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Abstract

Healthy diet with balanced nutrition is key to the prevention of life-threatening diseases such as 

obesity, cardiovascular disease, and cancer. Recent advances in smartphone and wearable sensor 

technologies have led to a proliferation of food monitoring applications based on automated food 

image processing and eating episode detection, with the goal to conquer drawbacks of the 

traditional manual food journaling that is time consuming, inaccurate, underreporting, and low 

adherent. In order to provide users feedback with nutritional information accompanied by 

insightful dietary advice, various techniques in light of the key computational learning principles 

have been explored. This survey presents a variety of methodologies and resources on this topic, 

along with unsolved problems, and closes with a perspective and boarder implications of this field.
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Introduction

Many people face challenges to maintain healthy diet and manage their weight these days, 

while knowing bad eating habits lead to overweight and obesity that increase the risk of 

heart diseases, hypertension, other metabolic comorbidities such as type 2 diabetes, and 

cancer [1]. Personal diet management is always warranted in these scenarios, which often 

involves manual food logging that is time consuming and tedious [2]. By virtues of growth 

of smartphone use, several mobile applications have been developed to facilitate food 

journaling, such as MyFitnessPal, LoseIt and Fooducate, and many have demonstrated great 

potential in effective diet control [3]. For example, a study shows higher user retention with 

smartphone-based diet logging compared to the websites and paper diary in a period of six 

months [4]. Teenagers are willing to take food images using a mobile food recorder before 

eating [5]; and the dietary feedback contributes to weight loss [6]. However, many of these 

applications require significant manual input from users and suffer from the low 
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performance in assessing the exact ingredients and food portion [7], which has hindered the 

long-term use from user.

The current consensus objective on this topic is to develop new methods that can 

automatically identify food items and estimate nutrients based on food images, utilizing 

cutting-edge techniques in Computer Vision and Machine Learning and ideally being 

friendly, effort free and accurate for user to keep track of their meals. Along this line of 

research, several key issues have been raised including the following. First, the food image 

databases are expected to be comprehensive, containing large number of food classes to 

cover the food diversity and abundant images per class to reflect the food image discrepancy 

when training a classification system [8]. Second, reliable food segmentation is highly 

recommended to identify all possible items in an image and separate them from the 

background regardless the lighting conditions or if the food are mixed or not [9]. 

Subsequently, classification will be performed on each segmented item using machine 

learning models that are trained based on large food datasets. Last, volume and weight 

estimation can be performed on each identified item, followed by the nutrient assessment 

[10-12]. The workflow of an automated food monitoring system that connects these 

components is presented in Figure 1. It is notable that every aforementioned step involves 

technical challenges, e.g., it is difficult to estimate food volume based on 2-dimentinoal 

images.

In addition to the image-based strategy, several wearable devices, such as glasses with load 

cells [13] or connected to sensors on temporalis muscle and accelerometer [14] and wrist 

motion track [15], have been explored to detect food intake events automatically. The 

collected information about eating episodes, pertinent to users’ diet habit pattern, can serve 

as starting point for food consumption analysis and diet interventions, e.g., providing user 

recommendations for physical exercise, healthier food, or eating habit [16,17].

In this paper, we review the most relevant applications on automatic food monitoring (till 

April 2017) that focus on addressing each aforementioned challenge. We specifically 

introduce current food image databases in section 2, followed by a survey on next section 

existing methods for segmentation, feature extraction, classification, and volume and 

nutrient estimation. In addition, a few studies on food-monitoring wearable devices and diet 

invention are depicted, respectively. Finally, we close the review by discussing the remaining 

challenges and presenting future outlook in this field.

Food Image Databases

A comprehensive collection of quality food images is key to train a food-classification 

model and benchmark the prediction performance, i.e., a common procedure to verify if a 

new classifier outperforms previous methods is to compare their classification performance 

on large food image databases such as Food-101 [18], UEC Food-100 [9], and UEC 

Food-256 [19]. Current food image datasets vary in many aspects, such as, type of cuisine, 

number of food groups, and total images per food class. For instance, Menu-Match dataset 

[20] contains 41 food classes and a total of 646 images captured in 3 distinct restaurants 
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while PFID [21] has 61 classes with a total of 1098 pictures captured in fast food restaurants 

and laboratory. Table 1 gives a summary of different databases with their respective features.

