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Abstract: Frequent spontaneous facial self-touches, predominantly during outbreaks, have the theo-
retical potential to be a mechanism of contracting and transmitting diseases. Despite the recent advent
of vaccines, behavioral approaches remain an integral part of reducing the spread of COVID-19 and
other respiratory illnesses. The aim of this study was to utilize the functionality and the spread of
smartwatches to develop a smartwatch application to identify motion signatures that are mapped
accurately to face touching. Participants (n = 10, five women, aged 20–83) performed 10 physical
activities classified into face touching (FT) and non-face touching (NFT) categories in a standardized
laboratory setting. We developed a smartwatch application on Samsung Galaxy Watch to collect raw
accelerometer data from participants. Data features were extracted from consecutive non-overlapping
windows varying from 2 to 16 s. We examined the performance of state-of-the-art machine learning
methods on face-touching movement recognition (FT vs. NFT) and individual activity recognition
(IAR): logistic regression, support vector machine, decision trees, and random forest. While all
machine learning models were accurate in recognizing FT categories, logistic regression achieved the
best performance across all metrics (accuracy: 0.93 ± 0.08, recall: 0.89 ± 0.16, precision: 0.93 ± 0.08,
F1-score: 0.90 ± 0.11, AUC: 0.95 ± 0.07) at the window size of 5 s. IAR models resulted in lower
performance, where the random forest classifier achieved the best performance across all metrics
(accuracy: 0.70 ± 0.14, recall: 0.70 ± 0.14, precision: 0.70 ± 0.16, F1-score: 0.67 ± 0.15) at the window
size of 9 s. In conclusion, wearable devices, powered by machine learning, are effective in detecting
facial touches. This is highly significant during respiratory infection outbreaks as it has the potential
to limit face touching as a transmission vector.

Keywords: smartwatch; accelerometer; face touching; machine learning; COVID-19; respiratory
illnesses; wearables

1. Introduction

Frequent facial self-touches, primarily during outbreaks, have the potential to be a
mechanism of contracting and transmitting respiratory diseases such as the novel coro-
navirus (COVID-19). Despite the ongoing vaccination efforts during the COVID-19 pan-
demic to prevent further outbreaks, behavioral approaches (wearing masks, washing
hands, social distancing, and reduced face touches) remain an integral part of reducing
the spread of COVID-19 and other respiratory illnesses. According to the Centers for
Disease Control and Prevention (CDC) [1], droplets coming from coughing or sneezing
transmit many of the germs that cause respiratory illness. These germs usually spread
through close contact with an infected person or through touching contaminated surfaces
and then touching mucosal areas such as the mouth, nose, or eyes [2,3]. Detecting face
touching using naturally worn devices such as smartwatches and providing real-time
biofeedback to individuals would offer a highly scalable platform that has the potential to
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limit face touching and thus limit the spread of respiratory illness via fomite transmission.
Biofeedback is a mind–body technique that helps in making individuals aware of their
behaviors. Over time, they can learn to self-regulate their unconscious behavior without
feedback [4]. The ability to alert individuals about their facial touches even after they occur
is still beneficial to regulate these unconscious behaviors.

According to a behavioral observational study conducted by Kwok and colleagues [5]
on 26 students, people touch their faces, on average, 23 times per hour. About 44%
of the time, the facial touch involves contact with mucosal areas such as the eye, nose,
and mouth. Wearing a face mask, another commonly prescribed transmission reducing
measure, reduced face touching but did not eliminate it. Those not wearing a mask touched
their face spontaneously 20.1 times per hour, compared to 6.4 times per hour if wearing
a mask [6]. This intrinsic behavior can lead to spreading the virus widely. One way to
break the cycle and restrict the spread of the virus is to enhance the awareness of our
unconscious face-touching activities—to alert individuals every time they touch their
face. A similar intervention study has been conducted in the treatment of trichotillomania
(hair pulling) [7]. This is viable through recognizing human movements using motion
sensors (e.g., accelerometer) that are able to continuously capture body movements in
high resolution.

