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Abstract: Spices are a popular ingredient in cuisine worldwide but can pose a health risk as they
are prone to fungal infestation and mycotoxin contamination. The purpose of this study was to
evaluate ochratoxin A (OTA) in 54 single-kind traditional and less traditional spices, each of which
was purchased in six samples of different batches (324 samples in total) at the Czech market during
2019–2020. The HPLC-FLD method with pre-treatment by immunoaffinity columns was employed
to determine OTA. The limits of detection and quantification were 0.03 ng g−1 and 0.10 ng g−1,
respectively. A total of 101 (31%) samples of 19 spice kinds were positive at concentrations ranging
from 0.11–38.46 ng g−1. Only turmeric was contaminated with an OTA level exceeding the European
Union limits. However, most spices have no regulation, thus further extensive monitoring of various
mycotoxins in various kinds of spices is necessary. Chilli and black pepper are the most studied
spices for OTA contamination, however, many other kinds of spice can also be highly contaminated,
but studies on them are less common, rare, or have not yet been performed. The uniqueness of this
study lies in the wide range of spice types studied for the presence of OTA on the Czech market.

Keywords: spices; ochratoxin A; immunoaffinity columns; HPLC-FLD

1. Introduction

There are several definitions for spices that may to some extent overlap with herbs [1–3].
Unlike herbs, which are defined as plants with non-woody tissues, spices are considered
a culinary term rather than a botanical category [2]. This study is guided by the simple
definition that spices are all parts of a plant that are used to improve meals in their colour,
flavour, or even texture. These parts can be leaves, seeds, roots, fruits, bark, buds, or
stalks [3].

The importance of spice may vary through countries worldwide [2]. Although gener-
ally thought to represent only a small portion of the human diet, they cannot be neglected
as they may contribute to the overall intake of mycotoxins from all foodstuffs [4]. Spices
are a widespread commodity [2] as they are exported worldwide, mainly from developing
countries where they are mostly grown. Approximately 15.9 million tonnes of spices
(excluding garlic and onion together exceeding 100 million tonnes) were produced in
2019 [5]. Asian countries were the largest producers of spices (share of production 75.7%;
12.1 million tonnes), followed by African (19.9%; 3.2 million tonnes), American (3.8%;
0.6 million tonnes), European (0.5%; 0.08 million tonnes), and Oceanian (0.1%; 0.012 million
tonnes) producing countries in 2019.

Unfortunately, spices are susceptible to fungal infestation and mycotoxin contamina-
tion. The local subtropical/tropical climate conditions in most spice-producing countries
such as high temperatures in combination with heavy rainfalls pose a suitable environ-
ment for mould infestation and thus mycotoxin production in spices. Moreover, following
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good agricultural, hygienic, and manufacturing practices is particularly difficult in these
countries, which is also likely to contribute to the deterioration of spices by moulds and
mycotoxins [6–9]. Aspergillus carbonarius, A. flavus, A. ochraceus, A. parasiticus, A. tamarii,
A. versicolor, Penicillium citrinum, P. verrucosum, and Fusarium verticillioides are considered
the most common moulds in spices. However, Alternaria alternata, Rhizopus oryzae, and
R. nigricans have also been found in some spices such as cumin and coriander [4]. Ochra-
toxin A (OTA), along with aflatoxins B1, B2, G1, and G2, citrinin, fumonisins B1 and B2,
trichothecenes such as deoxynivalenol, nivalenol, T-2 toxin, and HT-2 toxin, zearalenone,
altenuene, alternariol, tenuazonic acid, and sterigmatocystin, has been confirmed in spices
by many studies [4].

This study focused on OTA (PubChem CID: 442530) [10], which is considered the
second most important mycotoxin from the public health point of view [11]. Moreover, it
is infamous mainly for its nephrotoxic and less hepatotoxic effects, however, teratogenic,
genotoxic, immunotoxic, and neurotoxic effects have also been reported [12]. The Inter-
national Agency for Research on Cancer classifies OTA into group 2B, which is a possible
carcinogen for humans [13,14].

A recent study [4] describing the situation of spice mycotoxin and mould contami-
nation revealed that besides the well-known and most studied spices such as chilli and
black pepper, many other types of spices also deserve attention and need to be monitored
for various mycotoxins. Table 1 shows a summary of the results of recent studies on the
determination of OTA in several types of spices [15–46].

Table 1. Overview of studies dealing with the contamination of spices with OTA from a global perspective.

Country Spices n+/n n+% Mean
(ng g−1)

Range Min–Max
(ng g−1)

LOQ
(ng g−1) References

Africa

Cameroon Black pepper 2/20 10 1.53 1.15–1.91 1.00 [15]
Cloves 0/40 0 - - 1.00
White pepper 8/20 40 3.30 1.81–4.89 1.00

Ivory Coast Black pepper 0/30 0 - - 0.20 [16]
Chilli 25/30 83 68.97 ↑ 0.04–907.57 0.20
Ginger 15/30 50 0.22 0.04–0.56 0.20

Black pepper 7/12 58 4.56 0.27–13.95 0.16 [17]
Chilli 4/12 33 1.50 0.23–4.45 0.16
Dawadawa 2/12 17 1.40 1.26–1.55 0.16
Ginger 3/12 25 0.22 0.17–0.31 0.16

Nigeria Ginger 57/120 48 3.75 0.17–12.02 0.30 [18]

South Africa Chilli 2/18 11 16.00 7.00–25.00 4.20 [19]
Fruit chutney
spices 1/4 25 6.00 * 6.00 * 4.20

Onion 0/8 0 - - 4.20
Paprika 1/7 14 11.00 * 11.00 * 4.20
Vegetable spice 0/1 0 - - 4.20

America

Brazil Black pepper 0/15 0 - - N/S [20]
Chilli 0/15 0 - - N/S
Cinnamon 0/13 0 - - N/S
Cloves 0/12 0 - - N/S
Fennel 0/15 0 - - N/S
Oregano 0/12 0 - - N/S
Rosemary 0/15 0 - - N/S
White pepper 0/15 0 - - N/S
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Table 1. Cont.