It is noticeable that there is no benchmark food image database for general classification 

purpose since most databases archive specific food type. For examples, the UNIMIB2016 

database [8] has Italian food images from a campus dining hall and the UEC Food-100 [9] 

consists of items from Chinese culinary. Similarly, Chen [22] and PFID [21] consist of 

images from traditional Japanese dishes and American fast food, respectively. On the other 

hand, Food-101 [18] and UEC Food-256 [19] contain a mix of eastern and western food. 

Except for food type, other image features such as if the picture was obtained in the wild, in 

a controlled environment, or whether the image is segmented or not has been taken into 

consideration when developing those databases (Table 1).

Image Based Food Recognition

Food image segmentation

Segmentation is an important process to separate parts of a scene. When dealing with food, 

the objective is to localize and extract food items from the image [23-26]. It takes place 

before food classification when authors attempt to identify multiple food items in the image 

[8,27] or estimate volume [11,12], which often contributes to improved classification 

accuracy [9,12].

It is challenging to segment food images since they may not present specific attributes such 

as edges and defined contour [28]. Food items can be on top of each other or being 

obstructed by another component, making it hidden in the given image [28]. Meanwhile, 

external factors such as illumination can interfere negatively in this step, where shadows can 

be identified as part of the food or even a new food item [12,29].

Several methods have been proposed to address the segmentation issue, summarized in Table 

2. For examples, one asks user to draw bounding boxes over food items on the smartphone 

screen, and performs segmentation using GrabCut algorithm over selected areas [27]. 

Another segments items by integrating four methods to detect candidate region, including 

the whole image (assuming each image has one food), Deformable Part Model (DPM, a 

method utilizing sliding windows to detect object regions), circle detector (detecting circular 

in an image), and JSEG segmentation to segment regions [9]. A similar approach in Ciocca 

et al. [8] combined different strategies including image saturation, binarization, JSEG 

segmentation, and morphological operations (noise removal) to segment multiple food 

items. In addition, the work presented in Yang et al. [28] tries to segment food by its 

ingredients and their spatial relationship applying Semantic Texton Forest (STF).

Of particular interest is that Deep Leaning approach has been used to tackle food 

segmentation [11,30], although at its early stage. For example, the application named 

Im2Calories utilized the Convolution Neural Network (CNN) model that provides unary 

potentials of a conditional random fields and a fully connected graph to perform edge-

sensitive label smoothing [11], which increased the overall classification accuracy (Table 2).
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Feature extraction

Image objects can be recognized based on their characteristics, such as colour, shape and 

texture [31]. According to Hassannejad et al. [32], selection of relevant features is important 

when building a recognition model capable of identifying food items. General image 

features, as mentioned above, may not be descriptive enough to distinguish foods since the 

properties of the same good may change when the food is prepared in different ways [23]. 

For example, Penne and Spaghetti have same colour and texture but distinct shape.

In order to extract informative visual information from food image, descriptors such as 

Local Binary Patterns (LBP), color information, Gabor filter, Scale-Invariant Feature 

Transform (SIFT) [22], called handcrafted features, can be applied (illustrated in Table 3). 

Different features and their fusion often result in different classification performance. For 

instance, when SIFT and LBP were used individually on Chen dataset [22], it achieves 

accuracy of 53% and 45.9%, respectively; when they were combined with additional colour 

and Gabor filter, accuracy rises to 68,3%. Based on the same dataset, another study, Menu-

Match [20], extracted the SIFT, LBP and colour in different settings, along with HOG and 

MR8 and obtained the accuracy of 77.4%. It also illustrates how sensitive a classification 

can be when the same feature is extracted but with different parameters.