The International Data Corporation [8] showed that the shipments of wearable devices
are expected to reach 637.1 million units in 2024 worldwide. In this study, we leveraged the
popularity of smartwatches to collect and analyze tri-axial accelerometer data in a similar
manner to a research-grade activity monitor, e.g., actigraph, to detect face-touching move-
ments. Recent data from our own group demonstrated that the accelerometer hardware
in a publicly available smartwatch yields a very similar output to a research-grade moni-
tor [9]. Additionally, because smartwatches are purchased for personal use, researchers
and practitioners could benefit from capturing data without needing to introduce new
devices [10]. Unlike actigraphy devices being used today, this access provided the flexi-
bility to establish a robust framework for personal data collection. New generations of
smartwatches provide a standalone computing platform with access to 5G mobile data
networks, powerful processors, large amounts of storage, and a diverse suite of physical
sensors, which make them suitable for the goals of this study.

Despite the scarcity of published research aiming to recognize facial touches by lever-
aging wearable technology, there was a rise in the deployment of wearables during the
COVID-19 pandemic [11]. Michelin et al. [12] utilized the inertia measurement unit (IMU)
to collect tri-axial accelerometer and tri-axial gyroscope data from participants. They
built a 1D convolutional neural network to detect face-touching movements. IMUs have
also been utilized by other researchers to detect certain behaviors that involve the face
such as eating [13,14] and smoking [15,16]. In our study, we focused on utilizing smart-
watches to reach a large share of the population and build a scalable platform, unlike
IMUs. Smartwatches have been utilized in a limited manner by researchers to detect face-
touching movements. Sudharsan et al. [17] developed a smartwatch application to detect
face-touching movements. Accelerometer data of face-touching activities were collected
from four participants, and one-class classification models were trained to recognize face-
touching activities. This effort demonstrated a proof of concept but was limited in both the
number of activities and the number of participants which can affect the generalizability of
the built models.

The first step toward a face touching intervention involves validating a classification
model capable of distinguishing movement signatures from in situ consumer wearable
devices. In the present study, we developed a smartwatch application on the Samsung
Galaxy Watch (Samsung, Seoul, South Korea) to collect raw accelerometer data. Data
were collected while participants were performing the scripted activities in a laboratory
setting, which is the first phase of the framework proposed by Keadle and colleagues [18] to
evaluate devices that assess physical behavior (such as face touching). Then, we extracted
data features from the raw accelerometer data and applied advanced machine learning
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techniques for face touching (FT) vs. non-face touching (NFT) recognition and individual
activity recognition (IAR). The results are expected to provide a clear analytic approach to
identifying motion signatures that are mapped accurately to face touching.

2. Materials and Methods
2.1. Participants

Participants were community-dwelling adults (20+ years old) who were able to read
and speak English and were willing to undergo all testing procedures. Exclusion criteria
included: failure or inability to provide informed consent; having cognitive impairment;
being unable to communicate because of severe hearing loss or speech disorder; and having
a medical condition that prevents the participant from performing the scripted activities.
Ten participants (50% females, 47.7 ± 24.7 years old) were enrolled in the study. The goal of
the study was to demonstrate the feasibility of the face touching detection approach, which
explains the small number of participants. Additionally, this study was conducted during
the COVID-19 pandemic, during which social restrictions were imposed that hindered
the normal data collection process. The collected data from all participants were included
in the analysis. The Institutional Review Board at the University of Florida approved all
study procedures, and all participants provided written informed consent before the study.

2.2. Study Procedure

Participants performed a battery of 10 activities at their own pace in a standardized
laboratory setting. Activities were split into two categories: four face-touching (FT) ac-
tivities that are deemed similar to or easy to confuse with FT; and six non-face-touching
(NFT) activities that are relatively easy to be distinguished from FT. Activities are listed in
Table 1 along with their description and category. Due to the lack of categorizing activities
into FT and NFT in the literature, we chose these activities using our intuition by focus-
ing on selecting face-touching activities that are common in our lives. Activities that are
mainly performed at home, such as face washing, teeth brushing, and combing one’s hair,
were excluded because they impose minimal risk. Our goal was to build an app and an
analytic approach to protect individuals outside the home where the risk of coming into
contact with fomites is higher. Participants were instructed to perform each task repeatedly
for 3 min before taking a break and moving on to the next task. All the activities were
completed in one visit in a randomly generated order to avoid any temporal dependence
of behavior.