Country Spices n+/n n+% Mean
(ng g−1)

Range Min–Max
(ng g−1)

LOQ
(ng g−1) References

Asia

China Aniseed 5/80 6 0.73 N/S 0.50 [21]
Chilli 15/80 19 6.77 N/S 0.50
Cinnamon 4/80 5 1.10 N/S 0.50
Cumin 5/29 17 1.46 N/S 0.50
Curry powder 5/11 46 2.44 N/S 0.50
Fennel 0/40 0 - - 0.50
Pepper 0/80 0 - - 0.50
Prickly ash 8/80 10 3.17 N/S 0.50

Liquorice 2/31 6 2.00 0.06–3.93 [22]

India Chilli 40/55 73 97.10 ↑ N/S N/S [23]
Black pepper 33/42 79 154.10 ↑ N/S N/S
Caraway 12/25 48 63.20 ↗ N/S N/S
Coriander 9/30 30 47.60 ↗ N/S N/S
Cumin 0/28 0 - - N/S
Fennel 14/25 56 98.10 ↗ N/S N/S
Fenugreek 18/35 51 83.20 ↗ N/S N/S
Ginger 20/36 56 82.80 ↑ N/S N/S
Turmeric 20/35 57 125.90 ↑ N/S N/S

Black pepper 31/55 56 155.00 N/S N/S [24]
Cardamom 11/32 34 68.00 N/S N/S
Fennel 8/35 23 10.00 N/S N/S
Mace 18/30 60 128.00 N/S N/S
Turmeric 21/42 50 162.00 N/S N/S

Indonesia Chilli 3/6 50 44.87 ↑ 23.70–84.60 1.77 [25]

Iran Black pepper 10/23 43 3.31 0.70–7.64 0.06 [26]
Cinnamon 8/23 35 5.46 0.45–16.10 0.06
Chilli 4/23 17 5.66 0.56–18.64 0.06
Turmeric 7/23 30 2.77 0.60–8.49 0.06

Black pepper 20/20 100 49.29 15.91–197.64 1.23

[27]
Cinnamon 2/20 10 18.5 0.70–139.44 1.23
Chilli 0/20 0 - - 1.23
Turmeric 0/20 0 - - 1.23

Korea Chilli 6/56 11 2.38 4.51 M 0.31 [28]

Lebanon Allspice 0/3 0 - - 1.50 [29]
Anise 1/3 33 2.60 * 2.60 * 1.50
Basil 0/2 0 - - 1.50
Bay leaf 0/2 0 - - 1.50
Black pepper 1/4 25 2.30 * 2.30 * 1.50
Caraway 0/2 0 - - 1.50
Cardamom 0/4 0 - - 1.50
Chilli 2/7 29 7.70 N/S 1.50
Cinnamon 0/3 0 - - 1.50
Cloves 0/2 0 - - 1.50
Coriander 0/2 0 - - 1.50
Cumin 1/5 20 3.50 * 3.50 * 1.50
Fennel 0/2 0 - - 1.50
Fenugreek 0/4 0 - - 1.50
Garlic 1/2 50 5.10 * 5.10 * 1.50
Ginger 0/3 0 - - 1.50
Marjoram 1/2 50 0.75 * 0.75 * 1.50
Mint 0/3 0 - - 1.50
Nutmeg 1/2 50 33.90 * ↑ 33.90 * 1.50
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Table 1. Cont.

Country Spices n+/n n+% Mean
(ng g−1)

Range Min–Max
(ng g−1)

LOQ
(ng g−1) References

Lebanon Onion 0/4 0 - - 1.50
Oregano 0/3 0 - - 1.50
Paprika 2/3 67 11.40 N/S 1.50
Parsley 0/1 0 - - 1.50
Rosemary 1/2 50 0.75 * 0.75 * 1.50
Saffron 0/1 0 - - 1.50
Sage 1/3 33 4.20 * 4.20 * 1.50
Sumac 0/2 0 - - 1.50
Thyme 0/3 0 - - 1.50
Turmeric 1/2 50 2.40 * 2.40 * 1.50
White pepper 0/2 0 - - 1.50

Allspice N/S ND - - 1.50 [30]
Anise N/S D 2.6 N/S 1.50
Black pepper N/S D 2.30 N/S 1.50
Cardamom N/S ND - - 1.50
Caraway N/S ND - - 1.50
Cinnamon N/S ND - - 1.50
Cloves N/S ND - - 1.50
Coriander N/S ND - - 1.50
Cumin N/S D 3.50 N/S 1.50
Fennel N/S ND - - 1.50
Garlic powder N/S ND - - 1.50
Ginger N/S ND - - 1.50
Nutmeg N/S D 34.00 ↑ N/S 1.50
Onion powder N/S ND - - 1.50
Paprika N/S D 11.40 N/S 1.50
Red chilli N/S D 7.70 N/S 1.50
Turmeric N/S D 2.40 N/S 1.50
White pepper N/S ND - - 1.50

Malaysia Coriander 1/1 100 0.91 * 0.91 * 0.33 [31]
Cumin 1/2 50 20.40 * ↗ 20.40 * 0.33
Curry 8/8 100 2.36 0.14–9.59 0.33
Chilli 1/2 50 0.62 * 0.62 * 0.33
Fennel 1/2 50 1.26 * 1.26 * 0.33
Black pepper 0/1 0 - - 0.33
Turmeric 2/2 100 1.89 0.20–3.58 0.33
White pepper 0/1 0 - - 0.33

Chilli 0/10 0 - - 0.30 [32]

Chilli 65/80 81 7.15 0.20–101.20 0.06 [33]

Pakistan Chilli crushed,
restaurant 14/28 50 19.80 48.70 M 0.18 [34]

Chilli powdered,
restaurant 12/29 41 22.90 ↑ 58.10 M 0.18

Chilli crushed,
open market 11/29 38 16.90 54.30 M 0.18

Chilli powdered,
open market 13/34 38 21.40 ↑ 64.50 M 0.18

Chilli 99/242 41 N/S 120.90 M 0.30 [35]

Saudi Arabia Cardamom 38/80 48 60.14 ↗ 30.00–78.00 3.33 [36]

Sri Lanka Chilli flakes 13/26 50 4.90 15.00 M N/S [37]
Chilli pods 2/18 11 N/S 5.30 M N/S
Red chilli powder 20/42 48 16.00 282.00 M N/S

Black pepper N/S D N/S 79.00 M ↑ N/S [38]
Chilli 35/86 41 N/S 282.00 M N/S
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Table 1. Cont.

