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Microfluidic-based organs-on-chips (OoCs) are a rapidly developing technology in biomedical and chemical research and have
emerged as one of the most advanced and promising in vitro models. The miniaturization, stimulated tissue mechanical forces,
and microenvironment of OoCs offer unique properties for biomedical applications. However, the large amount of data
generated by the high parallelization of OoC systems has grown far beyond the scope of manual analysis by researchers with
biomedical backgrounds. Deep learning, an emerging area of research in the field of machine learning, can automatically mine
the inherent characteristics and laws of “big data” and has achieved remarkable applications in computer vision, speech
recognition, and natural language processing. The integration of deep learning in OoCs is an emerging field that holds
enormous potential for drug development, disease modeling, and personalized medicine. This review briefly describes the basic
concepts and mechanisms of microfluidics and deep learning and summarizes their successful integration. We then analyze the
combination of OoCs and deep learning for image digitization, data analysis, and automation. Finally, the problems faced in
current applications are discussed, and future perspectives and suggestions are provided to further strengthen this integration.

1. Introduction

The most widely used experimental models in biological
research are cell-based and animal models; however, both
these models have many limitations. Traditional cell-based
models lack essential features, such as complex multiple cul-
tures, physiological microenvironments, and tissue mechani-
cal forces [1]. Animal models, although regarded as the
current gold standard in many biological studies, have prob-
lems such as high cost, ethical issues, low throughput, and
interspecific differences, which significantly limit the progress
of drug development and other biological research [2, 3].
Microfluidic-based OoC technology is proposed to fill
the gap between traditional two-dimensional (2D) cell cul-

ture and animal models and to gradually replace animal
studies [4]. As a product of the progressive development of
microfluidic technology, OoCs combine microfluidic tech-
nology with cell biology; they faithfully mimic the physiolog-
ical microenvironment of the in vivo target organs. These
novel in vitro biological models can replicate the local char-
acteristics of a disease and control the environmental param-
eters of cell survival, making them a cost-efficient and high-
throughput platform for biological research. Polydimethylsi-
loxane (PDMS) and poly(methyl methacrylate) (PMMA) are
the most commonly used materials for the fabrication of
Oo0C devices. Owing to the transparent nature of these mate-
rials and its high compatibility with fluorescence micros-
copy, OoC applications usually generate a large number of
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images, leading to a large amount of image-based data. This
has traditionally been accumulated and processed by manual
methods, which are typically inefficient [5].

The utilization of automatic and intelligent data analysis
systems will further enhance the development of OoCs in
various biomedical applications. Deep learning [6] is the
most representative research field in artificial intelligence
(AI) [7]. The application of deep learning to OoCs offers a
powerful tool for the exploration and analysis of the massive
image-based data generated by OoC approaches, which con-
sequently enhances the automated level of OoCs. Riordon
et al. reviewed the integration of deep learning with micro-
fluidics [8]. However, in the field of OoCs, no review focused
on this novel concept to date. Therefore, a timely and com-
prehensive summary of the applications of deep learning in
OoC studies will promote the development of this technol-
ogy and facilitate research in both fields.

This review provides an in-depth discussion of the inte-
gration of deep learning and OoCs (Figure 1). Following the
introduction of the basic concepts of OoCs and deep learn-
ing, we review deep learning as a multifunctional data anal-
ysis tool for biomedical applications, including cell
identification, localization, tracking, and image segmenta-
tion. Finally, we discuss future directions for the application
and integration of deep learning in the field of OoCs.