Table 1. List of the performed activities and their category. Participants performed each one of the scripted activities for
3 min at their own pace.

Activity Laboratory-Based Setting Description Face Touching

Using mobile phone Messaging using social media—no phone calls No

Lying flat on the back Simulating sleeping or napping No

Computer tasks Typing a document and navigating websites No

Writing Writing on a piece of paper No

Leisure walk Walking at a leisurely pace No

Moving items from one location to another Moving folding chairs from one location to another No

Repeated face touching Wiping nose, gestures on the face Yes

Eating and drinking Eating a snack and drinking water Yes

Simulated smoking Simulating the act of smoking Yes

Adjusting eyeglass Adjusting eyeglasses placed on the face Yes
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2.3. Instrumentation

Participants wore a Samsung Galaxy smartwatch on their dominant wrist. Previous
work suggests that wearing the accelerometer on the non-dominant or dominant wrist
has no impact on physical activity assessment [19]. We opted to place the watch on the
dominant wrist to standardize the data collection process and to make certain activities con-
venient for participants such as “writing”. The smartwatch is equipped with an embedded
tri-axial accelerometer that records accelerations in units of gravity (1 g) in perpendicular,
anterior–posterior, and medial–lateral axes. A predecessor to the watch, the Samsung
Gear S, has a similar accelerometer that has been previously validated using a reciprocating
shaker table [9]. We developed a smartwatch application (app) to collect raw acceleration
data from the 3 axes at a sampling rate of 30 Hz. The user interface of the application
is shown in Figure 1. The app begins collecting raw accelerometer data once the user
opens the app. The text shown on the interface of the smartwatch indicates that the FT
monitoring functionality is on and raw accelerometer data are being collected. The user
can stop using the functionality and quit the application by pressing the TURN OFF button.
This design has two-fold benefits: (1) it gives the user control over the app to only enable
the FT functionality when needed; and (2) it reduces the amount of data collection and
processing power to preserve the watch’s battery life. This design is aligned with the
workout application on Apple and Samsung, in which the user turns on/off the app when
necessary. Additionally, according to a study conducted on Samsung Gear S2 and S3 [20],
collecting accelerometer data at 10 Hz for 2 h produced approximately 20 megabytes of data
and depleted the battery by approximately 15–20%. Technically, detecting FT continuously
throughout the day is not feasible at the moment. In addition to the smartwatch app, we
developed a desktop application to record the start and end timestamps of each activity. To
ensure the time alignment, the desktop application was synchronized with the smartwatch
clock before each visit. The collected data were stored on the internal memory of the
smartwatch.
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2.4. Problem Formulation and Data Processing

In this paper, we targeted two main tasks: (1) FT vs. NFT recognition (binary classifi-
cation); and (2) IAR (multiclass classification). IAR helps in exploring the confusion among
all activities and providing further insight into the predictive ability of each classifier.
Before feeding the data into the machine learning algorithms, we applied preprocess-
ing techniques. First, we eliminated the front-end and back-end noise by removing the
first 20 and last 5 s of the accelerometer data for each activity, which has resulted in about
10 × 10 × (3 × 60 − 25) = 15,500 s of data. Second, we split the raw accelerometer data
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into smaller time segments (windows), as it is difficult to retrieve important and useful
information from a continuous stream of sensor data [21]. Previous activity recognition
studies used varying window lengths, ranging from 0.1 s to 128 s [22–27]. To select the best
window size for FT recognition, we extracted features using consecutive non-overlapping
windows with lengths ranging from 2 s to 16 s from the raw data. We did not take window
lengths over 16 s into account, as the FT detecting application needs a quick response to
provide feedback to users. Table S1 shows the average number of samples per participant
and the total number of samples generated by the different window sizes. The selection
of the window size was based on having sufficient data for accurate feature extraction
and better accuracy. In total, 49 time- and frequency-domain features, listed in Table 2,
were extracted [27,28].

Table 2. Description of features extracted from the raw data.