Country Spices n+/n n+% Mean
(ng g−1)

Range Min–Max
(ng g−1)

LOQ
(ng g−1) References

Turkey Black pepper 4/23 17 0.34 3.48 M 0.19 [39]
Cumin 1/19 5 0.63 * 0.63 * 0.19
Red chilli flakes 18/24 75 12.34 53.04 M 0.19
Red chilli powder 12/22 55 13.46 98.20 M 0.19

Europe

Czech
Republic

Black pepper 11/12 92 0.83 2.82 M 0.20 [40]
Caraway 2/12 17 0.19 0.71 M 0.20
Chilli pepper dried 11/12 92 6.70 32.70 M 0.20
Coriander seed 4/12 33 0.46 1.96 M 0.20
Fiery paprika
powder 12/12 100 19.00 5.5–91.80 0.20

Ginger root dried 7/12 58 2.04 12.70 M 0.20
Liquorice 12/12 100 15.80 3.8–36.70 0.20
Nutmeg 12/12 100 8.70 0.3–60.70 0.20
Sweet paprika
powder 12/12 100 16.00 1.1–38.40 0.20

Hungary Black pepper 0/6 0 - - 0.60

[41]
Chilli 1/5 20 2.1 * 2.1 * 0.60
Red pepper,
ground 32/70 46 N/S 0.4–66.2 0.60

White pepper 0/5 0 - - 0.60

Italy Paprika 17/31 55 39.64 ↑ 0.11–177.40 0.22 [42]

Chilli 15/25 60 N/S 2.16–16.35 2.13
[43]Pepper 4/30 13.3 N/S 1.61–15.85 2.61

Latvia Basil 0/50 0 - - 2.40 [44]
Black pepper 0/50 0 - - 1.50
Nutmeg N/S D N/S 14.00 * 1.50
Oregano 0/50 0 - - 2.40
Thyme 0/50 0 - - 2.40

Poland Allspice 1/5 20 0.20 * 0.20 * 0.30 [45]
Basil 1/3 33 0.05 * 0.05 * 0.30
Black pepper, grain 4/4 100 23.57 ↑ N/S 0.30
Black pepper,
ground 4/5 80 9.46 N/S 0.30

Cayenne pepper 5/8 63 45.64 ↑ N/S 0.30
Cinnamon 3/4 75 2.14 N/S 0.30
Cloves 1/2 50 0.48 * 0.48 * 0.30
Curry 5/5 100 19.01 ↗ N/S 0.30
Garlic 2/3 67 0.11 N/S 0.30
Marjoram 4/5 80 7.13 N/S 0.30
Nutmeg 2/5 40 2.73 N/S 0.30
Oregano, whole 1/2 50 9.38 * 9.38 * 0.30
Oregano, crushed 2/4 50 22.12 ↗ N/S 0.30
Rosemary 1/2 50 5.07 * 5.07 * 0.30
Tarragon 1/1 100 6.98 * 6.98 * 0.30
Thyme 3/3 100 15.59 ↗ N/S 0.30
Turmeric 1/1 100 11.72 * 11.72 * 0.30
White pepper 6/7 86 29.41 ↑ N/S 0.30

Spain Chilli 35/35 100 N/S 0.62–44.60 0.10 [46]
Paprika 63/64 98 N/S 281.00 M 0.10

Note: n: number of samples; n+: number of positive samples: n+%: per cent of positive samples; *: the only measured concentration; M: the
maximum concentration (the whole range is not known); -: no data; N/S: not specified; D: detected (the quantity of positive samples is not
known); ND: not detected; ↑: the average OTA concentrations in regulated spices exceeding the relevant European Union limits EC No.
1881/2006 as in force [47];↗: the average OTA concentrations exceeding the limit of 15 ng g−1, which is currently proposed for ‘all spices’
by the European Commission [48].
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However, several single-kind spices have never (or not recently) been tested for OTA.
Therefore, this study aims to determine OTA in a wider range of spice types to obtain an
overview of the current state of the OTA contamination of spices sold on the Czech market.
As far as the authors know, globally, this is the first study dealing with OTA in many kinds
of spices that are based on a single plant species.

2. Materials and Methods
2.1. Sample Collecting

Fifty-four single-kind of traditional and less traditional spices (six samples of different
batches per kind of spice, 324 samples in total, each in the amount of 30–100 g) were
collected in the years 2019–2020. Of this number, 300 samples (92.6%) were imported and
24 samples (7.4%) were of Czech provenance. The characterisation of all single-kind spice
samples was performed (see Table 2). All samples were stored in consumer packaging or
polypropylene bags at laboratory temperature (21 ± 0.5 ◦C) in a dry place in the dark until
sample preparation before analysis. Most samples originated from Asian and European
countries (see Figure 1).

Table 2. The characterisation of spice samples.

No. Spices Latin Name Form Country of Origin

1 Allspice Pigmenta officinalis Lindl. milled Mexico
2 Anise Pimpinella anisum L. whole Egypt
3 Asafoetida * Ferula assa-foetida L. milled India
4 Basil Ocimum basilicum L. scrubbed Egypt
5 Bay leaf Laurus nobilis L. milled Turkey
6 Black cumin * Nigella sativa L. whole India
7 Black pepper Piper nigrum L. milled Spain
8 Calamint * Saturea hortensis L. scrubbed Germany
9 Caraway Carum carvi L. milled Czech Republic
10 Cardamom Elateria cardamomum L. milled Guatemala
11 Cayenne pepper Capsicum frutescens L. milled Indonesia
12 Celery root * Apium graveolens L. whole Czech Republic
13 Chervil * Anthriscus cerefolium (L.) Hoffm. scrubbed Germany
14 Chilli crushed with seeds Capsicum frutescens L. crushed Thailand
15 Chilli milled Capsicum frutescens L. milled India
16 Chives * Allium schoenoprasum L. chopped China

17 Cinnamon Cinnamomum burmannii (Nees & Th. Nees)
Nees ex Blume milled Indonesia

18 Citronella * Cymbopogon citratus (DC- ex Nees) Stapf cut Albania
19 Clove Eugenia caryophyllata L. milled Madagascar
20 Coriander Coriandrum sativum L. milled Czech Republic
21 Cumin Cuminum cyminum L. milled India
22 Dried dill tip * Anetum graveolens L. chopped Czech Republic
23 Fennel Foeniculum vulgare Mill. whole Egypt
24 Fenugreek Trigonella foenum-graecum L. milled India
25 Galangal root * Alpinia glanga (L.) Wild. milled China
26 Garlic Allium sativum L. granulated China
27 Ginger Zingiber officinale Roscoe milled Peru
28 Green pepper * Piper nigrum L. milled India
29 Juniper * Juniperus communis L. milled Pakistan
30 Lemon peel * Citrus limon (L.) Burm. f. milled Spain
31 Liquorice root Glycyrhiza glabra L. crushed China
32 Lovage * Levisticum officinale W.D.J. Koch cut Poland
33 Mace Myristica fragrans Houtt. milled Indonesia
34 Marjoram Majorana hortensis L. scrubbed Egypt
35 Mint Mentha piperita L. milled Egypt
36 Nutmeg Myristica fragrans Houtt. milled Indonesia
37 Orange peel * Citrus aurantium L. milled Spain
38 Oregano Origanum vulgare L. cut Turkey
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Table 2. Cont.