2. Emergence of OoC Technology

Replicating the human physiological system is extremely
important for the pharmaceutical industry to predict drug
efficiency, pharmacokinetics, and toxicity [9]. Animal
models are currently the gold standard for many biological
studies and can provide the most accurate predictions. How-
ever, the associated high costs, low throughput, and ethical
issues limit the application of animal models to the early
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F1GURE 1: Integration of deep learning with organs-on-chips (OoCs). Deep learning has been applied to device design, real-time monitoring,
and image processing in OoCs. In the future, it may be further applied to organelle tracking, mechanical force mimicking, drug screening,
rare disease diagnosis, and human-on-chip regulation (created with http://BioRender.com).

stages of drug discovery [10]. In addition, interspecies differ-
ences are an insurmountable gap between animal models
and humans; thus, the experimental results for some disease
models [11] and drug efficacy studies [12] have deviated
from those of humans. For in vitro models, most biological
studies have relied on two-dimensional (2D) cell cultures
[13]. Despite the value of this model, it does not adequately
reconstruct the in vivo cell microenvironment or simulate
the complex physiological functions of human organs. To
solve this problem, three-dimensional (3D) cell culture
models have emerged and provide several enhancements
compared to traditional 2D cell culture, such as improve-
ment of the expression of differentiation functions, tissue
structure, signal capture, and drug response sensitivities
[4]. However, even the most effective 3D models are still
unable to perfectly reproduce the complex cell-cell interac-
tion, spatial configuration of different types of cells, and tis-
sue mechanical forces of human organs.

Recent research in microfluidic systems and cell biology
has created novel engineered microphysiological systems,
00Cs [1]. These in vitro models provide tissue mechanical
force and a controllable microenvironment, allowing the
reconstruction of fundamental features of the target organ/
tissue. Therefore, the introduction of OoCs has bridged the
gap between oversimplified 2D cell culture and expensive
animal models, providing an efficient and energy-saving bio-
logical research platform (Figure 2).

2.1. Microfluidic Technology. Microfluidics are miniaturized
systems with specific morphological and positional struc-
tures. Their width and height scales are both between
100nm and 100 ym [14]. The reaction time in microfluidic
systems is much shorter than that in conventional instru-
ments because the small system rapidly diffuses molecules
[15]. The implementation of microfluidics is inextricably
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FiGure 2: Emergence of OoC technology provides a strong
connection between animal models and traditional in vitro
models. It considers the physiological relevance and complexity as
well as throughput and reproducibility (created with http://
BioRender.com).

linked to the rapid development of photolithography and
inkjet printing technologies. At the same time, researchers
have designed pumps and valves capable of controlling and
manipulating fluid flow [14]. Thus, microfluidic systems
have the advantages of fast operation and small size and
can manipulate fluids on the microscopic scale, enabling
physiological fluid shear and pulsating flow patterns.
Small-size microfluidic systems use less reagent than tradi-
tional flow control platforms and are thus perfect tools for
high-throughput screening [15, 16]. In the past two decades,
microfluidics have been successfully used in various biologi-
cal applications such as fast cell sorting [17], cell biochemis-
try analysis [18], biomaterial screening [16], and OoCs [1,
19].

2.2. OoC Technology. Owing to the intrinsic characteristics
of microfluidic technology, such as miniaturization, highly
controlled flow systems, and flexible device designs, the inte-
gration of microfluidic technology, biomaterials, and cell
biology has resulted in an advanced in vitro OoC system
(Figure 3). Compared to conventional in vitro cell models,
O0Cs can accurately control parameters such as the chemi-
cal concentration gradient [20], tissue mechanical force
[21], cell spatial configurational culture [22], multiple-cell
coculture [23], and organ-organ interaction [24], in order
to replicate the complex structures, microenvironments,
and physiological functions of human organs. In addition,
physiological barrier models based on OoCs accurately sim-
ulate the delivery and penetration of compounds in vivo
[25]. In recent years, the precision of OoCs has increased
dramatically, allowing assays to be performed on single cells
and enabling high throughput, with thousands of simulta-
neous quantitative analyses at single-cell resolution [26].
After rapid developments in recent years, researchers
have replicated several human organs in OoCs (Figure 4).
Ho et al. successfully mimicked the structure of liver lobules

