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Transmembrane AMPA receptor regulatory proteins (TARPs) are claudin-like proteins that
tightly regulate AMPA receptors (AMPARs) and are fundamental for excitatory
neurotransmission. We used cryo-electron microscopy (cryo-EM) to reconstruct the 36
kDa TARP subunity2 to 2.3 A and reveal the structural diversity of TARPs. Our data reveals
critical motifs that distinguish TARPs from claudins and define how sequence variations
within TARPs differentiate subfamilies and their regulation of AMPARSs.

Information transfer in the brain occurs at specialized cellular junctions known as synapses, which
act as neuronal communication hubs'. Most synapses are glutamatergic, where a pre-synaptic
neuron releases glutamate (Glu), and a post-synaptic neuron receives Glu. AMPARSs in the post-
synaptic membrane bind Glu and initiate depolarization of the post-synaptic neuron through their
Glu-gated cation channels’2. TARPs are auxiliary subunits that regulate the trafficking, gating
kinetics, and pharmacology of AMPARs??,

TARP regulatory subunits tightly regulate AMPAR function in the post-synaptic membrane, which
is a critical aspect of the brain’s ability to fine tune information processing'. There are six TARP
subtypes (TARPY2, v3, y4, v5, v7, v8), split into type-1 (TARPy2, y3, y4, y8) and type-ll (TARPY5,
y7) families. Generally, TARPs increase the conductance of AMPARSs, but type-l TARPs slow
desensitization and deactivation kinetics, while type-ll TARPs appear to have a negative effect
on gating when compared to type-l TARPs?. Furthermore, structural differences between TARPs
in the same class underlie sensitivity to certain classes of drugs targeted to AMPAR-TARP
complexes. Since the first TARP was identified a quarter century ago (TARPy2, also known as
stargazin)*, TARPs have been recognized as an indispensable component of synaptic function’.
Yet, the structural details of how TARPs regulate AMPARS remain ambiguous.

Cryo-EM studies of TARP subunits have advanced our understanding of TARP structure in the
context of AMPAR complexes, but intermediate resolution has historically precluded de novo
building of TARP structures®. X-ray crystallography structures of TARP homologs, such as
claudins, have been indispensable for modeling TARPs'®. Claudins are cellular junction proteins
that form paracellular barriers between epithelial and endothelial cells and are functionally distinct
from TARPs'®. The reliance on claudin structures for TARP modeling has hampered identification
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of distinct structural features that 1) differentiate TARPs from claudins and 2) explain the
regulatory potential of TARPs for AMPARSs. Here, we use cryo-EM to determine the structure of
the prototypical TARP, TARPy2. We identify new motifs in TARPYy2 that distinguish TARP classes
from one another and further differentiate TARPs from Claudins. These structural features likely
underlie modulatory effects exhibited by TARPs on AMPAR gating.

We reconstructed the 3D architecture of TARPy2 to an overall resolution of 2.3 A (2.0 A-2.5A
locally; Extended Data Fig. 1). Our data enables us to build most of the transmembrane domain
(TMD) and extracellular domain (ECD) de novo (Fig. 1a). The high resolution of our reconstruction
enables identification of multiple distinct structural features in the TARPy2 extracellular domain
(ECD), which sits atop its tetraspanin transmembrane (TM) helical bundle comprised of
transmembrane (TM) helices TM1-4 (Fig. 1a). The ECD is comprised of a five-stranded B-sheet
and a single extracellular helix (ECH) that immediately precedes TM2. A previously identified
disulfide bridge (DSB) between B3 (C67) and p4 (C77) strands in the ECD stabilizes the TARPy2
ECD (Fig. 1b) and is conserved across all TARPs and the TARP-like claudins.

What makes TARPy2, and all TARPs unique from claudins? We identify two new moieties in our
reconstruction of TARPy2 that distinguish TARPs from claudins. First, a m-11-11 stack secures the
TARPy2 ECD atop the TARPy2 TMD (Fig. 1b). This is formed by H60 (from $2), Y32 (TM1-p1
loop), and W178 (TM4). We term this the TARP cleat motif because it helps to fasten the ECD to
the TMD. We also identified a second DSB in the ECD. This DSB, the loop anchor DSB, anchors
the B1-B2 loop onto the B-sheet (Fig. 1b). The loop anchor DSB is made between C40 in the B1-
B2 loop and C68 on B3. All together, these motifs rigidify the structure of TARPy2 by providing
additional structural interactions within the ECD and between the ECD and TMD (Fig. 1c).