No. Spices Latin Name Form Country of Origin

39 Parsley Petroselinum sativum Hoffm. chopped Poland
40 Pink pepper * Schinus terebinthifolius Raddi whole Brazil
41 Rosemary Rosmarinus officinalis L. cut Morocco
42 Saffron Crocus sativus L. whole Spain
43 Sage Salvia officinalis L. scrubbed Germany
44 Sichuan pepper * Zanthoxylum piperitum (L.) DC. whole China
45 Star anise * Illicium verum Hook. f. milled India
46 Sumac Rhus coriaria L. milled Turkey
47 Sweet paprika Capsicum annuum L. milled Hungary
48 Tarragon cut Artemisia dracunculus L. cut Poland
49 Thyme Thymus vulgaris L. whole Poland
50 Turmeric Curcuma longa L. milled India
51 Vanilla * Vanilla planifolia Jacks. Ex Andrews milled Tahiti
52 White pepper Piper nigrum L. milled Vietnam
53 White mustard * Sinapis alba L. milled Ukraine
54 Wild garlic * Allium usrinum L. cut Bulgaria

Notes: *: spices in which OTA has never (or not recently) been studied according to the available literature (see Table 1).
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Figure 1. The origin of spice samples.

2.2. Sample Preparation—OTA Purification by Immunoaffinity Chromatography

All spice samples were properly homogenised using a laboratory homogenizer. The
separation step was performed using a modified method according to Zimmerli and
Dick [49] using immunoaffinity chromatography to increase both the selectivity and sensi-
tivity of the method. The immunoaffinity chromatography uses immunoaffinity columns
(IACs) operating specifically on the principle of antigen–antibody. The method consists of
binding the antigen (OTA) by special anti-OTA antibodies anchored in the column. After
the application of the washing solution, the other potentially interfering substances are
removed from the column. The bound OTA is then released with acidified methanol from
the antigen–antibody complex [49].

2.3. Chemicals and Apparatus

Methanol (CH3OH), acetonitrile (C2H3N), and chloroform (CHCl3) (all of HiPer-
Solv CHROMANORM gradient grade), formic acid 85% (HCOOH) pro-analysis (p.a.),
orthophosphoric acid 85% (H3PO4) (HiPerSolv CHROMANORM), glacial acetic acid
(CH3COOH), di-sodium hydrogen phosphate anhydrous (Na2HPO4), sodium hydrogen



Foods 2021, 10, 2984 8 of 17

carbonate (NaHCO3), sodium chloride (NaCl), and sodium hydroxide (NaOH) (all of
AnalaR NORMAPUR) were purchased from VWR (Stříbrná Skalice, Czech Republic). All
chemicals were stored at laboratory temperature 21 ± 0.5 ◦C. Analytical standard of OTA
(Petromyces albertensis, ≥98%, HPLC) was purchased from VWR (Stříbrná Skalice, Czech
Republic) and produced by Sigma-Aldrich spol. s r.o. (Prague, Czech Republic). The
analytical standard was stored in a laboratory freezer at −20 ◦C. Immunoaffinity columns
(IACs) OCHRAPREP® were purchased from Jemo Trading spol. s r.o., Profood (Bratislava,
Slovakia) and produced by R-Biopharm (Darmstadt, Germany). Nylon syringe filters
(13 mm, 0.22 µm) produced by Labstore (Inverness, Highland, UK) and were purchased
from HPST s.r.o. (Prague, Czech Republic).

All solutions were prepared in ultrapure water using a Milli-Q system (Millipore,
Milford, MA, USA) (hereinafter referred to as ‘water’). The resistivity of ultrapure water
was >18.2 MΩ.cm at 25 ◦C

A IKA A 10 basic homogeniser manufactured by IKA—WERKE GMBH & CO. KG
(Staufen, Germany) was purchased from Fisher Scientific, spol. s r.o. (Pardubice, Czech
Republic); an analytical balance KERN EW1500-2 manufactured by KERN & SOHN GmbH
(Balingen, Germany) was purchased from Fisher Scientific, spol. s r.o. (Pardubice, Czech
Republic); a Reax Multi shaker manufactured by Heidolph Instruments GmbH & Co.
KG (Schwabach, Germany) was purchased from Fisher Scientific, spol. s r.o. (Pardubice,
Czech Republic); and a laboratory centrifuge MPW 351e manufactured by MPW MED.
Instruments (Warsaw, Poland) was purchased from Unimed Praha, spol. s r.o. (Prague,
Czech Republic).

HPLC-FLD, Agilent 1260 Infinity II coupled to 1260 Infinity II Fluorescence Detector
manufactured by Agilent (Santa Clara, CA, USA) was purchased from HPST s.r.o. (Prague,
Czech Republic).

2.4. Solution Preparation
2.4.1. 3% Solution of Sodium Hydrogen Carbonate (NaHCO3)

A total of 30 g of NaHCO3 was quantitatively transferred to a 1000 mL volumetric
flask (hereinafter referred to as ‘flask’) and dissolved in a small amount of water. After
dissolving the batch, the flask was made up with water.

2.4.2. Phosphate Saline Buffer Containing 15% Methanol (PBS-15% Methanol)

PBS consists of two solutions: solution A (0.02 mol L−1 Na2HPO4 at pH 7.4) and
solution B (0.29 mol L−1 NaCl). Solution A: A total of 1.42 g of NaHPO4 was quantitatively
transferred to a 500 mL flask and dissolved in a small amount of water. After dissolving
the batch, the flask was made up with water. The pH at 7.4 was adjusted with 85% H3PO4.
Solution B: A total of 8.47 g of NaCl was quantitatively transferred to a 500 mL flask and
dissolved in a small amount of water. After dissolving the batch, the flask was made up
with water. PBS was obtained by mixing both prepared solutions A and B in a ratio of 1:1.
PBS is stable for one year. PBS-15% methanol was obtained by mixing 850 mL of PBS and
150 mL of methanol.

