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Abstract: Genetic studies have identified 61 variants associated with the risk of developing Type 1
Diabetes (T1D). The functions of most of the non-HLA (Human Leukocyte Antigen) genetic variants
remain unknown. We found that only 16 of these risk variants could potentially be linked to a
protein-coding change. Therefore, we investigated whether these variants affected susceptibility by
regulating changes in gene expression. To do so, we examined whole transcriptome profiles of 600
samples from the Type 1 Diabetes Genetics Consortium (T1DGC). These comprised four different
immune cell types (Epstein-Barr virus (EBV)-transformed B cells, either basal or after stimulation;
and cluster of differentiation (CD)4+ and CD8+ T cells). Many of the T1D-associated risk variants
regulated expression of either neighboring (cis-) or distant (trans-) genes. In brief, 24 of the non-HLA
T1D variants affected the expression of 31 nearby genes (cis) while 25 affected 38 distant genes (trans).
The effects were highly significant (False Discovery Rate p < 0.001). In addition, we searched in public
databases for expression effects of T1D single nucleotide polymorphisms (SNPs) in other immune cell
types such as CD14+ monocytes, lipopolysaccharide (LPS) stimulated monocytes, and CD19+ B cells.
In this paper, we review the (expression quantitative trait loci (eQTLs) associated with each of the 60
T1D variants and provide a summary of the genes impacted by T1D risk alleles in various immune
cells. We then review the methodological steps involved in analyzing the function of genome wide
association studies (GWAS)-identified variants, with emphasis on those affecting gene expression.
We also discuss recent advancements in the methodologies and their advantages. We conclude by
suggesting future study designs that will aid in the study of T1D risk variants.
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1. Introduction

Four [1–4] genome wide association studies (GWAS), a linkage study [5], and five [6–10] other
studies have identified 61 genetic variants that confer risk of Type 1 Diabetes (T1D). In Figure 1a,
we summarize 60 non-HLA (Human Leukocyte Antigen) T1D risk loci identified so far. GWAS
typically involves (a) recruiting patient cohorts accurately diagnosed with the disease; (b) recruitment of
healthy controls; (c) sample collection and genotyping of individuals, typically at 500,000 markers
(Single Nucleotide Polymorphisms (SNPs)); (d) Imputation of potentially millions more SNPs;
and (e) performing association analysis of each SNP with the disease or trait of interest. All SNPs
that exceed stringent thresholds of significance (p < 5 × 10−8, suggestive p < 1 × 10−5) are deemed to
be associated with the disease. It is understood that known covariates (e.g., age, sex) and unknown
confounders (e.g., relatedness) could limit gene discovery, however, statistical approaches such as
principal component analysis (PCA) [11], clustering analysis [12], and linear mixed models [13] have
helped overcome such problems. Validation cohorts and studies in different populations provide
confirmation and improve confidence of gene-disease associations. However, all SNPs identified
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above genomic significance thresholds are treated as important. The results of GWAS are commonly
summarized as Manhattan plots where the X-axis is the genomic coordinates and the Y-axis is the negative
logarithm of the associated p-value for each SNP. Among the SNPs that exceed the significance threshold,
each risk locus is defined by a lead SNP with maximum association signal (lowest p-value) and all SNPs
in ±0.5 Mb of the lead SNP are excluded. Testing the genes nearest to the lead SNPs potentially reveals a
link between the locus and the disease, even though this may not be the best method for establishing
candidacy due to lack of evidence linking the lead SNP to the target gene. Nevertheless, in GWAS of T1D,
lead SNPs were found adjacent to genes like HLA [14], PTPN22 [15], INS [16], CTLA4 [17], and IL2RA
(also known as CD25) [18] that have all been reported since the pre-GWAS era.
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association studies (GWAS) association p-values; (b) Cis-regulated genes that were validated in more 
than one cell type. The grey cells indicate no significant regulation found. Shades of red represent the 
negative log10(P) association. The loci and cis-regulated genes are grouped according to chromosome. 
All loci with cis-regulated genes are highlighted by blue dashes. 

The T1D risk loci are interconnected (directly or indirectly) via networks; perturbations of these 
networks presumably cause disease. This could arise from the inability (or decreased ability) of the 
products of disease genes to interact with other gene products when such interactions are required. 
This may be caused by factors including: (a) functional variants; (b) gene expression changes; and (c) 
epigenetic aberrations such as differential methylation. Regarding effects on the protein sequence of 
the gene, amino acid changes caused by missense SNPs could either be tolerated or damaging; in 
both cases the protein’s function could be impacted. Similarly, the risk SNPs may affect transcription 
rates of genes. 