How conserved are these motifs? The TARP cleat motif is conserved in all TARPs and the TARP-
like subunit germline specific gene 1-like (GSG1L) (Fig. 2a) but absent from all claudins
(Extended Data Fig. 2). We also tested for conservation of the cleat motif through AlphaFold2"’
structure prediction. This suggests that the TARP cleat motif is present in all mammalian TARPs
(Extended Data Fig. 3a). Interestingly, while the TARP cleat motif is conserved in all TARPs, the
loop anchor DSB is not (Fig. 2a). Structure prediction in AlphaFold2 (Extended Data Fig. 3b)
also points to the loop anchor DSB being conserved in type-l TARPs but not in type-Il TARPs.
Thus, while our structure pointed us to look at the conservation of the cleat motif and loop anchor
DSB, this was already predicted by AlphaFold2 (Extended Data Fig. 3c).

Surprisingly, the TARP cleat motif and loop anchor DSB are within previous TARP structures but
not identified. Previously determined structures of TARPs are overall like our structure of TARPy2
(Fig. 2b), and the loop anchor DSB is within structures of TARPy3'® and TARPy8""'2"° and even
previously published structures of TARPy2°. However, it is absent, as expected, in the structure
of the type-ll TARP, TARPy5%*2! (Fig. 2c) and the TARP-like subunit GSG1L"?° (Fig. 2c). In
contrast, the TARP cleat motif is conserved in all TARPY3, y5, and y8 subunit structures as well
as GSG1L"""®?° (Fig. 2d). Thus, we suggest expanding the type-Il family of TARPs to include the
GSG1L subunit. We hypothesize that these structural details and their conservation were
previously missed because of a lack of structural resolution.

The dichotomy in B1-B2 loop organization between type-l and type-ll TARPs has significant
functional implications. For example, type-Il TARPs lack the loop anchor DSB and have been
observed to directly interact with AMPAR subunits that are in the A and C positions when they
occupy the “X” auxiliary subunit site”?° (Fig. 2e). However, we expect that this is not possible for
type-l TARPs in the X site given the presence of the loop anchor DSB, which locks in the p1-2
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loop in an orientation away from the A and C AMPAR subunit positions. However, if a type-l TARP
occupies the “Y” TARP position (Fig. 2e), modulation of the AMPAR at subunit positions B or D
by the B1-B2 loop is likely possible despite the loop anchor DSB, and is supported by observations
in cryo-EM studies of type-l TARPs in complex with AMPARSs'®. Given the extreme conformational
changes associated with AMPAR gating, the stark difference in the presence or absence of the
loop anchor DSB within type-I TARPs versus type-ll TARPs potentially explains differences in
electrophysiology experiments between chimeric constructs of the B1-2 loop in type-l and type-
Il TARPs.

The TARP cleat motif plays a significant role in distinguishing TARPs from claudins. Both TARPs
and claudins share the same overall structural fold (i.e., tetraspanin with a five-stranded
extracellular B-sheet). However, claudins have strong oligomerization properties, where they self-
oligomerize to form paracellular barriers. A similar phenomenon has not been reported for TARP
proteins. We hypothesize that the TARP cleat motif plays a role in preventing oligomerization in
TARPSs, enabling their complexation with AMPARSs and other synaptic proteins.

In sum, we report the structure of TARPy2, and how the newly identified structural features may
account for critical functional differences between TARPs that tune AMPAR function throughout
the central nervous system. In addition, we precisely define how TARPs are differentiated from
claudins, which may explain the critical point of divergence between the structurally related
proteins that are functionally distinct. Our findings provide a new framework for future studies to
understand the function of TARPs and new foundations to target TARPs in structure-based drug
design against AMPAR-related neurological disorders.
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Methods

Construct design, protein expression, and purification

Mouse TARPy2 was covalently fused to the rat AMPAR subunit GIuA2, expressed, and purified
as described in the preprint Hale, et al. Biorxiv 2023 (BIORXIV/2023/569057).

Cryo-EM Sample Preparation and Data Collection

Cryo-EM samples were prepared and collected as described in the preprint Hale, et al. Biorxiv
2023 (BIORXIV/2023/569057).
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Image Processing

The initial stages of cryo-EM sample preparation were carried out as in the preprint Hale, et al.
Biorxiv 2023 (BIORXIV/2023/569057). After generation of a 2.80 A AMPAR-TARPY2 local map
(Extended Data Fig. 1a), symmetry expansion was used to refine the structure of TARPy2. To
achieve this, we applied C4 symmetry to the AMPAR-TARP particles (Extended Data Fig. 1a).
We masked one TARPY2 in the AMPAR-TARPY2, then inverted this mask, and subtracted the
inverted mask from all particle images. We then used the subtracted particle images, coupled
with the original TARPy2 mask (non-inverted) applied to the complete AMPAR-TARPy2
complex cryo-EM map reference to refine the final cryo-EM reconstruction of TARPy2
(Extended Data Fig. 1b).