Feature Description

Time

Mean of vector magnitude and acceleration from 3 axes
(mvm, mean_x, mean_y, and mean_z)

Sample mean of VM, acceleration from x, y, and z axes in
the window

SD of vector magnitude and acceleration from 3 axes
(sdvm, sd_x, sd_y, and sd_z)

Sample standard deviation of VM, acceleration from x, y,
and z axes in the window

Coefficient of variation of vector magnitude and
acceleration from 3 axes (cv_vm, cv_x, cv_y, and cv_z)

Standard deviation of VM, acceleration from x, y, and z
axes in the window divided by the mean, multiplied

by 100

Minimum value of vector magnitude and acceleration
from 3 axes (min_vm, min_x, min_y, and min_z)

Minimum value of VM and acceleration from x, y, and z
axes in the window

Maximum value of vector magnitude (max_vm, max_x,
max_y, and max_z)

Maximum value of VM and acceleration from x, y, and z
axes in the window

Twenty-five percent quantile of vector magnitude and
acceleration from 3 axes (lower_vm_25, lower_x_25,

lower_y_25, and lower_z_25)

Lower 25% quantile of VM and acceleration from x, y,
and z axes in the window

Seventy-five percent quantile of vector magnitude and
acceleration from 3 axes (upper_vm_75, upper_x_75,

upper_y_75, and upper_z_75)

Upper 75% quantile of VM and acceleration from x axis,
y axis, and z axis in the window

Third moment of vector magnitude and acceleration from
3 axes (third_vm, third_x, third_y, and third_z)

Third moment of VM and acceleration from x, y, and z
axes in the window

Fourth moment of vector magnitude and acceleration from
3 axes (fourth_vm, fourth_x, fourth_y, and fourth_z)

Fourth moment of VM and acceleration from x, y, and z
axes in the window

Skewness of vector magnitude and acceleration from
3 axes (skewness_vm, skewness_x, skewness_y, and

skewness_z)

Skewness of VM, acceleration from x, y, and z axes in
the window

Kurtosis of vector magnitude and acceleration from 3 axes
(kurtosis_vm, kurtosis_x, kurtosis_y, and kurtosis_z)

Kurtosis of VM, acceleration from x, y, and z axes in
the window

Mean angle of acceleration relative to vertical on the
device (mangle)

Sample mean of the angle between x axis and VM in
the window

SD of the angle of acceleration relative to vertical on the
device (sdangle) Sample standard deviation of the angles in the window

Frequency

Percentage of the power of the vm that is in
0.6–2.5 Hz (p625)

Sum of moduli corresponding to frequency in this range
divided by sum of moduli of all frequencies

Dominant frequency of vm (df) Frequency corresponding to the largest modulus

Fraction of power in vm at dominant frequency (fpdf) Modulus of the dominant frequency/sum of moduli at
each frequency

2.5. Model Training

Machine learning models were developed for FT recognition and IAR. We examined
four machine learning algorithms: logistic regression (LR), support vector machine (SVM),
decision tree, and random forest, resulting in 8 models. For training and testing those
models, we used nested cross-validation (nested-CV) with 10 outer folds and 3 inner folds.
In each outer fold of the nested cross-validation process, a single participant served as a
test set (leave-one-subject-out (LOSO)), and the other 9 participants served as a training
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set. Then, the outer training set was split again into three inner folds (three participants for
each) in which each inner fold served as an independent validation set and the other two
inner folds served as the inner training set (inner loop). In this way, for each outer fold,
6 participants were used to train the machine learning models, 3 participants served as a
validation set, and the remaining participant was used as the test set. Figure S1 shows a
graphical illustration of the process of nested cross-validation. Table 3 shows the numbers
of samples in the training, validation, and test sets for minimum (2 s) and maximum
(16 s) window lengths in each outer loop of the nested cross-validation. Considering the
maximum window length (16 s), which will result in the smallest number of samples,
each outer loop of the nested cross-validation will train the machine learning model using
about 588 samples (data from 6 participants), validate (hyperparameter tuning) using
about 294 samples (data from 3 participants), and finally test the performance of the
model using about 98 samples (data from 1 participant). The inner loop is responsible for
hyperparameter tuning (the process of searching for the optimal parameters of the model),
while the outer loop is responsible for error estimation and generalization. In this approach,
the model selection becomes an integral part of the model fitting process, which prevents
bias in performance evaluation [29]. We used the grid search [30] for hyperparameter
tuning, in which exhaustive combinations of the chosen hyperparameters were used for
training the model. To overcome overfitting, we added the regularization term in logistic
regression and support vector machine and we adopted pre-pruning by fine-tuning the
maximum depths of the tree and the minimum number of samples required to be at a leaf
node in the decision tree. Random forest, which is an ensemble of decision trees, is not
prone to overfitting [31]. The final performance of the model was reported by averaging
the performance of the outer folds. Accuracy, recall, precision, F1-score, and area under
the curve (AUC) metrics were used to evaluate the performance of each machine learning
method on the binary classification task. Accuracy, macro recall, macro precision, and
macro F1-score were used for multiclass classification. For reproducibility purposes, we
uploaded the code and detailed explanation of the algorithm to our GitHub repository [32].