To formally establish disease gene candidacy, we performed a study [19] systematically 
evaluating each of 60 T1D risk loci. This revealed genes affected by missense SNPs and genes whose 
expression levels were perturbed with respect to T1D SNPs. We found that only 16 of the risk 
variants could potentially be linked to a protein-coding change. Expression effects were tested using 

Figure 1. Summary of Type 1 Diabetes (T1D) loci and candidate cis-regulated genes in immune cells:
(a) Non-HLA (human leukocyte antigen) T1D risk genes along with reported genome wide association
studies (GWAS) association p-values; (b) Cis-regulated genes that were validated in more than one
cell type. The grey cells indicate no significant regulation found. Shades of red represent the negative
log10(P) association. The loci and cis-regulated genes are grouped according to chromosome. All loci
with cis-regulated genes are highlighted by blue dashes.

The T1D risk loci are interconnected (directly or indirectly) via networks; perturbations of these
networks presumably cause disease. This could arise from the inability (or decreased ability) of the
products of disease genes to interact with other gene products when such interactions are required.
This may be caused by factors including: (a) functional variants; (b) gene expression changes; and (c)
epigenetic aberrations such as differential methylation. Regarding effects on the protein sequence of the
gene, amino acid changes caused by missense SNPs could either be tolerated or damaging; in both cases
the protein’s function could be impacted. Similarly, the risk SNPs may affect transcription rates of genes.

To formally establish disease gene candidacy, we performed a study [19] systematically evaluating
each of 60 T1D risk loci. This revealed genes affected by missense SNPs and genes whose expression
levels were perturbed with respect to T1D SNPs. We found that only 16 of the risk variants could
potentially be linked to a protein-coding change. Expression effects were tested using 600 samples from
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the Type 1 Diabetes Genetics Consortium (T1DGC) comprising four cell types (a) EBV (Epstein-Barr
virus) resting cells (b) PMA (Phorbol 12-myristate 13-acetate) stimulated EBV cells (c) cluster of
differentiation (CD)4+ T-cells, and (d) CD8+ T-cells. In these analyses, each T1D SNP was tested against
the whole transcriptome as individual traits and the association p-values were derived. The genes
were categorized based on their proximity to the corresponding T1D SNPs as: (a) cis-regulated
genes i.e., those within ±1 MB of the SNP and the remaining (b) trans-regulated genes. The false
discovery rate (FDR) method [20] was employed to allow for multiple testing; genes with FDR < 0.05
were deemed significant. The aims of this analysis were to identify genes that were up or down
regulated according to the risk SNP genotypes and to identify pathways and networks affected.
Similar expression studies [21–26] have analyzed the effect of SNPs (inclusive of T1D SNPs) on
expression of genes in eight cell types: (a) monocytes; (b) interferon-γ (IFN) stimulated monocytes;
(c) lipopolysaccharide (LPS) stimulated monocytes; (d) B-cells; (e) neutrophils; (f) dendritic cells;
(g) LPSs; and (h) FLU (Influenza virus) infected dendritic cells. A large meta-analysis of gene expression
effects in peripheral blood was also presented [25]. The associations in peripheral blood serve as
validation for associations found in other cell types. Individually, these studies had reported adjusted
(FDR) and unadjusted p-values for the SNP-gene associations that were deemed significant by them
using suitable FDR thresholds. We searched in these databases for gene expression effects of only T1D
SNPs. Based on the evidence available, we compared cis- and trans- regulated genes of each one of the
T1D SNPs in various immune cells and peripheral blood.

The results are summarized as genes regulated in multiple cells and cell-type specific genes.
FDR corrections remain specific to each study and expression quantitative trait loci (eQTLs) deemed
significant in each study were retrieved from their corresponding supplementary tables. In these
supplementary tables, we looked for reported eQTLs involving either lead T1D SNPs or any SNPs
in high linkage disequilibrium (LD) (i.e., r2 > 0.8) with the lead T1D SNPs. The list of LD SNPs was
obtained using LDlink [27]. Genes whose expression is associated with T1D SNPs in more than one
cell type are considered validated. However, for cell-type specific genes, only eQTLs reported below
arbitrary p-value thresholds of p < 1 × 10−4 (cis-regulated) and p < 1 × 10−8 (trans-regulated) were
investigated due to their lack of validation in other cells; the excluded eQTLs reported outside this
P range are nevertheless significant (as per the study-specific FDR thresholds). The lack of overlap
of these eQTLs in multiple cells can always be due to lack of power, however, cell-specificity cannot
be ruled out. Since genes in HLA have been studied elsewhere, the function of most of the non-HLA
genetic variants remains unknown, thus, we focus only on the non-HLA T1D SNPs. Enrichment
analysis was performed using the Molecular Signature Database (MsigDB) [28] to describe the possible
biological mechanism of the identified cis- and trans- regulated genes.