Food classification

Currently, there are two major classification strategies for food image recognition: 1) 

Traditional machine learning-based approach using handcrafted features and 2) Deep 

Learning-based approach. The former usually start with a set of visual features extracted 

from the food image and use them to train a prediction model based on Machine Learning 

algorithms such as Support Vector Machine [20], Bag of Features [31], or K Nearest 

Neighbors [8]. In contrast, emerging deep learning architectures have a large number of 

connected layers that are able to learn features, followed by a final layer responsible for 

classification [33]. Recent approaches based on Deep Learning become more popular and 

effective, e.g., the study in Christodoulidis et al. [34] obtained astonishing results in the 

ImageNet’s Large Scale Visual Recognition Challenge 2012 (ILSVRC2012).

The following example compares a classifier trained with handcrafted features with a deep 

learning architecture. In Yanai and Kawano [35], color and HOG features are classified 

using a similar strategy to Bag of Features, called Fisher Vectors, which achieved accuracy 

of 65.3% on UEC Food-100 [9]. On the same database, the Deep Learning architecture 

DCNN-FOOD [35] was created and showed an improvement of 13.5% over the handcrafted 

method. A major advantage of Deep Learning method is that they can learn relevant features 

from images automatically, which is particularly important in the cases when the pre-defined 

features are not discriminative enough [32]. More studies based on both methods are shown 

in Table 3. Clearly, a common issue with most current methods is that the performance was 

presented mainly based on overall accuracy where the assessment of sensitivity and 

specificity was missing (Table 3).
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Food volume estimation and nutrient analysis

After identifying all food items from an image, it is important to assess the nutrients 

included, e.g., the carbohydrates, sugar, or total calorie, which will require volume/weight 

estimation, another challenge. In fact, not even an expert dietitian can estimate the total 

calories without a precise instrument, e.g., a scale. Taking image-based calorie estimation as 

an example: first, food candidate regions must be recognized, segmented, and classified 

correctly [22,36]; the volume from each segmented item will be calculated; and the nutrient 

can be estimated based on a nutritional facts table [37-39], such as USDA Food Composition 

Database [40].

The most challenging part is to estimate food’s volume from 2-dimensional image which 

normally does not have the depth information, unless reference objects are placed next to the 

meal [8,41]. Volume can be underestimated or overestimated with interference from external 

factors, such as lighting conditions, blurred images, and noisy background [22], only few 

strategies were reported for estimation of food volume and calorie intake as currently the 

major focus in this domain still lies in the food classification (Table 4) [32].

As listed in Table 4, crowdsourcing [42] and a depth sensor camera [11,22] have been 

utilized for food volume estimation and nutrition assessment. Although leading to promising 

results, these studies were conducted either in a controlled environment or using an extra 

camera that is not practical in real-world events. In addition, user’s finger was also used as 

reference when one takes a picture from the top and side views of the plate to estimate food 

volume [12]. The concern here is that multiple food items overlap in the side view, making it 

hard to distinguish. Similarly, another reference object, a checkerboard, was used to help 

obtaining depth information alongside camera calibration [10], which also needs users to 

carry additional equipment in order to estimate food’s volume.

Note that those methods are mostly tied to a controlled environment. For example, it has 

stated that a broader study outside the laboratory is not feasible because nutrient values vary 

depending on how the food was prepared and there is no broad nutritional database for 

prepared foods yet [11]. On the other hand, it performed volume estimation for only 7 items 

in Woo et al. [43], while the study only matched classified food to annotated menu items 

with respective (Table 4) known calories in Beijbom et al. [20].

Wearable Device-Based Food Monitoring

Other than monitoring food intake through image processing, several wearable devices have 

been developed for auto-detection of eating episodes. For example, a proof of concept called 

Glassense [13] utilizes a pair of glasses with load cells to detect user’s digestive behaviours 

through facial signals. Likewise, glasses connected to a sensor placed on the temporalis 

muscle and an accelerometer was also presented to detect food intake when users are 

physically active and/ or talking [14]. In addition, a wrist motion tracker was developed to 

identify eating activities and measure food intake [15].

Bruno et al. Page 5

J Health Med Inform. Author manuscript; available in PMC 2018 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Although these approaches can detect eating activities with decent resolution, more follow-

up research efforts are needed to explore the relationships between eating activities and 

nutrient intake and calories consumption.