2.4.3. 3% Buffer Solution of Ortho-Phosphoric Acid (H3PO4) and Sodium Chloride (NaCl)
at pH 1.6

A total of 116.9 g of NaCl was quantitatively transferred to a 1000 mL flask and
dissolved in a small amount of water. After dissolving the batch, a total of 33.7 mL of
H3PO4 was pipetted into the flask. The flask was made up with water. The pH at 1.6 was
adjusted with NaOH. The solution is stable for six months.

2.4.4. Elution Solution of Methanol (CH3OH) Acidified by Glacial Acetic Acid (CH3COOH)

A total of 2 mL of CH3COOH was pipetted into a 100 mL flask. The flask was made
up with CH3OH.
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All of these solutions were kept at 5 ± 0.5 ◦C. Before direct use, they were tempered
at a laboratory temperature of 21 ± 0.5 ◦C.

2.4.5. OTA Working Standard Solution at a Concentration of 40 µg L−1 (25 mL)

A total of 100 µL of OTA stock solution at concentration of 1000 µg L−1 was pipetted
into a 25 mL flask. The flask was made up with CH3OH.

Stock and working standard solutions were kept at −20 ± 0.5 ◦C.

2.4.6. Calibration OTA Standards

A total of six calibration OTA standards (0.10, 0.25, 0.50, 1.00, 2.00, and 4.0 ng mL−1)
were prepared with a linear response on each day of the measurement from the working
solution (40 µg L−1) by its dilution in the mobile phase (MP) in a ratio reaching the target
concentration. The determination coefficient was 0.9999. A blank sample consisting of the
mobile phase was also prepared fresh daily.

2.4.7. Mobile Phase (MP)

The MP consisted of two solutions: solution A (acetonitrile:acetic acid, 99:1) and
solvent B (water:acetic acid, 99:1). Solvents were used in ratio 40:60; A:B.

2.5. Workflow
2.5.1. OTA Extraction

A total of 2 g of the sample was weighed into a polypropylene centrifuge tube (here-
inafter referred to as the tube), 10 mL of buffer was added and left to shake using Vortex
(1 min). The extraction step with 4 × 5 mL of chloroform was performed using Vortex
(3 min) and a centrifuge (15 min; 3305× g; at laboratory temperature 21 ± 0.5 ◦C). The
lower chloroform phase was collected into a glass vial and left to evaporate under nitrogen
at 45 ◦C to dryness. The residue was dissolved in 5 mL of chloroform using Vortex (5 min).
The dissolved residuum was transferred to a new tube. Extraction with 2 × 5 mL of 3%
solution of sodium bicarbonate was performed using Vortex (3 min) and a centrifuge (5 min;
2000× g, at laboratory temperature 21 ± 0.5 ◦C) to achieve a compact thin layer between
two phases. The upper aqueous bicarbonate phase was collected into a new tube in which
1 mL of chloroform and 0.5 mL of 85% formic acid had been prepared. The re-extraction of
aqueous bicarbonate with 2 × 2 mL of chloroform was performed using the Vortex (3 min)
and centrifuge (5 min; 2000× g, at laboratory temperature 21± 0.5 ◦C) to achieve a compact
thin layer between two phases. The lower chloroform phase at the bottom of the tube was
collected into a glass vial and left to evaporate to dryness under a nitrogen stream at 45 ◦C.

2.5.2. OTA Separation

The residue was dissolved in 20 mL of PBS–methanol 15% using Vortex (5 min). A
laboratory ultrasonic bath was used (10 min) to enhance the dissolution of the residue.

The IACs were brought to the laboratory temperature (at 21± 0.5 ◦C for approximately
1
2 –1 h) and the buffer was released. A total of 20 mL of PBS–methanol 15% was transferred
to the reservoir above the IAC and left to pass through IAC (at one drop per second;
2 mL min−1). The IACs were purified with 20 mL of water (at one drop per s) followed
by brief air sieving (1–2 s). The elution of potential OTA was performed with 1.5 mL of
methanol:acetic acid (98:2) into a small glass vial (at one drop per second) and followed
by strong air sieving (30 s). The 1.5 mL eluate was evaporated under a nitrogen stream at
45 ◦C to dryness and kept in the laboratory fridge at 4 ◦C until analysis with HPLC-FLD.
Before analysis, samples were dissolved in 0.5 mL of MP using an ultrasonic bath (5 min;
37 kHz; at laboratory temperature 21 ± 0.5 ◦C) and passed through a nylon syringe filter
(13 mm, 0.22 µm) into a vial for HPLC.
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2.5.3. Analysis of Ochratoxin A in Spices by HPLC-FLD

HPLC-FLD was employed for the determination of OTA. The column (Kinetex C18,
2.6 µm, 100 Å, 50 × 21 mm) coupled with a security GuardTM column (Phenomenex C18,
4 × 2.0 mm) was purchased from Chromservis s.r.o. (Prague, Czech Republic) and were
used and kept at 30 ◦C. The MP was set at a flow rate of 0.2 mL min−1. The injection volume
was 8.0 µL. Fluorescence detection was performed at an excitation wavelength of 333 nm
and an emission wavelength of 465 nm, PMT gain 18, attenuation 100 LU. Chromatography
software Agilent OpenLab software was used to collect the chromatographic data. The
method was validated. The limit of detection (LOD) was 0.03 ng g−1 and the limit of
quantification (LOQ) was 0.1 ng g−1. The recovery of the method was verified using
samples spiked with OTA. No reference material for the determination of OTA in spices
was available during the period of this research. Therefore, the recovery was performed
via spiked spice samples at OTA concentration levels of 0.5 and 2.0 ng g−1. OTA levels
of 0.5 ng g−1 and 2.0 ng g−1 were added to the matrix before the extraction step, both
concentrations in triplicate. The same concentrations were added after the separation
step on immunoaffinity columns to the eluate, both concentrations in triplicate again. A
total of 12 spiked samples were analysed for OTA. The recovery was determined for both
concentration levels based on matrix effect—the ratio of the mean concentrations of samples
with spiked matrix and samples with spiked eluate. The mean recovery was 74.2%, which
fulfils the requirements of Regulation (EC) No. 401/2006 [50]. The repeatability standard
deviation (RSD) was 0.76%. The mean measurement uncertainty was 4.03% including all
kind of spices. OTA retention time was 5.4 min. The calibration curve consisted of six
levels of concentrations (0.10, 0.25, 0.50, 1.00, 2.00, and 4.00 ng mL−1). All samples with a
concentration outside the calibration curve were diluted or concentrated to reach value
within the calibration curve. The chromatographs of OTA standard solution (4.00 ng mL−1)
and one of the samples (33-mace) are shown in Figure 2.
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Figure 2. HPLC-FLD chromatogram showing peaks of OTA in spice sample 33 (mace) and standard
solution (4.0 ng mL−1) at a retention time of 5.4 min.