2. Gene Expression Studies in Immune Cells

The T1D risk SNPs are summarized in Figure 1a and reviewed in (refer to Table 1 in ref. [5,19]).
There has also been a flurry of publications [19,21–26,29–33] investigating the role of risk SNPs
regulating gene expression. Of these, seven studies [19,21–26] focused on cells involved in the immune
system and autoimmune diseases, hence, they are reviewed here. Firstly, we performed expression
analysis in four immune cells [19]: EBV transformed lymphoblastoid cell lines (LCLs) (resting and PMA
stimulated) and CD4+ and CD8+ T-cells of 600 subjects from the Type 1 Diabetes Genetics Consortium
cohort (T1DGC). The cohort comprised families of affected siblings. We identified 76 genes cis-regulated
by T1D SNPs with FDR < 0.05 (min p < 0.0008). Thirteen genes were cis-regulated in CD4+ and CD8+
cells, while 11 were cis-regulated in EBV and T-cells. In addition, we also identified 37 trans-regulated
genes (min p < 1 × 10−8). Secondly, Fairfax and colleagues reported the expression effects in CD19+
B-cells and CD14+ monocytes from 239 healthy volunteers of European ancestry [21]. Among the list of
significant associations reported, in the context of T1D SNPs there were 18 cis-regulated genes and 3
trans-regulated genes. Subsequently, they also reported expression analysis in CD19+ Monocytes in 432
healthy volunteers in [22] where monocytes were exposed to either interferon-γ or lipopolysaccharide
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(LPS) for a short (2-h) or long (24-h) duration. The study concluded that the majority of the cis genes
identified were condition-specific. Among these results, some 90 genes were cis-regulated in the context
of T1D SNPs and only five genes were trans-regulated. A third study [23] reported expression effects in
dendritic cells isolated from the peripheral blood monocytes (PBMCs) of 560 healthy individuals of
mixed ancestry (European, Asian, or African-American) from the PhenoGenetic cohort. Dendritic cells
were stimulated with LPS, influenza virus, or interferon-β. Among the 385 cis-eQTLs identified in this
study, seven were associated with T1D SNPs. Fourthly, Peters et al. [24] reported eQTL effects in primary
immune cells (CD14+ monocytes, CD19+ B-cells, CD4+, and CD8+ T-cells) in 180 subjects. A novel joint
analysis found cis-eQTLs that were cell-type and condition-specific. Twenty of the cis-regulated genes
reported in [19] were associated with T1D SNPs. Lastly, Westra et al. [25,26] performed a large scale
meta-analysis of expression eQTLs in peripheral blood and reported cis- and trans- genetic associations
using a less stringent threshold of FDR < 0.5, finding 77 cis- and 127 trans-regulated genes in association
with T1D SNPs. We combined the results from the above studies such that each record would contain:
SNP identifier (rsID), T1D locus name, gene name, unadjusted p-value, cell-type, and publication
reference. These data are summarized in Supplementary Materials Table S1.

3. Candidate Gene Identification

This section is sub-divided into cis-regulated genes and trans-regulated genes.

3.1. Cis-Regulated Genes

Most studies considered cis-regulated genes as being located within the ±1 MB of the SNP
position. Our search for genetic interaction associated with T1D SNPs in seven cell types [19,21–26]
revealed 90 genes that showed significant (FDR < 0.05) association in more than one cell type and 34
genes that were cell type-specific. In Figure 1b, we show the 90 genes and their association with 40
T1D loci where unadjusted association p-values extracted from corresponding studies are indicated
as a heatmap. These associations may be considered validated as they were replicated in multiple
cell types. Interestingly, eleven of the 90 genes were located in chromosome band 12q13 (commonly
referred to as the ERBB3 locus [34]). Additionally, cytogenetic bands 17q21 (ORMDL3) and 16p11
(IL27) included six and five cis-regulated genes, respectively. The remaining risk loci were associated
with expression of fewer genes. Enrichment analyses were performed in the Canonical pathways of
KEGG (www.genome.jp/kegg/) and Reactome (www.reactome.org) databases. In doing so, eight
genes (IFNGR1, IL7R, IL18R1, CCR3, CCR7, IL10, IL18RAP, and TNFSF12) were associated with the
cytokine-cytokine receptor interaction pathway (KEGG) (p = 3.82 × 10−8) while 12 genes (IFNGR1, IL7R,
SOCS1, TYK2, STAT2, PTPN2, CTLA4, RASGRP1, CTSH, ICAM3, CD226, and IFIH1) were associated
with immune system (Reactome) pathways (p = 1.55 × 10−7). The remaining genes were tested for
enrichment in the Gene Ontology (GO) database. An additional 11 genes (GPR183, IKZF3, RAC2,
TSPAN32, SKAP2, IL27, SIRPG, SLC11A1, UBASH3A, CLEC2D, and CLEC2B) were associated with
GO regulation of “immune system process” (GO:0002682) (p = 4.02 × 10−18). In addition to immune
system or response terms, significant (FDR < 0.05) enrichment was observed for “cell activation”,
“cell proliferation”, “leucocyte/lymphocyte activation”, and “defense response”.