Diet Intervention

Dietary intervention can be realized after the aforementioned diet management systems learn 

adequate information about the individual’s’ eating habits. Often it requires functionality 

similar to a diet advisor capable of giving users feedbacks to improve their health, e.g., eat 

less often or replace A by B in the meal for weight loss [6]. Recent applications are more 

sophisticated in this regard. For examples, Faiz et al. [16] introduces a Semantic Healthcare 

Assistant for Diet and Exercise (SHADE) that can identify user habits and generate 

suggestions not only for diet, but also for exercise for diabetic control. Similarly, Lee et al. 

[17] presents a personal food recommendation agent that can creates a meal plan according 

to a person’s lifestyle and particular health needs towards a certain health goal.

Remaining Challenges

As mentioned above, despite of the advances in food recognition technologies, there are 

remaining challenges with respect to each analytical step. For example, food image datasets 

and classification methods are highly related since the former provide training data for the 

latter. Current image databases tend to grow in number of classes to incorporate different 

types of food, as what happened to Food201 Segmented [11], Food85 [25], and UEC 

Food-256 [19]. Meanwhile, classifiers are developed based on new architecture that is 

capable of identifying new food items. Since the Deep Learning approaches can provide 

better classification accuracy when trained on larger datasets [33], there is a possible also a 

need to generate more food images from existing datasets by randomly cropping images and 

apply distortions like brightness, contrast, saturation and hue [32].

Although segmentation of food items has shown significant improvements in Zhu et al. [10], 

it is still difficult to segment hidden food item and mixed food. Other factors such as 

lightning can also contribute negatively to segment foods. For example, shadows can be 

considered as part of food or candidate regions by algorithms. Methods based on manually-

selected candidate items can be promising [30], however, the bounding box size may be 

influential [27].

Nutrient and calorie estimation remains the most challenging problem in automated diet 

monitoring systems since it is highly dependent on food segmentation and volume 

estimation [11]. Undoubtedly, calories can be overestimated or underestimated if any of the 

other steps is erroneous. However, as discussed above, volume estimation based on 2D 

images are still far from satisfactory even using the effective reference objects such as a 

checkerboard [43] and finger [44]. Note this problem can be solved by using stereo cameras, 

as illustrated in im2Calories [11], which requires extra accessories, or using SmartPlate, a 

device that integrates multiple scales into a dinning plate to weight food items. Obviously, 

once all those new functionalities and sensors are embedded in the smartphones, all such 

complexity [45] of the problem can be alleviated significantly.
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Conclusion

In this review, we have surveyed a wide range of strategies in computer vision and artificial 

intelligence specifically designed for automated food recognition and dietary intervention. 

Particularly, the entire framework can be broken down into four parts that involve 

developments of comprehensive food image databases, classifiers capable for food item 

recognition, and strategies for food volume estimation, nutrient analysis that provide 

information for diet intervention. Even though improved performance has been 

demonstrated, challenging issues still remain and desire novel algorithms and techniques. 

Worth mentioning is the increased appreciation of using Deep Learning models for food 

image classification, which has outperformed traditional methodologies using handcrafted 

features. Increased application of wearable sensor devices, especially those can be integrated 

into smartphone, will revolutionize this line of research and as a whole the food monitoring 

system will help generate novel insights in effective health promotion and disease 

prevention.
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Figure 1: 
The workflow of an automated food monitoring system that connects various components 

discussed in the main text.
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Table 1:

Food image databases.

Study Database Image content Total # of class/image Acquisition Reference

Chen et al., 2009 PFID Fast food items from USA 61/1098

Images taken in 
restaurants and in lab, 

with white 
background

[21]

Mariappan, 2009 TADA
* Common food in USA 256 food+50 replicas

Images collected in a 
controlled 

environment
[26]

Hoashi et al., 2010 Food85
* Japanese food 85/8500

Images derived from 
previous database with 

50 Japanese food 
category and web

[25]

Chen, 2012 Chen Chinese food 50/5000 Images downloaded 
from the web [22]

Matsuda et al., 2012 UEC Food-100 Popular Japanese food 100/9060

Images acquired by 
digital camera (each 
photo has a bounding 

box indicating the 
location of the food 

item)

[9]

