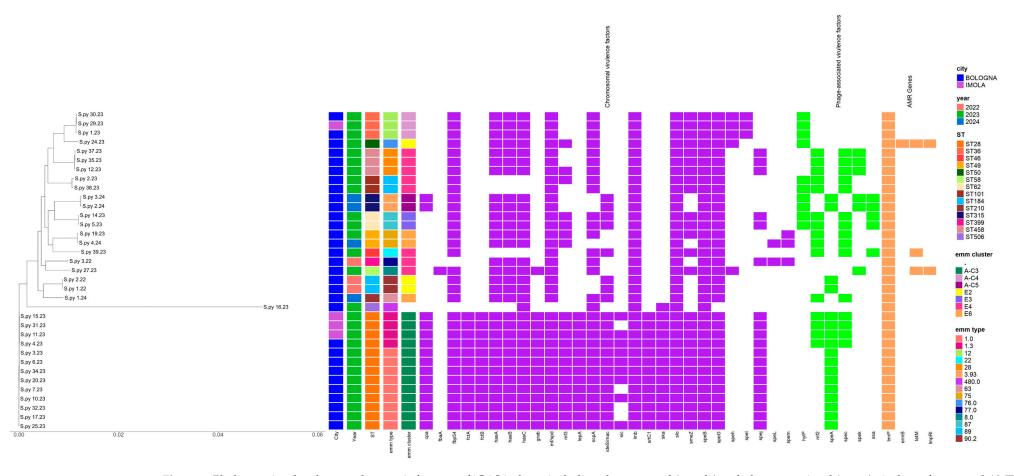
The temporal distribution of the different *emm* types detected was analyzed. In detail, *emm* 90.2 was found to be prevalent during 2022 with 67% of the cases, while *emm* 77.0 accounted for 33% of the distribution. In 2023 there was a more heterogeneous distribution of *emm* types. The most common is *emm* 1.0 with 32% of the cases, followed by subtype *emm* 1.3, with 14%. Other notable types are *emm* 12 (11%), *emm* 28 (11%), *emm* 89 (7%), *emm* 480.0 (4%) and several smaller *emm* types between 4% and 7%, including *emm* 22, *emm* 76.0, *emm* 75 and *emm* 63. In 2024, most cases (56%) were identified as *emm* 3.93, followed by *emm* 63 with 25% and *emm* 75 accounted for the remaining 25%. During the three years under study, only *emm* 75 was detected in two different years, 2023 and 2024.

3.3. Antimicrobial Resistance and Virulence Genes

A total of 33 virulence factors were identified. Of these, 27 are localized on the chromosome and the remaining 6 are phage-associated.

The surface proteins identified included fibronectin-binding proteins *fbp*54, present in 34/35 strains (97.1%), *cpa*, present in 15/35 strains (42.8%) and *fba*A, present only in one strain, and laminin-binding protein *lemb*, present in all strains (100%).

Among the capsule synthesis genes, has A is present in 31 out of 35 isolates (88.6%).


The Dnase mf/spd is detected in 34/35 strains (97.1%) and the peptidase scpA in 30/35 strains (85.7%). As for the extracellular toxins slo, coding for streptolysin O, is present in all strains. The streptococcal exotoxin precursors speB and speG are also present in 35/35 strains (100%) and 34/35 strains (97.1%), respectively.

Other streptococcal exotoxin precursors *spe*A and *spe*C are phage-associated virulence factors; the first was detected in 17/35 strains (48.6%) and the second in 15/35 strains (42.8%). Moreover, *spe*A is only present in some *emm* types (1.0, 1.3, 3.93, and 90.2).

In terms of antimicrobial resistance (AMR) genes, four genes (*lmpR*, *ermB*, *tetM*, and *lmpRI*) were detected. All strains (100%) carry the *lmrP* gene. Additionally, three strains carry *ermB*, *tetM*, and *lmpRI*, two strains carry *tetM* and *lmpRI*, and one strain carries only *tetM*.

Figure 1 comprehensively summarizes all genomic features and a phylogenetic tree of the isolates included in the study.

Pathogens 2025, 14, 152 7 of 13

Figure 1. Phylogenetic relatedness and genomic features of iGAS isolates, including chromosomal (purple) and phage-associated (green) virulence factors and AMR genes (orange).