Only cis-genes reported with high confidence (p < 1 × 10−4) were selected for further analysis,
irrespective of their reported FDR p-values. There were 34 such genes, the majority of which showed
association only in peripheral blood cells. Cell-type specific cis-regulated genes are summarized in Figure 2.

Upon combining the list of cell-specific genes with ubiquitously expressed genes (n = 124 genes),
there was an increase in the number of cis-regulated genes (from 3 to 7) associated with the 12q24
(SH2B3) locus. Enrichment analyses showed 40 of the 124 cis-genes were related to the immune system.
Among the cell-type specific genes, OAS2 (EBV-resting), PTEN, and ITGB1 (CD8+) were involved
in immune system pathways (Reactome) (p = 1.51 × 10−8). The genes IFNGR1, SOCS1, and PTPN2
affected regulation of the interferon gamma (IFNG) signaling pathway (Reactome). We performed
further separate analysis of non-immune related genes. In doing so, we found that SULTA1, SULTA2,

www.genome.jp/kegg/
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and SUOX affected the Sulphur metabolism pathway (KEGG) (p = 4.4 × 10−6). In a study [35] into a
possible bacterial role in developing T1D, sequencing of fecal samples showed a higher number of
reads mapping to sulfur metabolism in T1D cases compared to that of controls, suggesting interaction
of microbiome and sulphur metabolism genes.
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Additionally, twelve of the genes (SULTA1, SULTA2, ATP5B, CLN3, SPHK2, PGAP3, MTMR3,
ERBB3, STARD3, APOBR, ACAD10, and ORMDL3) were also associated with lipid metabolic processes
(p = 4.37 × 10−7). It was shown that people with T1D also displayed disturbances in plasma lipids
such as hypertriglyceridemia and low high-density lipoprotein (HDL) cholesterol [36]. These analyses
suggest a novel role of non-immune related genes mediating T1D.

3.2. Trans-Regulated Genes

Genes whose expression varied significantly in association with T1D SNP alleles, but were located
more than 1 Mb from the SNP may be considered as trans-regulated genes. First, we searched for
trans-regulated genes that are validated by their observations in multiple cell types (or studies) with
FDR < 0.05. In searching for cell specific trans-regulated genes, we used a stringent threshold of
p < 1 × 10−8 to deem the results as significant. There were ten such genes and their negative log(P)
values of the associations in different cells are summarized in Table 1.

Table 1. List of Trans-regulated genes found with association in multiple cell types.

T1D SNP Locus Chr Gene B EBV PMA CD4 CD8 Mono LPS2 LPS24 IFN Blood

rs7111341 INS 11p15.5 AQP9 6.0 5.6
IP6K2 14.2 18.2 11.9 17.8 20.7 16.9 7.7 13.3 10.0

LAP3P2 51.7 14.6 14.4 13.9
rs11171739 ERBB3 12q13.2 MAFG-AS1 6.9 5.6 17.0 19.9

MIR130A 36.2 27.8 25.7 21.8
MIR1471 6.9 5.6 8.5 13.0

DPF2 6.8 12.0
rs3184504 SH2B3 12q24.12 UBE2L6 7.9 4.7 7.9

STAT1 5.5 7.5
rs17696736 C12Orf30 UBE2L6 5.7 5.3

SNP—single nucleotide polymorphisms; B—CD19+ B cells; EBV—Epstein-Barr virus resting; PMA—Phorbol
12-myristate 13-acetate stimulated EBV; Mono—monocytes; LPS2, LPS24—lipopolysaccharide stimulated
monocytes; IFN—interferon-γ stimulated monocytes.