3. Results

A total of 101 (31%) spice samples of 19 spice kinds were positive (exceeding LOQ of
0.1 ng g−1) for OTA (see Table 3). The concentrations of positive samples were in the range
of 0.11 ng g−1 (for pink pepper) to 38–46 ng g−1 (for turmeric).
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Table 3. The concentrations of OTA in a total of 20 positive single-kind spices available on the Czech market.

No. Kind of Spice Incidence n+/n Mean ± SD
(ng g−1)

Median
(ng g−1)

95th Perc.
(ng g−1)

Range Min–Ma
X (ng g−1)

50 Turmeric 6/6 19.82 ± 11.93 17.04 36.01 5.13–38.46
31 Liquorice root 6/6 11.94 ± 3.27 12.10 16.18 7.57–17.42
15 Chilli milled 6/6 7.50 ± 1.34 7.78 8.96 5.28–9.27
33 Mace 6/6 5.27 ± 0.83 5.25 6.22 3.94–6.33
27 Ginger 6/6 3.40 ± 0.48 3.46 3.91 2.18–3.93
11 Cayenne pepper 6/6 2.59 ± 0.61 2.71 3.21 1.67–3.27
47 Sweet paprika 6/6 2.26 ± 0.60 1.99 3.06 1.73–3.12
14 Chilli crushed with seeds 6/6 1.43 ± 0.48 1.41 1.98 0.82–2.03
51 Vanilla 6/6 1.42 ± 0.33 1.49 1.72 0.82–1.74
37 Orange peel 6/6 1.04 ± 0.30 1.04 1.41 0.63–1.47
21 Cumin 5/6 0.46 ± 0.27 0.55 0.70 <LOQ–0.72
36 Nutmeg 5/6 0.43 ± 0.30 0.49 0.78 <LOQ–0.84
53 White mustard 5/6 0.38 ± 0.30 0.32 0.76 <LOQ–0.79
52 White pepper 5/6 0.36 ± 0.23 0.37 0.61 <LOQ–0.62
7 Black pepper 5/6 0.31 ± 0.20 0.37 0.52 <LOQ–0.53
19 Clove 5/6 0.29 ± 0.18 0.33 0.48 <LOQ–0.50
30 Lemon peel 5/6 0.18 ± 0.12 0.18 0.32 <LOQ–0.36
46 Sumac 5/6 0.14 ± 0.08 0.14 0.24 <LOQ–0.26
40 Pink pepper 1/6 0.11 * 0.11 * - <LOQ–0.11

Note: n: number of samples; n+ = positive samples > LOQ = 0.10 ng g−1; SD = standard deviation; 95th perc = 95% percentile; *: the
only one positive sample; left censored data: samples that contained OTA levels below LOQ were assigned a value 0 ng g−1 for statistical
processing (<LOQ = 0 ng g−1)—the lower bound approach (LB) [51].

4. Discussion
4.1. Comparison of OTA Results in Spices with Other Relevant Studies in the World

To our knowledge, the set of spices analysed in this study has not been comprehen-
sively analysed for OTA in other research papers, which makes it difficult to compare the
whole dataset with the existing studies. Moreover, some types of spices included in this
study such as asafoetida, black cumin, calamint, celery root, chervil, chives, citronella,
dried dill tip, galangal root, green pepper, juniper, lemon peel, lovage, orange peel, pink
pepper, Sichuan pepper, star anise, vanilla, white mustard, and wild garlic have never, or
not recently, been analysed for the presence of OTA in other studies. The benefit of this
study is certainly a positive OTA finding in some of these previously unanalysed spices
such as lemon peel, orange peel, pink pepper, vanilla, and white mustard.

Therefore, we focused on evaluating our above-detection limit results in relation to
the studies listed in Table 1. The comparability was possible with spices such as turmeric,
liquorice, chilli, mace, ginger, cayenne pepper, sweet paprika, cumin, nutmeg, white pepper,
black pepper, clove, and sumac.

To evaluate the general occurrence of OTA in given spices, we used categories from
our previous study by Picková et al. [4]. These categories are based on the percentage of a
total number of positive findings out of a total number of samples tested in a given spice
based on recent relevant studies since 2015. These categories are: ‘no occurrence’ (0%),
‘rare occurrence’ (up to 5%), ‘low occurrence’ (up to 25%), ‘moderate occurrence’ (up to
50%), ‘high occurrence’ (up to 75%), and ‘very high occurrence’ (more than 75%).

OTA in turmeric was found to be of a ‘moderate occurrence’. Across all studies
presented in Table 1, the average OTA concentration in turmeric was in the range of 1.89–
162.00 ng g−1 [23,24,26,29–31,45] or was not detected at all [27]. In our study, the average
concentration of 17.04 ng g−1 in turmeric fell within the range found in the literature. The
greatest similarity of results could be observed with the average OTA concentration of
11.72 ng g−1 in the Polish study [45]. In our study, it was the only one spice kind with OTA
concentration exceeding the EU limit of 15 ng g−1 [47]. Given the origin of our samples of
turmeric in India, undoubtedly the largest producer of spices in the world [5], the average
concentration of 17.04 ng g−1 does not seem to be as severe as the average concentration of
162.00 ng g−1 found in the Indian study [24].

OTA in liquorice was found to be of a ‘moderate occurrence’ [9]. Across all studies
mentioned in Table 1, the average OTA concentration in liquorice was found in the range
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of 2.00–15.80 ng g−1 in only two studies [22,40]. In our study, liquorice with the average
OTA concentration of 11.94 ng g−1 was within the range found in the literature and was
nearly in line with the OTA concentration of 15.80 ng g−1 in the Czech study [40]. The EU
limit of 20 ng g−1 for OTA was not exceeded in any of the liquorice samples [47].