Pathogens **2025**, 14, 152 8 of 13

4. Discussion

The present study examines the spread of iGAS infections in the Greater Bologna area (Italy) between 2022 and 2024, which was shown to be consistent with the increase observed in other geographic areas across the globe [52,53]. A total of 35 isolates were collected from different hospitals in Bologna and Imola and sent to the Molecular Microbiology and Antibiotic Resistance (MMAR) laboratory of the University of Catania to be characterized. Specifically, temporal trends, clinical characteristics, bacterial typing, and genomic features were determined by employing NGS technology. The temporal distribution of cases demonstrated a significant peak in 2023, accounting for 80% of the infections. This observation may reflect increased transmission, enhanced detection, or outbreak dynamics during that year. In contrast to other studies [54,55] which reported a prevalence of iGAS in children, older adults (60% > 65 years) are predominant in our study likely due to age-related immunesenescence and comorbidities. The high Charlson Comorbidity Index (≥ 5) in over half of the patients, coupled with a substantial prevalence of diabetes (34.3%) and immunocompromised states (20%), further illustrates the significant burden of GAS infections in high-risk populations, which is in line with prior studies [56,57]. The high prevalence of bloodstream infections (97.1%) and emergency department presentations (62.9%) highlights the severity of GAS infections, necessitating prompt recognition and aggressive management. Additionally, the predominance of skin infections (48.6%) as the primary infection site suggests the importance of this portal of entry in invasive disease. However, the high in-hospital mortality rate (20%) underscores the challenges of managing severe GAS infections, particularly in older adults with significant comorbidities.

The *emm* typing revealed a remarkable diversity, with 15 different *emm* types identified among the 35 isolates. This diversity reflects the capacity of GAS to adapt and circulate in diverse populations. The predominance of *emm* 1.0 (ST28) (25.6%) and its association with invasive disease aligns with previous studies linking *emm* 1.0 isolates to severe outcomes [58]. In contrast to other studies, suggesting an association of this serotype with the pediatric population, nearly 80% of its manifestations occurred in adults. Subtype *emm* 1.3 (ST28) (11.4%) and other types such as *emm* 12 (ST36) and *emm* 28 (ST458) were also frequently detected, with temporal heterogeneity noted in their distribution. Additionally, 2/3 of *emm* 12 isolates were associated with secondary BSI, despite other studies reported a negative correlation between this serotype and invasive infections [22,59].

Notably, only *emm* 75 (ST49) was detected across multiple years (2023 and 2024), suggesting its persistence or re-emergence. A similar pattern was shown in 2023 in Milan as reported by Mangioni et al. [22]. On the contrary, other documented outbreaks of iGAS infection in adults in recent years have been driven by specific *emm* types prevalent in hospital or long-term care facilities [60,61]. The temporal clustering of *emm* types (e.g., *emm* 90.2 in 2022 and *emm* 3.93 in 2024) may indicate localized outbreaks or shifts in strain circulation. This finding emphasizes the importance of continued surveillance to monitor trends and inform public health interventions.

The high prevalence of key virulence factors, including *slo* (streptolysin O), *speB*, and *speG*, underscores the pathogenic potential of these strains. The universal presence of *lemb* and the near-universal presence of *fbp54* and *mf/spd* highlight their critical roles in GAS adhesion and immune evasion. Interestingly, phage-associated exotoxins *speA* and *speC* were detected in 48.6% and 42.8% of strains, respectively, with *speA* restricted to specific *emm* types (1.0, 1.3, 3.93, and 90.2). This finding suggests potential links between prophage content and strain-specific virulence.

In terms of antimicrobial resistance (AMR), the universal presence of the *lmrP* gene (efflux pump) is notable, suggesting intrinsic resistance to specific antibiotics such as lincosamides, macrolides, streptogramins, and tetracyclines [62]. The totality of the isolates

Pathogens 2025, 14, 152 9 of 13

displayed susceptibility to penicillin confirming that β -lactams remain the first-line treatment option for both invasive and non-invasive GAS infections [63]. Interestingly, the detection of *ermB*, *tetM*, and *lmpRI* in a subset of strains highlights emerging resistance mechanisms, potentially limiting alternative treatment options (e.g., macrolides and lincosamides) in the presence of β -lactam-resistant strains. These findings reinforce the need for judicious antibiotic use and ongoing surveillance of AMR trends in GAS in order to avoid recurrent infections, treatment failure, and poor patient outcomes [2].

When comparing our findings to other Italian studies examining iGAS infections, several similarities and differences emerge. First, in terms of the population affected, both our study and the work by Mangioni et al. (2023) observed a higher incidence of iGAS in adults, especially in those with underlying comorbidities, contrasting with the pediatric predominance seen in earlier reports [46,47]. This shift may be attributed to factors like age-related immune decline and the resurgence of iGAS post-pandemic, similar to the pattern observed in other regions [52]. Additionally, the diverse distribution of *emm* types in our study, especially the prevalence of emm 1.0 and its significant association with invasive disease, aligns with global findings, yet differs in the proportion of infections occurring in adults rather than children, as traditionally expected for this serotype [58]. Moreover, while some studies have reported limited antimicrobial resistance in iGAS isolates [60], we noted emerging resistance in a subset of our strains, which is in line with findings from similar outbreaks [62]. This underscores the importance of vigilant surveillance and appropriate antimicrobial stewardship. Lastly, the involvement of phage-encoded exotoxins like SpeA and SpeC in our strains suggests a more complex relationship between strain-specific virulence and clinical outcomes, an aspect that warrants further exploration in future studies.