Model building, refinement, and structural analysis
Coot?? was used to build a polyalanine chain into TARPy2 map. Bulky resides from sequence
information were used to anchor the building. A previously determined structure of TARPy2 (pdb
5WEO) and a structure predicted from AlphaFold2 (AlphaFold Protein Structure Database, #AF-
088602) were used as reference. Isolde? and Phenix?** were used to refine the model. Quality of
the model was assessed with MolProbity?®. Visualizations and domain measurements were
performed in ChimeraX?®. Software was compiled and accessed via the SBGrid Consortium?’.

Sequence Analysis
All sequence alignments were done with ClustalW?® and analyzed in Jalview?®.
Structure Prediction

TARP structure predictions of TARPYy2, y3, y4, v5, v7, y8 of human, rat, mouse species were used
from AlphaFold2'. For each TARP subunit structure prediction, the respective amino acids
corresponding to the cleat motif and disulfide bridge were determined. Cleat motif measurements
were taken by calculating the distance between the Ca’s of histidine to tyrosine and Ca’s of
tyrosine to tryptophan. Calculations were performed using the Biopython.PDB package.

AlphaFold2 accession numbers of models: AF-Q9Y698, AF-A0JNG9, AF-088602, AF-Q71RJ2,
AF-Q9JJV5, AF-QOVDO05, AF-060359, AF-Q8VHX0, AF-AO0A3Q1LKG2, AF-Q9JJV4, AF-
Q8VHW9, AF-Q9UBN1, AF-E1BEI3, AF-Q8VHW4, AF-Q8VHW8, AF-Q9UF02, AF-E1BIG3, AF-
P62956, AF-P62957, AF-P62955, AF-Q8WXS5, AF-F1MV40, AF-Q8VHW2, AF-Q8VHWS5.
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Figure Legends

Figure 1. Structure of TARPy2. a) Cryo-EM map of TARPYy2, colored rainbow from N-terminus,
NT (blue) to C-terminus, CT (red). b) Extracellular portion of the TARPy2 model showing the 33-
B4 DSB, loop anchor DSB, and TARP cleat. ¢) Cartoon schematic of TARPy2 structure
highlighting key structural features that rigidify the entire ECD atop the tetraspanin TMD, colored
as in panel a.

Figure 2. Conservation of structural features among TARP family members. a) Multiple
sequence alignment demonstrating the relative conservation of the TARP Cleat Motif, B3-$4 DSB,
and Loop Anchor DSB between TARP family members. Loop Anchor DSB is unique to type-l and
excluded from type-ll TARPs. b) Alignment of TARPYy2 structure with other TARP family members
(TARPy3, PDB: 8C2H; TARPy5, PDB: 7RZ5; TARPy8, PDB: 8AYN; GSG1L, PDB: 7RZ9). c)
Zoomed in view of TARP extracellular domains illustrating differing orientations in the p1-2 loops.
d) View of the TARP cleat motif illustrating conservation among all TARP family members. e)
Model of predicted B1-B2 loop orientations between type-l and type-Il TARPSs illustrating distinct
potential contacts between TARP subtypes and AMPARSs.

Extended Data Figure 1. Details of TARPy2 data processing workflow. a) Symmetry
expansion of the GIluA2-TARPy2 assembly (from Hale et al., 2023, BioRXxiv). b) Masking scheme
for isolating symmetry-expanded TARPy2. c) TARPy2 cryo-EM map colored by local resolution
right: surface of TARPYy2 reconstruction, left: cutaway showing resolution inside the map. d) Gold
Standard Fourier Shell Correlation and Guinier Plots for TARPy2. e) Model fit to cryo-EM map of
the four TARPy2 TM helices. f) Cryo-EM map around the TARP Cleat motif and the Loop Anchor
DSB.

Extended Data Figure 1 2. Multiple sequence alignment of TARPs, GSG1L and Claudins.
Multiple sequence alignments of TARPs, GSG1L and all members of the Claudin family. The
TARPs and GSG1L are distinguished from Claudins by the presence of the TARP cleat motif
while the 33-p4 DSB is conserved among both TARPs and Claudins.

Extended Data Figure 3. AlphaFold structure prediction of TARPs. a) Conservation of TARP
cleat residues in bovine, rat, mouse, and human TARPs. TARPy2 from this study is pointed out.
b) Loop anchor DSB vs. 33-f4 DSB distances. The TARP cleat is predicted to be present in all
TARPs. Type-ll TARPs are excluded from panel b because the loop anchor DSB is predicted to
be absent in type-Il TARPs. These findings are summarized in panel c.
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