by patterning liver cells and epithelial cells on a circular
PDMS-based microfluidic chip to simulate the lobular struc-
ture of the liver [27]. Huh et al. designed a double-layer
lung-on-a-chip, which deformed the PDMS membrane
using a vacuum pump to simulate the expansion and con-
traction of the alveolar wall during respiration [28]. This
work was regarded as a landmark study concerning OoC
technology. Kim et al. utilized a similar design to simulate
the expansion of human intestinal peristalsis [29]. Jang
et al. replicated the proximal tubular structure of the kidney
by introducing fluid shear in a bilayer OoC [30]. Ren et al.
also constructed a capillary endothelial barrier using two
parallel microcolumn arrays to accurately mimic the struc-
ture and function of myocardial tissue [31]. By combining
polymer chemistry and OoC technology, we recently
reported a blood-brain barrier (BBB)-on-a-chip with simu-
lated BBB function. We successfully evaluated the perme-
ability of small-molecule drugs and monitored the
endocytosis and transcytosis of nanomaterials in the endo-
thelium [32, 33]. Furthermore, collaboration between
research institutions and pharmaceutical companies has
brought OoCs to a practical stage. A kidney-on-a-chip has
been successfully applied for drug screening [34]. In addi-
tion, Johnson & Johnson plans to conduct drug trials using
the human thrombus simulation OoCs developed by Emu-
late and use the liver-on-a-chip to test the hepatotoxicity
of drugs [35].

As can be seen from this discussion, OoCs have been
developed for the major organs of the human body; an
increasing number of organ models have also been devel-
oped for other less studied organs and tissues, such as mus-
cle models [36], bone models [37], tissue models [38],
mammary gland models [39], skin models, and others [40,
41].

3. Deep Learning

In recent years, with more powerful computing performance
of graphics processing units (GPUs) [42] and the improve-
ment of big data acquisition capabilities, deep learning has
led to the creation of state-of-the-art benchmarks in many
industries and has become the preferred intelligent technol-
ogy for engineering applications. It has been widely used in
many fields, such as natural language processing [43], speech
recognition [44], and computer vision [45]. Based on the
relation between three current topics of interest in computer
science, Al [7], machine learning [46], and deep learning [6],
we provide an in-depth analysis of the development context
of deep learning (Figure 5). Machine learning is a common
technical means to realize Al, and deep learning is a type
of machine learning algorithm. Al is applied to mimic
human thinking, perceive the environment, and take action
to achieve goals. Machine learning refers to choosing the
most appropriate algorithm based on a large amount of his-
torical data so that machines can learn inherent regular
information to effectively solve practical problems. There
are a vast array of algorithms in machine learning, the most
widely used of which is neural network-based deep learning.
The behavior of neural network-based deep learning mimics
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FIGURE 3: Integration of microfluidic technology, biomaterials, and cell biology results in an advanced in vitro OoC system. Cells from a
human body are extracted (2) and placed in perfusable microfluidic devices (3) to make OoCs (4). Multiple OoCs connected together
results in a human-on-a-chip system, (5) which ultimately will faithfully replicate the key functions of the human body and therefore
holds great potential for use in drug discovery and pathological research (created with http://BioRender.com).
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FIGURE 4: Some successful applications of OoCs and their corresponding functions (created with http://BioRender.com).

many characteristics of the human brain; it also includes
some of the basic functions of the brain by simulating the
structure and character of the cerebrum.

In 1943, McCulloch and Pitts jointly proposed the
McCulloch-Pitts (M-P) model (Figure 6(a)) and developed
the theory of neural networks, which provided a foundation
for the growth of machine learning [47]. In 1957, neural net-
works were first developed, and Rosenblatt et al. established
the concept of a monolayer perceptron (Figure 6(b)), which
became the first neural network model [48]. It is a simple
neural network that linearly divides data into two categories.
The input is the eigenvector of the instance, the output is the

category of the instance, and the binary values of +1 and -1
are used. However, it was not until 1969 that Minskey and
Papert demonstrated that the perceptron was incapable of
facing linear inseparable problems similar to XOR problems;
this led to the development of machine learning over a ten-
year period of research [49].