OTA in chilli was found to be of a ‘moderate occurrence’ [4]. Across all of the
studies mentioned in Table 1, the average OTA concentration was found in the range
of 0.62–97.10 ng g−1 [16,17,19,21,23,25,26,29–31,33,37,39,40], but it was not detected in an-
other study [32]. In our study, both average OTA concentrations of 7.50 ng g−1 in milled
chilli and 1.43 ng g−1 in crushed chilli with seeds were within the range found in the
literature. The average OTA concentration for milled chilli was very similar to the average
OTA concentrations of 6.77 ng g−1 in Chinese [21], 7.70 ng g−1 in Lebanese [29], 7.15 ng g−1

in Malaysian [33], and 6.7 ng g−1 in Czech studies [40], while for crushed chilli with seeds
to the OTA concentrations of 1.50 ng g−1 in the Ivory Coast study [17]. The EU limit of
20 ng g−1 for OTA was not exceeded in any of the chilli samples [47].

OTA in mace was found to be of a ‘high occurrence’ [4]. It is necessary to note that this
statement was based on only one Indian study in which the average OTA concentration
of 128 ng g−1 was found in mace [24]. In contrast, the average OTA concentration of
5.27 ng g−1 in mace was much lower in this study.

OTA in ginger was found to be of a ‘moderate occurrence’ [4]. Across all stud-
ies mentioned in Table 1, the average OTA concentration was found in the range of
0.22–82.80 ng g−1 [16–18,23], but it was not detected at all in other studies [29,30]. In
our study, the average OTA concentration of 3.40 ng g−1 in ginger was in the range found
in the literature. The greatest similarity was observed with the average OTA concentration
of 3.75 ng g−1 found in the Nigerian study [18]. The EU limit of 15 ng g−1 for OTA was not
exceeded in any of the ginger samples [47].

The average OTA concentration of 2.59 ng g−1 in cayenne pepper in our study was
not in line with the average OTA concentration of 45.64 ng g−1 in the Polish study, which
was the only study available for the comparison. The EU limit of 15 ng g−1 for OTA was
not exceeded in any of the cayenne pepper samples [47].

OTA in paprika was found to be of a ‘high occurrence’ [4]. Across all studies
mentioned in Table 1, the average OTA concentration was found in the range of 11.00–
39.64 ng g−1 [19,29,30,40,42,46], but was not detected in another study [27]. In our study,
the average OTA concentration of 2.26 ng g−1 in sweet paprika was not in the range found
in the literature, as it was lower than the average OTA concentration of 11.00 ng g−1 in the
Lebanese study [29]. The EU limit of 15 ng g−1 for OTA was not exceeded in any of the
sweet paprika samples [47].

OTA in cumin was found to be of a ‘low occurrence’ [4]. Across all studies mentioned in
Table 1, the average OTA concentration was found in the range of 0.63–20.4 ng g−1 [21,29,31,39],
but it was not detected at all in another study [23]. In our study, the average OTA concen-
tration of 0.46 ng g−1 in cumin was not within the range found in the literature as it was
lower than the average OTA concentration of 0.63 ng g−1 in the Turkish study [39].

OTA in nutmeg was found to be of a ‘very high occurrence’ [4]. Across all stud-
ies mentioned in Table 1, the average OTA concentration was found in the range of
2.73–34.00 ng g−1 [29,30,40,44,45]. In our study, the average OTA concentration of 0.43 ng g−1

in nutmeg was not within the range found in the literature as it was lower than the average
OTA concentration of 2.73 ng g−1 in the Polish study [45]. The EU limit of 15 ng g−1 for
OTA was not exceeded in any of the nutmeg samples [47].

OTA in white pepper was found to be of a ‘low occurrence’ [4]. Across all studies
mentioned in Table 1, the average OTA was found in the range of 3.30–29.41 ng g−1 in
only two studies [15,45], but it was not detected at all in other studies [20,29–31,41]. In
our study, the average OTA concentration of 0.36 ng g−1 in white pepper was not within
the range found in the literature as it was lower than the average OTA concentration of
3.30 ng g−1 in the Cameroonian study [39]. The EU limit of 15 ng g−1 for OTA was not
exceeded in any of the white pepper samples [47].
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OTA in black pepper was found to be of a ‘moderate occurrence’ [4]. Across all
studies mentioned in Table 2, the average OTA concentration was in the range of 0.34–
155.00 ng g−1 [15,17,23–25,27,29–31,39,40,45] or was not detected at all [16,20,31,41,44]. In
our study, the average OTA concentration of 0.31 ng g−1 in black pepper was not within
the range found in the literature as it was found to be very similar, but slightly lower, than
the OTA concentration of 0.0.34 ng g−1 in the Turkish study [39]. The EU limit of 15 ng g−1

for OTA was not exceeded in any of the black pepper samples [47].
OTA in cloves was found to be of a ‘none occurrence’ [4], however, the study by

Pickova et al. [4] dealt with only the most recent publications concerning spices since
2015 [15,20,29,30]. There has been one case of a positive finding with the average OTA
concentration of 0.48 ng g−1 in cloves in an older Poland study [45] with which our result
is in agreement as the average OTA concentration of 0.29 ng g−1 was in cloves.

OTA in sumac was found to be of a ‘none occurrence’ [4]. This statement was based
on only one study in Lebanon [29]. In contrast, our study provided a positive finding of
OTA in sumac with an average concentration of 0.14 ng g−1, which can be considered a
benefit of the study.

OTA was not found in the other spice kinds included in this study. Our under-
detection limit results were in line with the statement of ‘none occurrence’ in cases of
allspice [29,30], basil [29,44], bay leaf [29], mint [29], oregano [20,29,44], parsley [29],
saffron [29], and thyme [29,44]. However, there is one older Polish study that contradicts
this statement and thus our results, as it presented positive results for the presence of OTA
in allspice, basil, oregano, and thyme [45].