After the COVID-19 pandemic, invasive *Streptococcus pyogenes* infections (iGAS) reemerged in Europe, reaching a higher level compared to the pre-pandemic period. This resurgence was preceded by a significant impact on *Streptococcus pyogenes* circulation and associated risks of invasive infections (iGAS), largely due to the near-null circulation of many common respiratory pathogens, including *Respiratory Syncytial Virus* (RSV), seasonal flu, and human herpesvirus 3 (HHV-3), during the pandemic [64]. The widespread use of face masks and increased attention to hygiene during the pandemic played a crucial role in this phenomenon. These respiratory viruses are well-known predisposing factors for *Streptococcus pyogenes* superinfections, which heighten the risks associated with invasive infections (iGAS) [23]. In addition, a lowered immunity to GAS may have contributed significantly to the post-pandemic increase in GAS infections, increasing, in turn, the probability of invasive manifestations [65].

In comparison to Massese et al., our study aligns with the observation of increased GAS infection after the pandemic; in contrast to our findings, they showed that the affected individuals were younger (preschoolers) than those affected previously (middle childhood individuals) [66]. A post-pandemic increase in Italy was also described by De Maio et al., although their study did not register a significantly increased incidence of invasive manifestations after COVID-19 [67].

The increased spread, especially after COVID-19, along with a high mortality rate and extensive bloodstream involvement, underscore the need for early recognition and aggressive management of GAS infections, particularly in older adults with comorbidities [68]. Preventive measures oriented towards the reduction in GAS dissemination within the general population are strictly required. In this context, genomic analyses are crucial for the identification of emerging strains showing remarkable virulence. Moreover, empiric therapy with penicillin/ β -lactam inhibitors (51.4%) remains the established practice, although the use of targeted therapies, including oxazolidinones (28.6%), highlights the evolving role

Pathogens 2025, 14, 152 10 of 13

of precision medicine in managing GAS infections. The association between phage-encoded exotoxins and specific *emm* types deserves further investigation to understand their role in clinical outcomes.

5. Conclusions

The small sample size limits the statistical power of our findings; however, this study highlights the complexity of GAS infections, characterized by significant temporal variation, high clinical burden, and extensive genomic diversity. The findings underscore the importance of integrated clinical, epidemiological, and genomic surveillance and the need for a national surveillance program for GAS infections to guide effective prevention and management strategies. The lack of pediatric cases precludes any investigation regarding invasive disease in children, a demographic in which certain *emm* types may exhibit distinctive pathogenic behaviors. Future research should focus on elucidating the molecular basis of GAS pathogenesis, exploring novel therapeutic targets, and advancing vaccine development to reduce the global impact of GAS infections.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/pathogens14020152/s1, Table S1: detailed clinical features of iGAS isolates.

Author Contributions: Conceptualization, D.B. (Dafne Bongiorno), S.S., S.A. and C.V.; methodology, D.B. (Dalida Bivona), E.M. and E.N.; software, G.F.P.; validation, D.B. (Dafne Bongiorno), S.S., S.A. and C.V.; formal analysis, D.B. (Dafne Bongiorno), C.B., G.S. and E.N.; investigation, D.B. (Dafne Bongiorno), C.V. and D.G.; resources, S.S.; data curation, D.B. (Dafne Bongiorno), G.S., C.B., D.G. and A.A.; writing—original draft preparation, C.B., E.M. and G.S.; writing—review and editing, C.B., D.B. (Dafne Bongiorno), S.A., C.V. and A.A.; visualization, D.B. (Dafne Bongiorno) and C.B.; supervision, D.B. (Dafne Bongiorno), S.S. and S.A.; project administration, D.B. (Dafne Bongiorno) and C.V.; funding acquisition, S.S. All authors have read and agreed to the published version of the manuscript.

Funding: The manuscript was partially supported by: PON Ricerca e Innovazione 2014–2020 DM1062/2021; the MUR PNRR Extended Partnership Initiative on Emerging Infectious Diseases (Project no. PE00000007, INF-ACT).