In 1986, as the originator of deep learning, Rumelhart
et al. proposed the famous back propagation (BP) algorithm
(Figure 6(c)), which can solve linear inseparable problems
such as XOR and thus promoted the wave of research into
the second generation of neural networks [50]. An error
between the actual and reference values became apparent
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FIGURE 6: In-depth analysis of the development context of deep learning. (a) Biological neuron and M-P model. To simplify the model and
facilitate expression, the model ignores complex factors in biology. (b) Monolayer perceptrons. (c) Back propagation algorithm. (d)
Convolution neural networks.

when training the network. They then used the gradient  to the model parameters was calculated. This gradient was
descent method to reduce this error as much as possible. ~ propagated back through the method of gradient descent
After forward propagation, the gradient of the error relative =~ to modify the weight of synaptic connections among
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displayed in the visual layer. (c) Architecture of AlexNet. It is similar to LeNet but replaces large convolution with some convolution
(Conv) layers, which means it is deeper than LeNet. In addition to this, it uses ReLU as the activation function and considerably more

data than LeNet.

different neurons, gradually finding the best combination of
weights and deviations to reduce the error to a minimum
and improve the performance of the model.

BP has become the most commonly used optimization
algorithm for multilayer perceptron training. In addition,
another deep learning pioneer, Lecun et al., proposed convo-
lutional neural networks (CNNs) to successfully realize
handwritten digit recognition [51]. This was the world’s first
CNN architecture, the famous LeNet network (Figure 7(a)).
A CNN architecture typically consists of several convolution
layers closely followed by pooling layers and a fully con-
nected (FC) layer (Figure 6(d)). In the convolution layer,
the feature map of the previous layer and a filter from the
upper left corner create a convolution that multiplies the
corresponding numbers and then adds them. The filter slides
smoothly until all the features are calculated; thus, the out-
put forms a feature map of this layer. The pooling layer,
which contributes to aggregating features and reducing
dimensions, is positioned between two convolution layers.
It divides the input data into different regions, and the image
resolution in each region is reduced through pooling opera-
tions. The main purpose of the FC layer is to connect the
features one by one to the marker space. All its connections
are tightly linked to those of the previous layer, thus trans-
forming the multidimensional output into a one-
dimensional vector and achieving classification. However,
owing to the disappearance of the gradient, the limitation
of the number of training samples, the lack of computing
power, and the introduction of shallow learning models such
as support vector machines (SVM) [52], logistic regression
(LR) [53], decision tree [54], and the naive Bayesian model
(NBM) [55], the neural network has not been widely applied
and promoted, and research in this area has reduced.

In 2006, Hinton et al. proposed deep belief networks
(DBNs) (Figure 7(b)), which effectively shortened the train-
ing time of deep neural networks and alleviated the problem

of gradient disappearance caused by the BP algorithm [56].
In addition, a new activation function, the rectified linear
unit (ReLU), was constructed. Experiments showed that
using ReLU could suppress the vanishing gradient prob-
lem [57].

In 2012, deep learning became a popular research topic.
In the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC), Krizhevsky et al. built a multilayer convolutional
neural network, AlexNet (Figure 7(c)), to achieve an image
classification error rate that was significantly reduced from
the previous lowest of 26% to 15% [58]. This record-
setting performance surprised the entire industry and stimu-
lated research interest in neural networks again. Numerous
models based on the deep CNN architecture are emerging,
and many impressive results have been achieved [59]. Repre-
sentative CNN architectures include VGGNet [60], GoogLe-
Net [61], and ResNet [62].

In addition to CNNs, many other branches of research in
the field of deep learning have been developed recently,
including sequence prediction represented by recurrent neu-
ral networks (RNNs) [63] and transformers [64], image gen-
eration represented by generative adversarial networks
(GANSs) [65], object detection represented by Faster R-
CNN [66], YOLO [67], semantic segmentation represented
by U-Net [68], and DeepLab [69].