Interestingly, the insulin locus SNP showed significant association with trans-regulated gene
aquaporin-9 (AQP9) in both CD4 and CD8 positive cells. AQP9 is down regulated by insulin in
obese type 2 diabetes mellitus (T2DM) patients [37]. There were four genes and two micro-RNAs that
were associated with the ERBB3 (12q13.2) T1D locus. In particular, IP6K2 (Inositol hexakisphosphate
kinase-2) showed consistent association with 12q13.2 in all cells except peripheral blood. IP6K2 is
abundantly present in pancreatic beta cells and may be involved in regulation of insulin exocytosis.
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Novel genes LAP3P2, a Leucine Aminopeptidase 3, and MAFG-AS1, a MAF gene, showed association
in multiple cell types. MAF genes such as MAFA are known to promote pancreatic development and
insulin transcription. The trans-regulation of DPF2, a zinc finger gene in CD4+ T-cells, was confirmed
in peripheral blood. UBE2L6, a ubiquitin gene, and STAT1 were trans-regulated by the same T1D
SNPs located in the 12q24 locus, as also confirmed in peripheral blood [26]. Another ubiquitin gene,
UBASH3A, is a well-known candidate gene for the 21q22.3 T1D locus [1]. In [38], it was found that the
ubiquitin system could be associated with insulin signaling and might be affected in diabetes.

In cell-type specific trans-regulated genes, we identified 12 genes in EBV-B cells, seven genes in
peripheral blood, two genes in CD4+ cells, and one gene in monocytes. The list of these genes is provided
in Table 2, sorted according to association p-value along with the regulating T1D SNP. Enrichment
analysis of trans-regulated genes alone showed three of the genes (IRF8, ID2, and CCL5) were validated
targets of c-MYC transcriptional repression. In doing Gene Ontology enrichment, we found that ten of
the trans-regulated genes were associated with “positive regulation of biosynthetic process”.

Table 2. List of cell-type specific trans-regulated genes.

EBV Cells Peripheral Blood

SNP Trans-Gene SNP Trans-Gene

rs1990760 LOC643997 rs1701704 CCL5
rs10499194 TUBB6 rs1701704 CRLF3
rs7804356 SLC39A8 rs2058660 CYP2C19
rs12251307 DERA rs3184504 FOS

rs947474 MEIS2 rs3184504 GBP4
rs3842727 ID2 rs11171739 MIF
rs1738074 IRF8 rs3184504 NALP12

rs1265565 NCOA7 CD4+

rs12908309 FAHD1 rs1265565 ZMYM5
rs2290400 TEX9 rs11711054 GRAMD1B

rs763361 P2RY11 Monocytes

rs7221109 EIF5A rs11171739 KCTD11

4. Alternative Methods for Studying eQTLs Associated with Disease SNPs

Recent studies [19,21–26] indicate that T1D-associated SNPs are likely to be eQTLs. Associations at
T1D risk loci were consistent with eQTLs (both cis and trans) in three relevant immune-cell populations
studied [19]: EBV—lymphoblastoid cell lines (LCLs) (unstimulated and stimulated) and CD4+ and
CD8+ T-cells. In this review, we performed a comparison of the eQTLs in additional cells such as
CD14+ monocytes (unstimulated and LPS- and IFN-gamma stimulated) [21,22], CD19+ B-cells [21],
fluorescence-activated cell sorting (FACS)-purified neutrophils [23], and dendritic cells (unstimulated
and stimulated) [24] to carefully examine the expression effects of T1D risk alleles on immune gene
expression. The eQTL results were also compared against results reported in whole blood [25,26].
For each T1D locus, variants in high LD (r2 > 0.8) with any of the lead T1D variants were also examined
for overlap with eQTLs. The authors of each of these studies employed suitable thresholds to determine
true-positive cis and trans-eQTLs. The analysis we performed was a simple one-to-one comparison
of the eQTL association results (assuming they are true) between the cell-types aimed at compiling
a summary of validated target genes by virtue of their co-occurrence in more than one cell-type
or study. The eQTLs that could not be validated in multiple cells were assumed to be cell-specific.
The techniques used in this analysis have advantages and disadvantages. In this section we explore
the techniques by providing step-by-step methods where we discuss some alternative approaches that
have, at times, better advantages for deducing eQTL associations with disease associated variants.
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4.1. Prediction of Functionality of Disease Associated Variants

The first step in the analysis of disease associated SNPs is to test whether or not the SNPs have
an impact on the function of the proteins encoded by the relevant genes [19,39]. This is commonly
achieved by means of prediction algorithms that determine whether or not a variant is deleterious or
benign by means of a score. There are two types of predictions available: protein-based and more
recently nucleotide-based. For several years, protein-based sorting intolerant from tolerant (SIFT) [40] and
Polymorphism Phenotyping 2 (PolyPhen-2) [41] were the only prediction methods which were applied to
non-synonymous coding region SNPs to identify whether or not the amino acid changes were deleterious.