Institutional Review Board Statement: The study was conducted following the ethical principles outlined in the Declaration of Helsinki. Ethical approval was obtained from the CE-AVEC (Comitato Etico Area Vasta Emilia Centro) with approval code CE-AVEC 894/2021/Oss/AOUBo. Additional identifiers include RINO ID 8597 and SIRER ID 3171. The ethical approval was granted on 27 October 2021, and the administrative resolution was issued on 25 November 2021.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are publicly available. These data can be found at: http://www.ncbi.nlm.nih.gov/bioproject/1193569 (accessed on 16 April 2024).

Acknowledgments: The authors would like to thank Bio-Nanotech Research and Innovation Tower (BRIT), belonging to the University of Catania (Italy), for the valuable technical assistance and the use of its facilities.

Conflicts of Interest: The authors declare no conflicts of interest.

References

 Walker, M.J.; Barnett, T.C.; McArthur, J.D.; Cole, J.N.; Gillen, C.M.; Henningham, A.; Sriprakash, K.S.; Sanderson-Smith, M.L.; Nizet, V. Disease Manifestations and Pathogenic Mechanisms of Group A Streptococcus. Clin. Microbiol. Rev. 2014, 27, 264–301.
 [CrossRef] [PubMed] Pathogens 2025, 14, 152 11 of 13

Brouwer, S.; Rivera-Hernandez, T.; Curren, B.F.; Harbison-Price, N.; De Oliveira, D.M.P.; Jespersen, M.G.; Davies, M.R.; Walker, M.J. Pathogenesis, epidemiology and control of Group A Streptococcus infection. *Nat. Rev. Microbiol.* 2023, 21, 431–447. [CrossRef] [PubMed]