Table 3. Number of samples in training, validation, and test sets for minimum and maximum window lengths in each outer
loop of the nested cross-validation.

Window Size Number of Samples in Training Set Number of Samples in Validation Set Number of Samples in Testing Set

2 s 4716 2358 787

16 s 588 294 98

3. Results

Table 4 shows the performance of the four machine learning algorithms on the FT/NFT
recognition with a window length of 5 s. Logistic regression resulted in the best perfor-
mance with a mean F1-score of 0.90. Decision tree resulted in the worst performance with
a mean F1-score of 0.84.

Table 4. Performance metrics of recognizing face-touching activities (face touching vs. non-face touching). Each value is the
mean and standard deviation of the 10-fold nested cross-validation.

Classifier Accuracy Recall Precision F1-Score AUC

LR 0.93 (0.08) 0.89 (0.16) 0.93 (0.08) 0.90 (0.11) 0.95 (0.07)

SVM 0.89 (0.09) 0.85 (0.15) 0.89 (0.12) 0.86 (0.12) 0.92 (0.08)

Decision Tree 0.88 (0.09) 0.82 (0.18) 0.87 (0.10) 0.84 (0.13) 0.89 (0.10)

Random Forest 0.91 (0.10) 0.86 (0.17) 0.91 (0.12) 0.88 (0.14) 0.95 (0.08)
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Table 5 shows the performance of the four machine learning algorithms on the IAR
with a window length of 9 s. Random forest demonstrated the best ability to recognize
each individual activity, with the highest mean F1-score of 0.67. Meanwhile, decision tree
resulted in the worst performance, with a mean F1-score of 0.56.

Table 5. Performance metrics for individual activity recognition. Each value is the mean and standard
deviation of the 10-fold nested cross-validation.

Classifier Accuracy Recall Precision F1-Score

LR 0.65 (0.10) 0.66 (0.10) 0.65 (0.12) 0.62 (0.12)

SVM 0.66 (0.13) 0.66 (0.13) 0.66 (0.14) 0.64 (0.14)

Decision Tree 0.59 (0.11) 0.59 (0.11) 0.61 (0.13) 0.56 (0.12)

Random Forest 0.70 (0.14) 0.70 (0.14) 0.70 (0.16) 0.67 (0.15)

Figure 2 shows the receiver operating characteristic (ROC) curve of logistic regression
for the binary FT/NFT recognition task. The mean AUC of 0.95 obtained in our study
indicates that the prediction performance of logistic regression on recognizing FT activity
is relatively strong. Additionally, Figure S2 shows the training and testing accuracy of
logistic regression for the FT/NFT recognition task.

Sensors 2021, 21, x FOR PEER REVIEW 7 of 14 
 

 

Decision Tree 0.88 (0.09) 0.82 (0.18) 0.87 (0.10) 0.84 (0.13) 0.89 (0.10) 

Random Forest 0.91 (0.10) 0.86 (0.17) 0.91 (0.12) 0.88 (0.14) 0.95 (0.08) 

Table 5 shows the performance of the four machine learning algorithms on the IAR 

with a window length of 9 s. Random forest demonstrated the best ability to recognize 

each individual activity, with the highest mean F1-score of 0.67. Meanwhile, decision tree 

resulted in the worst performance, with a mean F1-score of 0.56.  