More recently, with advancements such as Encyclopedia of DNA Elements (ENCODE) [42] and
Functional Annotation of Mouse 5 (FANTOM5) [43], tools such as Combined Annotation–Dependent
Depletion (CADD) [44], Deleterious Annotation of genetic variants (DANN) [45], Functional Analysis
Through Hidden Markov Models (FATHMM) [46], and Linear Inference of Natural Selection from
Interspersed Genomically coHerent elemenTs (LINSIGHT) [47] have been developed to predict
functionality of variants outside the coding regions. These tools are based on supervised machine
learning algorithms using a well-characterized training dataset. The prediction is usually given as a
score, typically between 0 and 1, where scores >0.8 usually can be treated as functional. PredictSNP [48]
and PredictSNP2 [49] are convenient web-based meta-predictors incorporating all available methods
in arriving at a consensus prediction where a required variant can be searched using the corresponding
rsIDs. Using these tools, it is possible to determine whether the identified lead GWAS SNP can be
characterized prior to performing eQTL association testing.

4.2. Gene Expression Quantification

In earlier eQTL studies [19–23], whole-transcriptome profiling was performed on Illumina’s HT-12v4
bead arrays. Briefly, the processing of the expression data involved quantile or Robust Spline (RSN)
normalization [50], quality control, and filtering. Probes with a detection p-value of <0.01 (Illumina
GenomeStudio Software, Illumina, San Diego, CA, USA) in at least 5% of the samples were retained
for further eQTL analysis. Popularly, software such as ReMOAT [51] (Re-annotation and Mapping of
Oligonucleotide Array Technologies) were used to assess probe quality and probes considered as “bad”
are removed. Alternatively, probe sequences were tested for unique alignment to the transcriptome as
described in [19] for consideration for eQTL association testing, and probes whose sequences contained
SNPs were filtered out. These stringent probe-mapping strategies were employed to filter out false-positives
due to primer-polymorphisms and cross-hybridizations. In the case of latter studies such as [24–26] using
RNA-seq for transcriptome profiling, the processing steps differ. Briefly a (variance stability transformation)
VST-normalization is applied to the read counts obtained from the mapped RNA-seq data, which is then
regularized log (rlog) transformed using R package DESeq2 [52] prior to further analysis.

4.3. Batch Effect Correction and Removing Unwanted Variations

In both RNA-seq and microarrays, it is commonly known that batch effects and their influence
on normalization can result in spurious findings. Approaches (e.g., ComBat method [53]) have been
proposed to remove unwanted variation caused by differences between batches of samples. Principal
variation component analysis (PVCA) [54] has also been used to detect and correct batch effects where the
Principal Components (PCs) attributed to batching can be subtracted by regression and residual expression
calculated for further analysis. Some additional methods have been proposed based on the use of spike-in
negative control probes such as SQN (subset quantile normalization) [55] and RUV (remove unwanted
variation) [56] to remove other unknown variations that limit the rate of eQTL detection. Furthermore,
unknown hidden variables can be also be detected by surrogate variable analysis (SVA) as described by
Leek et al. [57]. SVA method is implemented in the R package “sva” [58]. Sample label mix-ups are another
common problem that can often cause reduction in power to detect eQTLs. In [59], the authors introduce a
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method “MixupMapper” to correct such errors by comparing actual versus predicted gene expression for
genes with very strong cis-eQTLs where the expressions are predicted solely based on SNPs.

4.4. Identify and Remove Known and Hidden Confounding Factors in the Normalized Expression Data

It is common practice to remove confounding factors from expression data as this limits the
detection of true-positive eQTLs. To remove the effects of covariates such as age, sex, and HLA
types, the R package “pedigreemm” [60] performs a mixed-effect modeling, accounting for relatedness
between samples. This also allows for the calculation of the residual gene expression. To adjust
for hidden factors, the residuals can be subjected to a Bayesian framework known as Probabilistic
Estimation of Expression Residuals (PEER) [61] and the residual expression levels can be derived
again after subtracting the estimated hidden factor contributions. This technique is popular, but an
alternative approach is to use expression-derived PCs [62] to remove non-genetic expression variation.
The significant (p < 0.05) PCs in the Tracy-Wisdom test [63,64] can be used as covariates during
association testing or can be regressed out from the expression data. Some studies used arbitrarily
either three, five, or up to ten PCs as covariates to remove hidden factors, but others (e.g., [21,22])
repeat eQTL analysis with varying numbers of PCs to identify the optimum number of PCs that
maximize the number of eQTLs identified above suitable significance thresholds.