- 3. Maciá, D.E.; Macián, E.M.F.; Borrás, R.; Gisbert, S.P.; Bonet, J.I.M. Infección por estreptococo pyogenes en la edad pediátrica: Desde faringoamigdalitis aguda a infecciones invasivas. *An. Pediatría* **2018**, *88*, 75–81. [CrossRef] [PubMed]
- Rogers, S.; Commons, R.; Danchin, M.H.; Selvaraj, G.; Kelpie, L.; Curtis, N.; Robins-Browne, R.; Carapetis, J.R. Strain Prevalence, Rather than Innate Virulence Potential, Is the Major Factor Responsible for an Increase in Serious Group A Streptococcus Infections. J. Infect. Dis. 2007, 195, 1625–1633. [CrossRef]
- 5. Feng, W.; Liu, M.; Chen, D.G.; Yiu, R.; Fang, F.C.; Lei, B. Contemporary Pharyngeal and Invasive emm1 and Invasive emm12 Group A Streptococcus Isolates Exhibit Similar In Vivo Selection for CovRS Mutants in Mice. *PLoS ONE* **2016**, *11*, e0162742. [CrossRef]
- 6. Peetermans, M.; Matheeussen, V.; Moerman, C.; De Rydt, F.; Thieren, S.; Pollet, E.; Casaer, M.; De Backer, B.; De Paep, R.; Debaveye, Y.; et al. Clinical and molecular epidemiological features of critically ill patients with invasive group A Streptococcus infections: A Belgian multicenter case-series. *Ann. Intensive Care* 2024, 14, 19. [CrossRef]
- 7. Saouda, M.; Wu, W.; Conran, P.; Boyle, M.D.P. Streptococcal Pyrogenic Exotoxin B Enhances Tissue Damage Initiated by Other *Streptococcus pyogenes* Products. *J. Infect. Dis.* **2001**, *184*, 723–731. [CrossRef]
- 8. Liang, Y.; Liu, X.; Chang, H.; Ji, L.; Huang, G.; Fu, Z.; Zheng, Y.; Wang, L.; Li, C.; Shen, Y.; et al. Epidemiological and molecular characteristics of clinical isolates of Streptococcus pyogenes collected between 2005 and 2008 from Chinese children. *J. Med. Microbiol.* 2012, 61, 975–983. [CrossRef]
- 9. Gröndahl-Yli-Hannuksela, K.; Beres, S.B.; Hyyryläinen, H.-L.; Kallonen, T.; Musser, J.M.; Vuopio, J. Genetic evolution of invasive emm28 Streptococcus pyogenes strains and significant association with puerperal infections in young women in Finland. *Clin. Microbiol. Infect.* **2021**, 27, 420–427. [CrossRef]
- 10. Luca-Harari, B.; Darenberg, J.; Neal, S.; Siljander, T.; Strakova, L.; Tanna, A.; Creti, R.; Ekelund, K.; Koliou, M.; Tassios, P.T.; et al. Clinical and Microbiological Characteristics of Severe *Streptococcus pyogenes* Disease in Europe. *J. Clin. Microbiol.* **2009**, 47, 1155–1165. [CrossRef]
- 11. CDC. iGAS Infections Investigation. Available online: https://archive.cdc.gov/#/details?url=https://www.cdc.gov/groupastrep/igas-infections-investigation.html (accessed on 2 February 2023).
- 12. De Arellano, E.R.; Saavedra-Lozano, J.; Villalón, P.; Jové-Blanco, A.; Grandioso, D.; Sotelo, J.; Gamell, A.; González-López, J.J.; Cervantes, E.; Gónzalez, M.J.; et al. Clinical, microbiological, and molecular characterization of pediatric invasive infections by *Streptococcus pyogenes* in Spain in a context of global outbreak. *mSphere* 2024, 9, e00729-23. [CrossRef] [PubMed]