In recent years, deep learning has been successfully
applied to commercial applications by various manufac-
turers; the applications include Google Translate, Apple’s
voice tool Siri, Microsoft’s Cortana personal voice assistant,
and Ant Financial Smile to Pay [70]. Most importantly, deep
learning can potentially help in the mitigation of diseases
such as the coronavirus disease (COVID-19), which has
resulted in a global pandemic over the past two years. Deep
learning technology is likely to play a large role in the iden-
tification of epidemiological characteristics across many
countries and to enable the exploration of the development
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trend of pandemics, thus providing a basis for creating con-
trol measures. In addition, research teams in an increasing
number of industries are incorporating deep learning in
the exploration of research and commercial applications,
such as medical diagnosis, pandemic tracking and predic-
tion, industrial intelligent manufacturing, autonomous driv-
ing, and virtual reality.

4. 00Cs and Deep Learning Integration

00Cs and deep learning are frontier disciplines in biomedi-
cal engineering and Al, respectively. In this section, we first
introduce the application of deep learning to microfluidics
and then extend it to OoCs (Table 1). Because the combina-
tion of these two disciplines is not widely explored at pres-
ent, we also provide some perspective on the application of
deep learning to the following aspects of OoCs: prediction,
target recognition, image segmentation, and tracking.

4.1. Deep Learning in Microfluidics. The development of
deep learning has resulted in great progress in microfluidics
research and has led to a new generation of microfluidic
platforms with extensive functions. Furthermore, the appli-
cations of deep learning in microfluidics have allowed
researchers to observe phenomena that were difficult to cap-
ture in the past. We have divided these applications into two
categories: device parameters and images.

4.1.1. Deep Learning in Device Parameters. The application
of microfluidic devices in emulsion production has resulted
in advantages such as reduction of reagents, product emul-
sions with a narrow molecular weight distribution [74, 75],
and high-value-added products [76]. Changing and group-
ing all the parameters (i.e., flow rate, viscosity, two-phase
surface tension, and microchannel diameter) can affect the
T-junction microdroplets. Mahdi et al. used these dimen-
sionless parameters as inputs to a neural network [71]. After
cyclic training in hidden layers, the number and intercon-
nectivity of the neurons were determined. Finally, the net-
work output the predictions of the dimensionless length L,
and junction width w of the microdroplet (Figure 8(a)).
Soft sensors [77] used in microfluidics are composed of
highly deformable polymers. They are used in elastomeric
actuators [78], soft wearable robotic devices [79], and soft
robotic grippers [80]. However, compared with traditional
sensors, the main disadvantages of microfluidic soft sensors
are the nonlinearity and hysteresis of the response. Han et al.
used a hierarchical signal-level recurrent network to charac-
terize a microfluidic soft sensor that could identify the pres-
sure and location of the stimulus (Figure 8(b)) [72]. In a
microfluidic channel filled with liquid metal, the simulated
voltage varied with the pressure and location of the channel.
Initially, the network aggregated time-series information
with three hidden layers and transformed the sequential
input data into a representation. The network then identified
the locations at which the sensor was being pressed. Finally,
the pressure estimation network predicted the magnitude of
the pressure corresponding to the sensor outputs. The
obtained time-series-related data were entered into the

RNN for model training. The model could identify the pres-
sure and location of the stimulus along the channel.

Microfluidic chip design and fluidic modeling require
numerous calculations and a knowledge of hydromechanics,
which may be an obstacle for researchers with a biomedical
background. The most common approach is to make a large
number of interactive and intuitive choices among a wide
range of design options, which is a time-consuming and
labor-intensive task. Stoecklein et al. answered the question
“what kind of geometry produces an ideal microfluidic
shape?” using deep learning (Figure 8(c)) [73]. A CNN
architecture used target flow shapes from a testing dataset
and predicted the flow shape. Compared with the original
network, neural networks could independently select the
best option. The intelligent sampling of this type of data
can greatly improve performance and enable effective pre-
diction outside the training range.