Table 5. Performance metrics for individual activity recognition. Each value is the mean and standard deviation of the 10-

fold nested cross-validation. 

Classifier Accuracy Recall Precision F1-Score 

LR 0.65 (0.10) 0.66 (0.10) 0.65 (0.12) 0.62 (0.12) 

SVM 0.66 (0.13) 0.66 (0.13) 0.66 (0.14) 0.64 (0.14) 

Decision Tree 0.59 (0.11) 0.59 (0.11) 0.61 (0.13) 0.56 (0.12) 

Random Forest 0.70 (0.14) 0.70 (0.14) 0.70 (0.16) 0.67 (0.15) 

Figure 2 shows the receiver operating characteristic (ROC) curve of logistic regres-

sion for the binary FT/NFT recognition task. The mean AUC of 0.95 obtained in our study 

indicates that the prediction performance of logistic regression on recognizing FT activity 

is relatively strong. Additionally, Figure S2 shows the training and testing accuracy of 

logistic regression for the FT/NFT recognition task.  

 

Figure 2. Receiver operating characteristic (ROC) curves for FT/NFT recognition from logistic regression. 

Figure 3 shows the confusion between pairs of individual activities resulted from the 

random forest model. There are more intra-category confusions compared to inter-cate-

gory confusions, which explains that recognizing FT/NFT models performed more opti-

mally than IAR models. Figure S3 shows a randomly selected 9 s of a raw accelerometer 

signal for FT (repeated face touching) and NFT activities (leisure walk and moving items). 

Leisure walk signal is clearly distinguishable from repeated face touching. However, we 

Figure 2. Receiver operating characteristic (ROC) curves for FT/NFT recognition from logistic regression.



Sensors 2021, 21, 6528 8 of 13

Figure 3 shows the confusion between pairs of individual activities resulted from
the random forest model. There are more intra-category confusions compared to inter-
category confusions, which explains that recognizing FT/NFT models performed more
optimally than IAR models. Figure S3 shows a randomly selected 9 s of a raw accelerometer
signal for FT (repeated face touching) and NFT activities (leisure walk and moving items).
Leisure walk signal is clearly distinguishable from repeated face touching. However, we
observed some resemblance in movement patterns between moving items and repeated
face touching.
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Figures S4 and S5 show the top 15 features that contributed the most in the FT/NFT
recognition task and the IAR task generated from the corresponding random forest classifier.
It can be noticed that the ranking of features is relatively similar between the two tasks.
The most important features in FT/NFT recognition and IAR are sdangle and min_x. In
addition, the top five most important features are the same for both tasks.

Figures S6 and S7 show the accuracy of each machine learning method across differ-
ent window lengths for FT/NFT recognition and IAR, respectively. Logistic regression
achieved the highest accuracy among all four methods at the window length of 5 s in
the FT/NFT recognition. Random forest achieved the highest accuracy among all four
methods at the window length of 9 s in the IAR.

Table S2 shows the comparison in performance of recognizing FT/NFT activities
between the models built using the 2-s window (more samples) and the 16-s window
(fewer samples). As can be noticed, the difference seems insignificant, despite the number
of samples.



Sensors 2021, 21, 6528 9 of 13

4. Discussion
4.1. Principle Results

The goal of this study was to examine the effectiveness of smartwatches and machine
learning techniques to recognize FT motions, which is important during COVID-19 and
other respiratory illness outbreaks. We analyzed raw accelerometer data collected from
the wrist position. We utilized state-of-the-art machine learning algorithms: logistic
regression, support vector machine, decision tree, and random forest for FT recognition
and IAR. Results demonstrate that machine learning models were accurate at recognizing
facial touches. However, models performed less optimally when recognizing individual
physical activities.