- Davies, M.R.; Keller, N.; Brouwer, S.; Jespersen, M.G.; Cork, A.J.; Hayes, A.J.; Pitt, M.E.; De Oliveira, D.M.P.; Harbison-Price, N.; Bertolla, O.M.; et al. Detection of Streptococcus pyogenes M1UK in Australia and characterization of the mutation driving enhanced expression of superantigen SpeA. *Nat. Commun.* 2023, 14, 1051. [CrossRef] [PubMed]
- 14. Dunne, E.M.; Hutton, S.; Peterson, E.; Blackstock, A.J.; Hahn, C.G.; Turner, K.; Carter, K.K. Increasing Incidence of Invasive Group A *Streptococcus* Disease, Idaho, USA, 2008–2019. *Emerg. Infect. Dis.* 2022, 28, 1785–1795. [CrossRef] [PubMed]
- 15. Guy, R.; Henderson, K.L.; Coelho, J.; Hughes, H.; Mason, E.L.; Gerver, S.M.; Demirjian, A.; Watson, C.; Sharp, A.; Brown, C.S.; et al. Increase in invasive group A streptococcal infection notifications, England, 2022. *Eurosurveillance* 2023, 28, 2200942. [CrossRef]
- 16. Vieira, A.; Wan, Y.; Ryan, Y.; Li, H.K.; Guy, R.L.; Papangeli, M.; Huse, K.K.; Reeves, L.C.; Soo, V.W.C.; Daniel, R.; et al. Rapid expansion and international spread of M1UK in the post-pandemic UK upsurge of Streptococcus pyogenes. *Nat. Commun.* 2024, 15, 3916. [CrossRef]
- 17. CDC. Increase in Pediatric Invasive Group A Streptococcal Infections. Dic. 2022. Available online: https://www.cdc.gov/mmwr/volumes/72/wr/pdfs/mm7210a4-h.pdf (accessed on 20 December 2024).
- 18. Notes from the Field: Increase in Pediatric Invasive Group A Streptococcus Infections—Colorado and Minnesota, October–December 2022. Mar. 2023. Available online: https://www.cdc.gov/mmwr/volumes/72/wr/mm7210a4.htm?s_cid=mm7210a4_w (accessed on 20 December 2024).
- 19. Aboulhosn, A.; A Sanson, M.; Vega, L.A.; Segura, M.G.; Summer, L.M.; Joseph, M.; McNeil, J.C.; Flores, A.R. Increases in group A streptococcal infections in the pediatric population in Houston, TX, 2022. *Clin. Infect. Dis.* 2023, 77, 351–354. [CrossRef]
- 20. Tyrrell, G.J.; Fathima, S.; Kakulphimp, J.; Bell, C. Increasing Rates of Invasive Group A Streptococcal Disease in Alberta, Canada; 2003–2017. *Open Forum Infect. Dis.* **2018**, *5*, ofy177. [CrossRef]
- 21. Golden, A.R.; Griffith, A.; Tyrell, G.J.; Kus, J.V.; McGeer, A.; Domingo, M.-C.; Hoang, L.; Minion, J.; Van Caeseele, P.; Smadi, H.; et al. Invasive group A streptococcal disease surveillance in Canada, 2021–2022. *Can. Commun. Dis. Rep.* **2024**, *50*, 135–143. [CrossRef]
- 22. Mangioni, D.; Fox, V.; Saltini, P.; Lombardi, A.; Bussini, L.; Carella, F.; Cariani, L.; Comelli, A.; Matinato, C.; Muscatello, A.; et al. Increase in invasive group A streptococcal infections in Milan, Italy: A genomic and clinical characterization. *Front. Microbiol.* **2024**, *14*, 1287522. [CrossRef]