4.1.2. Deep Learning in Images. The algorithmic rules for the
recognition of cell images are mostly based on mathematical
principles and statistical theorems, which are a part of tradi-
tional machine learning. For example, a peripheral blood
smear image consists of three types of cells: red blood cells,
white blood cells, and platelets. The latter two are morpho-
logically different from red blood cells. Marker-controlled
algorithms have been used to separate white blood cell nuclei
in microscopic images [81]. In addition, there are morpho-
logical and threshold selection techniques [82], cluster seg-
mentation algorithms and rule-based methods [83],
mathematical morphological and particle-size measurement
methods [84], and grayscale thresholding methods [85].
These can also achieve cell recognition. The combination
of traditional machine learning with microfluidics has
enabled single-cell lipid screening [86] and cell count-
ing [87].

However, owing to the complexity of the multiple types
of data generated by the highly parallel operation of micro-
fluidics, traditional machine learning is no longer sufficient
to satisfy the requirements of researchers. The application
of deep learning, which is a popular method for processing
large amounts of data with high efficiency, is appropriate
owing to advances in technology. Compared with traditional
machine learning, the advantage of the integration of deep
learning in microfluidics is clear: it can be used to train com-
plex neural networks to obtain the internal features of the
data and improve the efficiency of experiments using large,
high-dimensional datasets.

Deep learning has been used to identify and classify
mobile cells in microfluidic channels using an RNN architec-
ture. Cell feature vectors (e.g., roundness, circumference, and
major axis length) obtained by various imaging modalities
have been fed into the networks, and the class of diagnosed
cells (e.g., leukocytes and colon cancer cells) was identified.
Label-free cell classification was achieved by Singh et al. using
the aforementioned approach [88]. Chen et al. used a quanti-
tative time delay microscope to obtain rich cell characteristic
data and used deep learning methods to achieve cell classifica-
tion [89]. The accuracy of this method exceeded that of tradi-
tional machine learning. San-Miguel et al. used microfluidic