The highest F1-score for FT/NFT recognition was achieved by logistic regression with
a mean F1-score of 0.90 followed by random forest (0.88), support vector machine (0.86),
and decision tree (0.84). Although logistic regression only explores the linear relationship
among features, it outperformed other complex classifiers that can explore non-linear
relationships. These results are consistent with Zaki and colleagues [33], in which logistic
regression outperformed other classifiers on two publicly available datasets of human
activity recognition acquired from the UCI Machine Learning Repository [34].

Models built for IAR showed lower performance than recognizing FT/NFT. The
overall deterioration in the performance of recognizing individual activity compared to
recognizing FT activities is intuitive given the high number of classes. The highest F1-score
for IAR was achieved by the random forest model, with a mean F1-score of 0.67. Summing
these activities into categories such as the FT and NFT can help in enhancing the recognition
performance metrics as observed in Tables 4 and 5. Collapsing face-touching activities into
one category in such a way can potentially reduce the risk of transmitting an infectious
agent through direct or indirect touch (e.g., eating or adjusting glasses).

Figure 3 shows the confusion matrix of the IAR. The moving items activity from the
NFT category has relatively large confusion (14.13%) with activities from the FT category.
On the other hand, 12.05% of the simulated smoking activity was confused with the moving
items activity. The moving items task consisted of three steps: (1) picking up a light item;
(2) moving it to an adjacent spot; and (3) putting it down. The hand movement in this
task is very similar to FT activities (lifting the hand toward the face, touching the face
multiple times, and placing the hand down), except for a slightly longer duration needed
to move the item to the adjacent spot. Therefore, the angle of the acceleration of the moving
items task and FT tasks varied in a similar pattern. This angle is accounted for in the
mangle and sdangle features extracted from the raw accelerometer data, which both ranked
high in predicting FT motion as shown in Figures S4 and S5. A deeper look into the raw
accelerometer data shows that the acceleration signals from leisure walk activity have a
clear pattern, but the patterns of acceleration signals from the moving items and repeated
face-touching activities are obscure as shown in Figure S3.

The scaled impurity-based feature importance ranking generated from the random
forest algorithm shows how relevant these features are to the problem at hand and helps
in better understanding the model. We listed the top 15 features out of 49 features for
both the FT/NFT recognition and IAR tasks. By examining the feature importance, there
is a consistency in the ranking of these features across the two tasks. As elucidated
earlier, the angle of acceleration plays an important role in recognizing FT activities. For
example, the sdangle feature is ranked among the highest features in both tasks as shown
in Figures S4 and S5. Being aware of the important features for the current task can help
researchers continue improving model accuracy with less computational costs, which is
highly significant in the case of real-time facial recognition on smartwatches.

The selection of the length of the time window used to extract relevant features is a
significant factor in our analysis. Smaller windows offer faster analysis and biofeedback
but can lead to insufficient data for the problem at hand. Therefore, the selection should
be based on a compromise between having sufficient data for accurate feature extraction
and balancing computational resources. Our analysis showed that smaller window sizes
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are more appropriate in recognizing facial touches, unlike what is commonly used in the
physical activity recognition literature [22–27]. The examined machine learning models
for FT/NFT recognition achieved their highest performance at 3–9-s window lengths with
5-s being the best. The models for IAR achieved the best performance at the 9-s window
length. However, the increase in the accuracy from 6- to 9-s window lengths was small
(0.87%). In conclusion, smaller window lengths resulted in better performance for FT/NFT
and IAR tasks.

Table S2 shows the comparison in performance between the models to recognize
FT/NFT activities using the 2-s window and the 16-s window. The difference between
the two models is insignificant, even though the model using the 2-s window has more
samples. Recognizing FT/NFT seems to be a relatively simple task for different machine
learning algorithms, where all models performed well and the difference was insignificant.
However, the difference in performance was more obvious for the IAR task, as shown in
Figure S7, across the different machine learning models because it is a more complex task.