Pathogens 2025, 14, 152 12 of 13

23. Mariani, F.; Gentili, C.; Pulcinelli, V.; Martino, L.; Valentini, P.; Buonsenso, D. State of the Art of Invasive Group A Streptococcus Infection in Children: A Scoping Review of the Literature with a Focus on Predictors of Invasive Infection. *Children* 2023, 10, 1472. [CrossRef]

- 24. Mercadante, S.; Ficari, A.; Romani, L.; De Luca, M.; Tripiciano, C.; Chiurchiù, S.; Carducci, F.I.C.; Cursi, L.; Di Giuseppe, M.; Krzysztofiak, A.; et al. The Thousand Faces of Invasive Group A Streptococcal Infections: Update on Epidemiology, Symptoms, and Therapy. *Children* 2024, 11, 383. [CrossRef] [PubMed]
- 25. Rivano, F.; Votto, M.; Caimmi, S.; Cambieri, P.; Castagnoli, R.; Corbella, M.; De Amici, M.; De Filippo, M.; Landi, E.; Force, P.P.T.; et al. Invasive Streptococcal Infection in Children: An Italian Case Series. *Children* 2024, 11, 614. [CrossRef] [PubMed]
- 26. Di Pietro, G.M.; Marchisio, P.; Bosi, P.; Castellazzi, M.L.; Lemieux, P. Group A Streptococcal Infections in Pediatric Age: Updates about a Re-Emerging Pathogen. *Pathogens* **2024**, *13*, 350. [CrossRef] [PubMed]
- 27. Tomidis Chatzimanouil, M.K.; Rößler, S.; Nurjadi, D.; Iakovidis, I.; Berner, R.; Toepfner, N.; Bornstein, T.D.; Aschoff, R.; Bornhäuser, M.; Güldner, A.; et al. Post-COVID-19-pandemic changes and clinical characteristics of invasive group a streptococcal infections from 2015 to 2023. *Infection* 2024. [CrossRef]
- 28. R Core Team. R: A Language and Environment for Statistical Computing; 2021. Available online: https://cran.r-project.org (accessed on 16 April 2024).
- 29. Bivona, D.; Nicitra, E.; Bonomo, C.; Calvo, M.; Migliorisi, G.; Perez, M.; Privitera, G.F.; Musso, N.; Stefani, S.; Bongiorno, D. Molecular diversity in fusidic acid–resistant Methicillin Susceptible *Staphylococcus aureus*. *JAC-Antimicrob. Resist.* **2024**, *6*, dlae154. [CrossRef]
- 30. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011, 17, 10. [CrossRef]
- 31. Trimgalore. Available online: https://github.com/FelixKrueger/TrimGalore (accessed on 16 April 2024).
- 32. Prjibelski, A.; Antipov, D.; Meleshko, D.; Lapidus, A.; Korobeynikov, A. Using SPAdes De Novo Assembler. *Curr. Protoc. Bioinforma.* **2020**, *70*, e102. [CrossRef]
- 33. Camargo, A.P.; Roux, S.; Schulz, F.; Babinski, M.; Xu, Y.; Hu, B.; Chain, P.S.; Nayfach, S.; Kyrpides, N.C. Identification of mobile genetic elements with geNomad. *Nat. Biotechnol.* **2024**, 42, 1303–1312. [CrossRef]
- 34. Feldgarden, M.; Brover, V.; Gonzalez-Escalona, N.; Frye, J.G.; Haendiges, J.; Haft, D.H.; Hoffmann, M.; Pettengill, J.B.; Prasad, A.B.; Tillman, G.E.; et al. AMRFinderPlus and the Reference Gene Catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence. *Sci. Rep.* **2021**, *11*, 12728. [CrossRef]
- 35. Github Abricate. Available online: https://github.com/tseemann/abricate (accessed on 16 April 2024).
- 36. Feldgarden, M.; Brover, V.; Haft, D.H.; Prasad, A.B.; Slotta, D.J.; Tolstoy, I.; Tyson, G.H.; Zhao, S.; Hsu, C.-H.; McDermott, P.F.; et al. Validating the AMRFinder Tool and Resistance Gene Database by Using Antimicrobial Resistance Genotype-Phenotype Correlations in a Collection of Isolates. *Antimicrob. Agents Chemother.* **2019**, *63*, e00483-e19. [CrossRef]
- 37. Jia, B.; Raphenya, A.R.; Alcock, B.; Waglechner, N.; Guo, P.; Tsang, K.K.; Lago, B.A.; Dave, B.M.; Pereira, S.; Sharma, A.N.; et al. CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database. *Nucleic Acids Res.* 2017, 45, D566–D573. [CrossRef] [PubMed]
- 38. Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of acquired antimicrobial resistance genes. *J. Antimicrob. Chemother.* **2012**, *11*, 2640–2644. [CrossRef] [PubMed]
- Gupta, S.K.; Padmanabhan, B.R.; Diene, S.M.; Lopez-Rojas, R.; Kempf, M.; Landraud, L.; Rolain, J.-M. ARG-ANNOT, a New Bioinformatic Tool To Discover Antibiotic Resistance Genes in Bacterial Genomes. *Antimicrob. Agents Chemother.* 2014, 58, 212–220. [CrossRef] [PubMed]
- 40. Doster, E.; Lakin, S.M.; Dean, C.J.; Wolfe, C.; Young, J.G.; Boucher, C.; E Belk, K.; Noyes, N.R.; Morley, P.S. MEGARes 2.0: A database for classification of antimicrobial drug, biocide and metal resistance determinants in metagenomic sequence data. *Nucleic Acids Res.* **2020**, *48*, D561–D569. [CrossRef]
- 41. Chen, L.; Zheng, D.; Liu, B.; Yang, J.; Jin, Q. VFDB 2016: Hierarchical and refined dataset for big data analysis—10 years on. *Nucleic Acids Res.* **2016**, 44, D694–D697. [CrossRef]
- 42. Frost, H.R.; Davies, M.R.; Velusamy, S.; Delforge, V.; Erhart, A.; Darboe, S.; Steer, A.; Walker, M.J.; Beall, B.; Botteaux, A.; et al. Updated emm-typing protocol for Streptococcus pyogenes. *Clin. Microbiol. Infect.* **2020**, *26*, e5–e946. [CrossRef]
- 43. Github mlst. Available online: https://github.com/tseemann/mlst (accessed on 16 April 2024).
- 44. Jolley, K.A.; Maiden, M.C. BIGSdb: Scalable analysis of bacterial genome variation at the population level. *BMC Bioinform.* **2010**, 11, 595. [CrossRef]
- 45. Kuhn, R.M.; Haussler, D.; Kent, W.J. The UCSC genome browser and associated tools. *Brief. Bioinform.* **2013**, *14*, 144–161. [CrossRef]
- 46. Whatmore, A.M.; Kehoe, M.A. Horizontal gene transfer in the evolution of group A streptococcal *emm* -like genes: Gene mosaics and variation in Vir regulons. *Mol. Microbiol.* **1994**, *11*, 363–374. [CrossRef]
- 47. Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. *Mol. Biol. Evol.* **2013**, *30*, 772–780. [CrossRef]