Farinella et al., 2014 Diabetes Selected food 11/4868 Images downloaded 
from the web [24]

Bossard et al., 2014 Food-101 Popular food in USA 101/101000 Images downloaded 
from the web [18]

Kawano and Yanai, 
2014 UEC Food-256 Popular foods in Japan 

and other countries 256/31397

Images acquired by 
digital camera (each 
photo has a bounding 

box indicating the 
location of the food 

item)

[19]

Meyers, 2015 Food201-Segmented
* Popular food in USA 201/12625

Images derived from 
Food 101 dataset; 

segmented
[11]

Beijbom et al., 2015 Menu-Match
Food from three 

restaurants (Asian, Italian, 
and soup)

41/646 Images taken by 
authors [20]

Ciocca et al., 2016 UNIMIB2016 Food from dining hall 73/1027
Images acquired by 

digital camera in 
dining hall; segmented

[8]

Chen and Ngo, 2016 Vireo Chinese dishes 172/110241 Images downloaded 
from the web [23]

*
Proprietary database
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Table 2:

Food segmentation methods.

Study Approach Performance Reference

Yang et al., 2010 Semantic Texton Forest calculates the probability 
for each pixel to belong to one of the food classes.

Output from Semantic Texton Forest is far 
from a precise parsing of an image [28]

Matsuda et al., 2012 Combined techniques: whole image, DPM, circle 
detector and JSEG segmentation

Overall accuracy to 21% (top 1) and 45% (top 

5)
* [9]

Kawano and Yanai, 2013 Each food item within user generated bound boxes 
is segmented by GrabCut algorithm

Performance depending on the size of the 
bounding boxes [27]

Pouladzadeh et al., 2014 Graph cut segmentation algorithm to extract food 
items and user's finger Overall accuracy of 95% [12]

Shimoda and Yanai, 2015 CNN model searching for food item based on 
fragmented reference

Detects correct bounding boxes around food 
items with mean average precision of 49.9% 

when compared to ground truth values
[30]

Meyers, 2015 DeepLab model Classification accuracy increases with 
conditional random fields [11]

Zhu et al., 2015 Multiple segmentations generated for an image 
and selected by a classifier It outperforms normalized cut [10]

Ciocca et al., 2016 Combines saturazation, binarization, JSEG 
segmentation and morphological operations

Achieves better segmentation than using 
JSEG-only approach [8]

*
Top 1 and/or Top 5 indicate that the performance of the classification model was evaluated based on the first assigned class with the highest 

probability and/or the top 5 classes among the prediction for each given food item, respectively
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Table 3:

Traditional and deep learning classification methods.

Traditional Methods

Study
Approach

Database
Performance

**
Reference

Features Classifier Top1 Acc. Top5 Acc.

Chen, 2012 SIFT, LBP, color and 
gabor Multi-class Adaboost

Chen

68.3% 90.9% [22]

Beijbom et al., 2015 SIFT, LBP, color, HOG 
and MR8 SVM 77.4% 96.2% [20]

Anthimopoulos et 
al., 2014 SIFT and color Bag of Words and 

SVM Diabetes 78.0% - [31]

Bossard et al., 2014 SURF and L
*
a
*
b color 

values
RFDC Food-101 50.8% - [18]

Hoashi et al., 2010 Bag of features, color, 
gabor texture and HOG MKL Food85 62.5% - [25]

Beijbom et al., 2015 SIFT, LBP, Color, HOG 
and MR8 SVM Menu-Match 51.2%

* [20]

Christodoulidis et 
al., 2015 Color and LBP SVM

Local dataset

82.2% - [34]

Pouladzadeh et al., 
2014

Color, texture, size and 
shape SVM 92.2% - [12]

Pouladzadeh et al., 
2014

Graph Cut, color, texture, 
size and shape SVM 95.0% - [12]

Kawano and Yanai, 
2013 Color and SURF SVM - 81.6% [27]

Farinella et al., 2014 Bag of textons SVM
PFID

31.3% - [24]

Yang et al., 2010 Pairwise local features SVM 78.0% - [28]

He et al., 2014 DCD, MDSIFT, SCD, 
SIFT KNN

TADA
64.5% - [29]