4.2. Comparison with Prior Work

There is a paucity of published research aiming to recognize facial touches by leverag-
ing wearable technology. Generally, in this type of research, comparing relevant literature
results is an intricate endeavor because of the differences in the data collection environment
and the variables that govern the study. There are numerous differences between studies
including sample size, the demographic characteristics of participants, the number and di-
versity of the physical activities tested, type of accelerometer, body position, statistical and
machine learning algorithms applied, the extracted statistical features, the window size,
and the metrics measured to evaluate the overall performance. However, some important
comparisons can be made. Sudharsan and colleagues [17] developed a smartwatch app
on the Samsung Gear S3 smartwatch to collect raw accelerometer data from four partici-
pants. They collected only hand-to-face movements (positive class) and applied one-class
classification. Their machine learning models were built on data from three participants
and tested on one participant who performed both FT and NFT activities. In the present
study, data from ten participants of various ages performing multiple activities including
FT and NFT movements were collected. This provides more generalizability and unbiased
outcomes. Since our data are balanced, we used binary classification algorithms, but
this does not imply a better approach. The ultimate choice of the classification paradigm
depends on the problem at hand and data imbalance [35]. One major difference is that the
authors processed and aggregated features from the whole time-series sequence of the FT
movement rather than segmenting it into smaller time windows (epochs) as commonly
approached in the literature. We expanded this work by examining the performance of
different window sizes. Our analysis demonstrated that smaller window sizes (3–5 s)
can result in high recognition performance, which is similar to the duration of the FT
movement. However, we argue that segmenting the data into time windows is a safer
option and allows the models to generalize better on unseen and potentially longer FT
movements. Additionally, segmentation requires less computational power and provides
faster analysis and biofeedback. Michelin et al. [12] proposed a face touching detection
framework using a 1D convolutional neural network (CNN) with data from a tri-axial
accelerometer and a tri-axial gyroscope. Their study included 40 participants and achieved
a 92% accuracy using a window length of 500 ms. Despite the differences in our study, we
achieved comparable performance by using a logistic regression model, which is simpler
than the CNN and fits the computational and space limitations of smartwatches better.

4.3. Limitations

A limitation of the current study is that data were collected in a controlled laboratory
setting, though this is an appropriate first step in evaluating physical activity recognition
methods [18]. Collecting data in free-living settings is more reflective of transitions between
activities, but it is challenged by the need to label data. Other limitations include the small
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sample size, the small number of NFT activities involved, limited sedentary activities,
and the limitation of detecting FT activities from one arm (the dominant wrist). The next
step would involve evaluating the difference in performance of machine learning models
on recognizing face-touching activities using data collected from the non-dominant and
dominant wrist, increasing the number of participants and the number of activities, and
building an algorithm to label FT movements in the individuals’ natural environment by
considering the overlapping of activities simultaneously. Finally, we aim to examine the
ability of shorter-time window sizes in detecting face touches. This will be the first step
toward detecting face-touching movements when they are about to happen.

5. Conclusions

In this study, we evaluated the effectiveness of machine learning approaches and
wearable technology in recognizing face-touching movement patterns. Overall results
suggest data features derived from wrist-worn accelerometers lead to high accuracy in
recognizing face touches. This is highly significant during respiratory infection outbreaks
as it has a great potential to inhibit individuals from touching their faces which is a
transmission vector for respiratory illnesses. It also allows researchers and practitioners to
utilize the publics’ personal devices to track and monitor their behavior in their natural
environment and intervene when needed.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/s21196528/s1, Table S1: Average number of samples per participant and the total number of
samples by window size from 2 to 16 s, Table S2: F1-score of recognizing face-touching activities (face
touching vs. non-face touching) using the window size of 2 and 16 s for different classifiers. Each
value is the mean and standard deviation of the 10-fold nested cross-validation, Figure S1: Illustration
of how nested cross-validation works. Each block refers to one participant in the dataset, Figure S2:
Training and testing accuracy of logistic regression for FT/NFT recognition task. Each pair of bars
represents the accuracy for the corresponding outer loop of the nested cross-validation, Figure S3:
Visualization of 9 s acceleration signal from leisure walk, moving items, and repeated face touching,
Figure S4: Feature importance for face touching recognition, Figure S5: Feature importance for
individual activity recognition, Figure S6: Accuracy of each machine learning method with different
window lengths on FT/NFT recognition, Figure S7: Accuracy of each machine learning method with
different window lengths on IAR.
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