Pathogens **2025**, 14, 152

48. Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2—Approximately Maximum-Likelihood Trees for Large Alignments. *PLoS ONE* **2010**, *5*, e9490. [CrossRef] [PubMed]

- 49. Yu, G. Data Integration, Manipulation and Visualization of Phylogenetic Trees, 1st ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2022. [CrossRef]
- 50. Xu, S.; Li, L.; Luo, X.; Chen, M.; Tang, W.; Zhan, L.; Dai, Z.; Lam, T.T.; Guan, Y.; Yu, G. *Ggtree*: A serialized data object for visualization of a phylogenetic tree and annotation data. *iMeta* **2022**, *1*, e56. [CrossRef] [PubMed]
- 51. Gu, Z. Complex heatmap visualization. iMeta 2022, 1, e43. [CrossRef] [PubMed]
- 52. Garancini, N.; Ricci, G.; Ghezzi, M.; Tommasi, P.; Zunica, F.; Mandelli, A.; Zoia, E.; D'auria, E.; Zuccotti, G.V. Invasive Group A streptococcal infections: Are we facing a new outbreak? A case series with the experience of a single tertiary center. *Ital. J. Pediatr.* **2023**, *49*, 88. [CrossRef]
- 53. World Health Organization (WHO). Increased Incidence of Scarlet Fever and Invasive Group A Streptococcus Infection—Multi-Country. Available online: https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON429 (accessed on 21 September 2024).
- 54. Lassoued, Y.; Assad, Z.; Ouldali, N.; Caseris, M.; Mariani, P.; Birgy, A.; Bonacorsi, S.; Bidet, P.; Faye, A. Unexpected Increase in Invasive Group A Streptococcal Infections in Children After Respiratory Viruses Outbreak in France: A 15-Year Time-Series Analysis. *Open Forum Infect. Dis.* 2023, 10, ofad188. [CrossRef]
- 55. Chopra, H.; Islam, M.A.; Chandran, D.; Emran, T.B.; Mohammad, E.U.R.; Dhama, K. Current scenario of recently rising up cases of invasive group A streptococcal (iGAS) infections in younger children in many European nations: Clinical management and prospective counteracting measures—An update. *Int. J. Surg.* 2023, 109, 579–581. [CrossRef]
- 56. Linder, K.A.; Alkhouli, L.; Ramesh, M.; Alangaden, G.A.; Kauffman, C.A.; Miceli, M.H. Effect of underlying immune compromise on the manifestations and outcomes of group A streptococcal bacteremia. *J. Infect.* **2017**, 74, 450–455. [CrossRef]
- 57. Davies, H.D.; McGeer, A.; Schwartz, B.; Green, K.; Cann, D.; Simor, A.E.; Low, D.E.; Ontario Group A Streptococcal Study Group. Invasive Group A Streptococcal Infections in Ontario, Canada. N. Engl. J. Med. 1996, 335, 547–554. [CrossRef]
- 58. González-Abad, M.J.; Sanz, M.A. Invasive Streptococcus pyogenes infections (2011–2018): EMM-type and clinical presentation. *An. Pediatría Engl. Ed.* **2020**, 92, 351–358. [CrossRef]
- 59. Johannesen, T.B.; Munkstrup, C.; Edslev, S.M.; Baig, S.; Nielsen, S.; Funk, T.; Kristensen, D.K.; Jacobsen, L.H.; Ravn, S.F.; Bindslev, N.; et al. Increase in invasive group A streptococcal infections and emergence of novel, rapidly expanding sub-lineage of the virulent Streptococcus pyogenes M1 clone, Denmark, 2023. *Eurosurveillance* 2023, 28, 2300291. [CrossRef]
- 60. Coelho, J.M.; Kapatai, G.; Jironkin, A.; Al-Shahib, A.; Daniel, R.; Dhami, C.; Laranjeira, A.M.; Chambers, T.; Phillips, S.; Tewolde, R.; et al. Genomic sequence investigation Streptococcus pyogenes clusters in England (2010–2015). *Clin. Microbiol. Infect.* **2019**, 25, 96–101. [CrossRef] [PubMed]
- 61. Trell, K.; Jörgensen, J.; Rasmussen, M.; Senneby, E. Management of an outbreak of postpartum Streptococcus pyogenes emm75 infections. *J. Hosp. Infect.* **2020**, *105*, 752–756. [CrossRef] [PubMed]
- 62. Putman, M.; Van Veen, H.W.; Degener, J.E.; Konings, W.N. The lactococcal secondary multidrug transporter LmrP confers resistance to lincosamides, macrolides, streptogramins and tetracyclines. *Microbiology* **2001**, *147*, 2873–2880. [CrossRef] [PubMed]
- 63. Kaplan, E.L.; Johnson, D.R. Unexplained Reduced Microbiological Efficacy of Intramuscular Benzathine Penicillin G and of Oral Penicillin V in Eradication of Group A Streptococci From Children with Acute Pharyngitis. *Pediatrics* **2001**, *108*, 1180–1186. [CrossRef]
- 64. Uhteg, K.; Amadi, A.; Forman, M.; Mostafa, H.H. Circulation of Non-SARS-CoV-2 Respiratory Pathogens and Coinfection with SARS-CoV-2 Amid the COVID-19 Pandemic. *Open Forum Infect. Dis.* **2022**, *9*, ofab618. [CrossRef]
- 65. De Gier, B.; Marchal, N.; de Beer-Schuurman, I.; Te Wierik, M.; Hooiveld, M.; de Melker, H.E.; van Sorge, N.M.; ISIS-AR Study Group, GAS Study Group. Increase in invasive group A streptococcal (Streptococcus pyogenes) infections (iGAS) in young children in the Netherlands, 2022. *Eurosurveillance* 2023, 28, 2200941. [CrossRef]
- 66. Massese, M.; La Sorda, M.; De Maio, F.; Gatto, A.; Rosato, R.; Pansini, V.; Caroselli, A.; Fiori, B.; Sanguinetti, M.; Chiaretti, A.; et al. Epidemiology of group A streptococcal infection: Are we ready for a new scenario? *Lancet Microbe* **2024**, *5*, 620–621. [CrossRef]
- 67. De Maio, F.; De Maio, F.; La Sorda, M.; La Sorda, M.; Fiori, B.; Fiori, B.; Bianco, D.M.; Bianco, D.M.; Santarelli, G.; Santarelli, G.; et al. Reemergence of Streptococcus pyogenes Infections in a Large Italian Hospital: A déjà vu from past Years. *J. Epidemiol. Glob. Health* 2024, 14, 1778–1781. [CrossRef]
- 68. Wilkins, A.L.; Steer, A.C.; Smeesters, P.R.; Curtis, N. Toxic shock syndrome—The seven Rs of management and treatment. *J. Infect.* **2017**, 74, S147–S152. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.