4.5. Expression Quantitative Trait Locus (eQTL) Analysis

eQTLs can have effects in cis and in trans. Cis-effects are taken when there are differences in
expression levels of genes within 1 Mb of the associated SNP; trans-associations arise from relevant SNPs
affecting expression of more distant genes, including genes on other chromosomes. MatrixEQTL [65] is
currently the most popular eQTL analysis tool. It is a fast additive linear regression model for performing
these tests for cis and trans associations separately. If the PCs and other covariates have not already been
removed from the expression sets, then they can be used as covariates inside MatrixEQTL. Additively
recoded (0,1,2) SNP data is used along with an expression matrix to perform the tests. Although
there are options in MatrixEQTL to test expression against three genotypes per SNP, additive recoding
detects eQTLs better. In the case of testing GWAS SNPs, it is better practice if the SNPs are additively
recoded by the risk allele rather than the reference allele such that the beta coefficients provide the
direction of expression regulation in relation to the risk allele. This information can be particularly
useful for downstream pathway and enrichment analysis as well as to compare effect directions in
different cell types. In a large meta-analysis study, Westra et al. [25,26] developed a pipeline where
QTLs were determined by using Spearman rank correlation on genotype dosages in each cohort. Then,
a meta-analysis was performed to combine the results by a weighted z-score method.

4.6. Statistical Significance and Permutation Analysis

Generally, all eQTL findings at a Benjamini-Hochberg adjustment false discovery rate (FDR) [20]
under 0.001 are considered significant (as in [19]). FDR adjustment is separately applied for cis- and
trans-associations. In some studies [23,24], probe-variant pairs with adjusted p-values less than 0.05
were deemed significant. However, this simple correction procedure is confounded by LD between
SNPs tested, correlation between probes, and differences in minor allele frequencies (MAF) between
the SNPs. To address these issues, permutation based strategies were introduced [25] to correct for
multiple testing. For this purpose, the eQTL analyses are repeated up to 10,000 times using a R “q-value
package” [66] with permuted sample labels and null p-values derived. The q-values are then derived
over the null p-values, and eQTL associations with q-values < 0.05 are generally deemed significant.

4.7. Colocalization: Overlap between eQTL for a Gene and GWAS SNPs for Disease

There are a number of tools available to link the eQTL to a disease associated variant. For example,
Sherlok [67] calculates a SNP-level Bayes factor using observed GWAS and eQTL p-values of SNPs
to determine the likelihood that expression changes in the gene mediate disease risk as opposed to
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the gene not being related to disease. Alternatively, co-localization directly evaluates whether two
associations (GWAS and eQTL) in the same locus, observed in different cohorts, were due to the same
underlying effect. The R package “coloc” [68] is a well-calibrated Bayesian framework that considers
spatial similarities in association data across sets of SNPs; “gwas-pw” [69] is a similar method with
the addition of hierarchical priors, and it optimizes model parameters; HEIDI/SMR15 [70], applies
Mendelian randomization between traits.

4.8. Joint eQTL Analysis for Multiple Cell Types/Tissues

In this paper, we compared the eQTLs of T1D in different immune cells by comparing the results
reported in different studies. This technique has its disadvantages where there is a possibility that
cell-specific eQTLs were not detected in other cells due to incomplete power. Several approaches [71,72]
have been developed to perform joint eQTL analysis in multiple cells or tissues primarily using a
Bayesian framework to overcome these issues. These techniques were recently applied to perform
analysis on 45 tissues [73], and data has been made available in the GTEx online portal (http://www.
gtexportal.org). The GTEx data can be accessed to identify the eQTLs associated with disease associated
SNPs as well as their proxy (high LD) SNPs. GTEx data can be also useful in performing tissue specific
enrichment analysis, whereby the most affected tissue for a given list of disease-associated SNPs can
be identified by simply counting the number of eQTL instances identified per tissue.

4.9. Imputation of Gene Expression Profiles

PrediXcan [74] is a recently developed method aimed at saving the costs of expensive transcripome
sequencing. It can impute transcriptome-wide expression profiles for Caucasian samples based on
reference transcriptome datasets from large studies such as Genotype-Tissue Expression (GTEx) [73],
Genetic European Variation in Health and Disease (GEUVADIS) [75], and Depression Genes and
Networks (DGN) [76] where both expression and SNP data are available. In the current release of
PredictDB (a database associated with the tool), the authors of PrediXscan only included genes that had
a false discovery rate ≤5% (for example 11,553 autosomal genes in whole blood) based on the elastic
net models used to generate the SNP weights. The quality of the transcriptome imputation depends
highly on the number of SNPs included in the gene expression prediction model: the more SNPs,
the better the imputation quality. Prediction models are available for many tissues to allow evaluation
of eQTL associations with diseases before undertaking actual gene expression measurements.