Zhu et al., 2015 Color, texture and SIFT KNN 70.0% - [10]

Matsuda et al., 2012 SIFT, HOG, Gabor 
texture and color MKL-SVM

UEC-Food-100

21.0% 45.0% [9]

Liu et al., 2016 Extended HOG and Color Fisher Vector 59.6% 82.9% [36]

Kawano and Yanai, 
2014 Color and HOG Fisher Vector 65.3% - [39]

Yanai and Kawano, 
2015 Color and HOG Fisher Vector 65.3% 86.7% [35]

Kawano and Yanai, 
2014

Fisher Vector, HOG and 
color

One x rest Linear 
classifier UEC-Food-256

50.1% 74.4% [38]

Yanai et al., 2015 Color and HOG Fisher Vector 52.9% 75.5% [35]

Deep Leaning Methods

Study Approach Dataset Topi Top5 Reference

Anthimopoulos et 
al., 2014 ANNnh Diabetes 75.0% - [31]

Bossard et al., 2014 Food-101

Food-101

56.4% - [18]

Yanai and Kawano, 
2015 DCNN-Food 70.4% - [35]
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Traditional Methods

Study
Approach

Database
Performance

**
Reference

Features Classifier Top1 Acc. Top5 Acc.

Liu et al., 2016 DeepFood 77.4% 93.7% [36]

Meyers, 2015 GoogleLeNet 79.0% - [11]

Hassannejad et al., 
2016 Inception v3 88.3% 96.9% [32]

Meyers, 2015 GoogleLeNet
Food201 segmented 76.0% -

[11]
Menu-Match 81.4%

* -

Christodoulidis et 
al., 2015 Patch-wise CNN

Own database

84.90% - [34]

Pouladzadeh et al., 
2016 Graph cut+Deep Neural Network 99.0% - [40]

Kawano and Yanai, 
2014 OverFeat+Fisher Vector

UEC-Food-100

72.3% 92.0% [39]

Liu et al., 2016 DeepFood 76.3% 94.6% [36]

Yanai and Kawano, 
2015 DCNN-Food 78.8% 95.2% [35]

Hassannejad et al., 
2016 Inception v3 81.5% 97.3% [32]

Chen and Ngo, 2016 Arch-D 82.1% 97.3% [23]

Liu et al., 2016 DeepFood

UEC-Food-256

54.7% 81.5% [36]

Yanai and Kawano, 
2015 DCNN-Food 67.6% 89.0% [35]

Hassannejad et al., 
2016 Inception v3 76.2% 92.6% [32]

Ciocca et al., 2016 VGG UNIMINB2016 78.3% - [8]

Chen and Ngo, 2016 Arch-D VIREO 82.1% 95.9% [23]

*
Represents the mean average precision

**
Top 1 and/or Top 5 indicate that the performance of the classification model was evaluated based on the first assigned class with the highest 

probability and/or the top 5 classes among the prediction for each given food item, respectively
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Table 4:

Methods for food volume and calorie estimation.

Study (Year) Approach Performance Reference

Noronha et al., 2011 Via crowdsourcing (e.g. users from 
Amazon Mechanical Turk)

Better performance than other commercial app using 
crowdsourcing but overall it is error prone since users 

estimate food portion by just looking at the picture
[42]

Chen, 2012 Use depth camera to acquire color and 
depth

Preliminary result showing some limitations when 
estimating quantity of cooked rice and water [22]

Villalobos et al., 2012 Use Top+side view pictures with user’s 
finger as reference

Results change due to illumination conditions and image 
angle; standard error is in an acceptable range [44]

Beijbom et al., 2015 Use menu items from nearby restaurants Food calorie is from pre-defined restaurant’s menu [20]

Meyers, 2015

3D volume estimation by capturing 
images with a depth camera and 

reconstructing image using Convolutional 
Neural Network and RANSAC

Using toy food; the CNN volume predictor is accurate 
for most of the meals; no calorie estimation outside a 

controlled environment.
[11]

Woo et al., 2010 Use a checkerboard as reference for 
camera calibration and 3D reconstruction

Mean volume error of 5.68% on a test of sever food 
items [43]
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