4.2. Comparison of OTA Results in Spices with the Maximal Limits of the EU Legislation

Commission Regulation (EC) No. 1881/2006 [47] is one of the most extensive and
stringent regulations setting maximum limits for certain contaminants including mycotox-
ins in foodstuffs, as amended, and is suitable for comparing the results obtained, especially
because of its complexity with regard to spices. Moreover, all samples were purchased
in the Czech Republic, which is one of the 27 Member States of the EU, therefore only
the EU limits were considered. Results showed that only one sample (50-turmeric) was
contaminated with OTA at a concentration exceeding the maximal limit set by the European
Union. A comparison of OTA concentrations that have been found so far in regulated
spices with the maximal limits of the EU legislation is presented in Table 4.

Table 4. The concentrations of OTA in positive single-kind spices available on the Czech market and
comparison with the European Union legislation.

Number of Sample Kind of Spice OTA Concentration 1

(ng g−1)
EU Limits 2

(ng g−1)

50 Turmeric 19.82 3 15
31 Liquorice root 11.94 20/80 4

15 Chilli milled 7.50 20
27 Ginger 3.40 15
11 Cayenne pepper 2.59 20
47 Sweet paprika 2.26 15
14 Chilli crushed with seeds 1.43 20
36 Nutmeg 0.43 15
52 White pepper 0.36 15
7 Black pepper 0.31 15
40 Pink pepper 0.11 15

1 Positive samples are all samples with concentrations exceeding the limit of quantification of 0.13 ng g−1; 2 EU
limits refer to the maximum levels of OTA in spices under the European Union—Regulation No. 1881/2006 as in
force [47]; 3 OTA concentration exceeding the maximum permitted limit set by the European Union legislation;
4 The maximum limit of OTA of 20 ng g−1 is valid for ‘Liquorice root, an ingredient for herbal infusion’. The maximum
limit of OTA of 80 ng g−1 is valid for ‘Liquorice extract for use in food in particular beverages and confectionary’
provided that it is pure and an undiluted extract is obtained whereby 1 kg of extract is obtained from 3 to 4 kg of
liquorice root [47].
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4.3. Proposal for New Maximum Limits for OTA in the EU and FAO/WHO Codex Alimentarius

The issue of OTA was also recently discussed in the meeting from 14 to 15 July 2021 at
the Working Group for Agricultural Contaminants of the Directorate-General for Health
and Food Safety, the European Commission. Amendments to the draft maximum levels
for OTA in food for which there are currently no limits and the draft maximum limits for
spices for which there are currently limits are currently under discussion and consideration
(see Table 5) [48].

Table 5. The draft proposal of the maximum limits of OTA in spices.

Food Proposal of Maximum Limits
(ng g−1)

All spices including dried spices except Capsicum spp. 15
Capsicum spp. (dried fruits, whole or ground, including chilli,

ground chilli, cayenne pepper and red pepper—paprika) 20

Mixtures of spices 15
Processed according to [48].

The issue of OTA was also recently discussed in the report of the 14th Session of the
Codex Committee on Contaminants in Foods by the Codex Alimentarius Commission
(virtual) 3–7 and 13 May 2021. They discussed the maximum limits for OTA in nutmeg,
dried chilli and paprika, ginger, pepper, and turmeric for comments and consideration by
the Session of the Codex Committee on Contaminants in Foods in the year 2022. Maximum
limits of 15–20 ng g−1 for OTA in spices should be established [52].

4.4. The Occurrence of OTA in Spices on Data by RASFF (2016–2021)

Rapid Alert System for Food and Feed (RASFF) is a key tool ensuring food safety in
the context of the EU and enables one to orientate oneself in the issue of OTA occurrence in
various foods including spices. Notifications reporting the presence of OTA in spices are
also valuable information for completing the idea of the current state of distributed spices.
Based on the RASFF database, a total of 58 OTA notifications have been related to spices
since 2016 (see Figure 3). The most prevalent notifications concerned OTA in chilli (33%),
sweet paprika powder (21%), and nutmeg (17%). Most OTA notifications originated in
India (17%, mostly chilli) and Indonesia (16%, mostly nutmeg).
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Figure 3. Notifications of ochratoxin A in spices by the Rapid Alert System for Food and Feed
(RASFF) since 2016 (current to the 20 July 2021). Notes: The category ‘Other countries’ includes all
countries of origin with only one notification for spices: Azerbaijan, Bangladesh, France, Germany,
Hungary, Italy, Lebanon, Peru, Portugal, Thailand, Ukraine, the United Kingdom, and Vietnam, or
notification of unknown origin. Processed according to the RASFF database [53] using The Sankey
Diagram Generator online tool and vector graphics editor Inkscape 0.92.
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5. Conclusions

Human dietary exposure to OTA from foodstuffs is very common. Despite various
effective methods for OTA mitigation and the reduction of possible health risks of OTA
in foodstuffs, OTA is still a persistent problem. Although spices are not among the main
sources of daily OTA intake in humans, they may contribute significantly to the co-exposure
with major OTA sources such as cereals, wine, pork meat, and coffee. This may result in an
additive effect and thus an increase in OTA toxicity. The significance of this study lies in
the analysis of a large number of types of spices for OTA, focusing only on single-species
spices, not mixtures of spices. In this study, the analysis of 54 single-kind species showed
a total of 19 (35%) OTA-positive spice kinds, meaning that at least one sample of a given
spice kind exceeded LOQ by its concentration. Among these OTA-positive spice kinds
were turmeric, liquorice root, chilli milled, mace, ginger, cayenne pepper, sweet paprika,
chilli crushed with seeds, vanilla, orange peel, cumin, nutmeg, white mustard, white
pepper, black pepper, clove, lemon peel, sumac, and pink pepper. This study therefore
demonstrates that the Czech population is exposed to OTA through various contaminated
single-kind spices available on the Czech market.

As can be seen, the spice kinds with OTA-positive findings included regulated spice
kinds but also those for which regulation has not yet been set, namely mace, vanilla, orange
peel, cumin, white mustard, cloves, lemon peel, sumac, and basil. Fortunately, promising
discussions are already taking place in the European Commission, in which, among other
things, a limit for ‘all spices’ has been proposed at 15 ng g−1, but has not been adopted yet.
Taking into consideration this proposed limit for all hitherto unregulated spices, none of
the analysed spice samples exceeded this value in this study.

In terms of public health protection, where food safety is an important preventive
component, it is necessary to regulate various mycotoxin contents in various spices. Hence,
our future research will focus not only on OTA monitoring, but also on the other mycotoxins
in spices, as it will be important to verify the mycotoxin intake from this commodity.
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