4.10. Chromatin Conformation Capture and Linking GWAS SNPs to Target Genes

Chromatin conformation capture (3C) and variants of this approach (4C, 5C, Hi-C, and ChIA-PET)
probe long-range interactions by utilizing formaldehyde-directed cross-linking of genomic modules
that are close in physical space [77]. A recent paper [78] provided high-resolution analysis of
interactions involving almost all annotated promoters (Fantom5 [43], ENCODE [42]) in 17 human
primary blood cell types. Links were identified between disease-associated variants with their putative
target genes by integrating chromatin-interaction with population genetics data. The data can be
accessed via an online portal: www.chicp.org.

4.11. Pathway, Network, and Enrichment Analysis

After identification of target genes regulated by the disease variants, pathway and enrichment
analysis follow to provide insights into potential biological mechanisms the genes might be involved in.
These analyses can be performed on a cell-type specific basis or on combined tissues. There are several
tools available to perform these analyses. DAVID v6.8 [79] is a very popular enrichment analysis tool
that has been extensively applied to discover pathways for a given set of genes. Typically, annotation
terms meeting Benjamini-Hochberg p < 0.05 (adjusted for the number of terms) are considered significant.
Gene-set collections available in the Molecular Signature Databases (MSigDB) [28] of the Broad Institute
can be also tested for enrichment using their web interface (http://software.broadinstitute.org/gsea/

http://www.gtexportal.org
http://www.gtexportal.org
www.chicp.org
http://software.broadinstitute.org/gsea/msigdb/annotate.jsp
http://software.broadinstitute.org/gsea/msigdb/annotate.jsp
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msigdb/annotate.jsp). Again an FDR adjusted p-value is computed for all terms for measuring significance.
Both DAVID and MSigDB provide options to test Gene Ontology (GO) terminologies in addition to
canonical pathways; GO is useful in identifying significant biological, cellular, and molecular functions
associated with the gene lists. If the direction of eQTL associations with respect to the risk allele is known,
GO analysis can be separately applied to up- and down-regulated genes so as to identify functions that
are either magnified or diminished in relation to susceptibility.

Other popular enrichment tools such as GWAS Analysis of Regulatory or Functional Information
Enrichment with LD correction (GARFIELD) [80] and Genomic Regulatory Elements and Gwas
Overlap algorithm (GREGOR) [81] also provide cross-verification for significantly enriched terms.
Ingenuity Pathway Analysis (IPA) is a commercial software for performing enrichment analysis
with special options to perform toxicity analysis and identify drugs associated with candidate genes.
Network analysis allows connecting target genes with related molecules and helping identify associated
functions. This type of analysis can be performed with the help of the Cytoscape-GeneMania [82]
module that allows for the connection of genes based on co-expression patterns. An MCODE (molecular
complex detection) plugin within Cytoscape [83] allows for identifying clusters of sub-networks within
highly connected networks, functions of which can be separately defined within Cytoscape itself. Such
types of analysis will help to shed insights into the biological functions underlying susceptibility.

5. Conclusions

Type 1 Diabetes is a complex genetic disease with reports of over 60 loci that increase a person’s
risk of developing the disease. Most of the risk loci do not mediate disease susceptibility via
missense changes to coding regions [19]. We investigated the role of risk SNPs in affecting gene
expression in various immune related cells, combining the results of expression studies conducted in
B-cells, monocytes, dendritic cells, EBV-transformed B-cells, and CD4+ and CD8+ T-cells. Our results
revealed that there were 90 cis-regulated genes and ten trans-regulated genes that were evidenced
in multiple cells (or studies). In addition, there were 34 and 22 highly significant cell-specific cis-
and trans-regulated genes, respectively. We provided a methodology for the identification of eQTLs
associated with T1D SNPs in different immune cells and suggested alternative methods to improve
and overcome the statistical limitations (power) of the techniques used. We have also discussed
several advancements in the area of linking GWAS SNPs to functional variants using next generation
sequencing techniques. Future study designs for testing T1D GWAS variants will need to incorporate
these advancements and find ways to integrate data from various sources as discussed in the paper to
further improve our understanding of the disease susceptibility.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4425/8/6/167/s1.
Table S1: List of cis- and trans-regulated gene immune cells.
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