easily

8 Research
TaBLE 1: Summary of different applications for deep learning in microfluidics and deep learning in OoCs.
o Experiment Network .
Application Device design Subject Input Architecture Output Function Refs
. - . The generatéd Four numbers Length of the P.redlct the size of
A microfluidic device microdroplet in a . microdroplet at the
. . . . affect the size An ANN droplet and the . . .
with three capillary T-junction . . exit of the T-junction [71]
. 1 of architecture  diameter of the . .
tubes microfluidic . . . according to different
microdroplet junction
system parameters
Two pressure sensors Estimate both
and a single Microfluidic soft An analog An RNN Wlth .Pres.sure pressure rpagmtu.de
. an attention  estimation and and location while  [72]
microchannel filled Sensors voltage o A
. L module localization considering the
with a liquid metal .
hysteresis problem
D . - icti
| eep A fluid flow shape T'he top-half . Make pred}ctlons
earning in . . image of a A CNN Corresponding and deliver
. o model decided by Flow sculpting . . . . [73]
microfluidics . . microchannel  architecture  pillar sequences  comparable designs
micropillars .
shape for flow sculpting
Spectrum Recognize the
Two microfluidic images that . . regional
. . Pseudomonas An AlexNet Pixel count in the .
devices with four . . convert from . . concentration [91]
aeruginosa bacteria . . architecture  spectrum images
culture channels original images change of the
via FFT cultured bacteria
S . Long-term and . .
A pl.a stic slide WIt.h Bone marrow from  time-lapse =~ A CNN-RNN . Pre.dlct the hneage)
physical channels in L o . . Cell lineage score choice of stem cells’ [92]
. mice tibiae and ilia microscopy cell architecture
medium progeny
patches
. L1 . T ime-lapse An . Parameters that
A microfluidic device Interferon-a- images that  unsupervised . .
o , . characterize IFN-  Track immune cell-
composed of a central conditioned record cells image : . N
. .\ . . . DC behavior ~ tumor interactions in  [94]
immune chamber and  dendritic cells trajectory in analysis toward cancer real time
two tumor chambers (IFN-DCs) 3D tumor algorithm, cells
spaces Cell Hunter
Data that
A microfluidic device collect by a Track the migration
composed of six Three groups of microfluidic Cell Hunter Some trajectories and the interactions [96]
reservoirs and four human PBMCs platform and of specific cell of human PBMCs
chambers time-lapse toward tumor cells
video
. - . An atlas of . -
A .mlcroﬂu.ldlcldew.c ¢ HER2" breast videos at A set of kinematic Descrl}) e the I'notlhty
with 3D biomimetic . . . . and interaction at
L cancer BT474 cell varying spatial- Cell Hunter ~ and interaction . . [97]
hydrogels inside . - varying spatial-
. line and PBMCs temporal descriptors .
Deep microchambers . temporal resolutions
. resolutions
learning in BT474 cell line of Parameters that
OoCs A 3D coculture el me o Time-lapse arameters tha Characterize the
. - . HER2" breast . record the
microfluidic device videos and . . responses to the drug
. cancer, the breast interaction of a .
with a central vascular . images that Cell Hunter . and dissect the roles [98]
CAF cell line single cancer cell .
compartment and two reconstructed ith all th of immune cells and
lateral chambers Hs578T and in 3D with all the fibroblasts
PBMCs PBMCs
Discover hidden
A microfluidic device BT474 cell line of Video Cell Hunter Atlas of messages within cell
with 3D biomimetic HER2" breast sequence of  and a CNN  experimental cell trajectories for [99]
gels cancer and PBMCs cells architecture  tracks and type cancer drug
treatments
Judge the
A stretchable Human skeletal ~ Morphological Temporal physiological status,
micropatterned 3D muscle cells and image of A CNN-RNN  prediction and  contractile type and
. . . [100]
human skeletal myogenic stem  skeletal muscle architecture  cell function of performance of
muscle platform cells cells muscle cells muscle cells more




Research

Water Oil

Target (test) fluid
flow shape

| oe

Simultaneous multi-class
convolutional neural network (CNN-SMC)

Localization Pressure
network estimation
network
Signal-level
recurrent
network

Analog voltage
and its gradient

(b)

Predicted pillar sequence
» (24, 24, 24,24,7,23,7)

4

Predicted sequence flow shape
5 (forward model)

G~

FIGURE 8: Deep learning in device parameters. (a) Formation mechanism of microdroplets in a microfluidic T-junction. The dispersed phase
is perpendicular to the lateral channel. Two syringe pumps supply and control two fluids. The neural network below consists of 10 neurons
in the hidden layer (reproduced with permission from Ref. [71]). (b) Hierarchical signal-level recurrent network, which could concurrently
learn to forecast pressure and location. Reproduced with permission from Ref. [72]. (c) Workflow for the trained deep learning network

(reproduced with permission from Ref. [73]).

techniques to capture the localization of Caenorhabditis ele-
gans arrays and imaged their synaptic punctum patterns
[90]. This work identified subtle differences between muta-
tions by feeding the measured data into an RNN architecture,
revealing their hidden genetic differences.

Most existing measurement methods are not suitable for
microfluidic equipment with small sample volumes as the
level of bacteria in the channel needs to be measured during
culturing. Hence, Kim et al. developed an image-based
method to assess the growth status of bacteria in microflui-
dic channels [91]. In this study, bacteria were cultured in a
microfluidic device with liquid and agar gel media in two
separate channels. Time-lapse images were captured, and a
fast Fourier transform (FFT) was used to detect variable fre-
quencies of the images. The experimentally obtained images
were used as input to the CNN architecture (Figure 9(a)).
Using this model, the level of Pseudomonas aeruginosa was
successfully obtained and the bacterial growth in the micro-
fluidic channels was quantified.

In addition, a combination of CNN and RNN architec-
tures can be applied when complex image input and temporal
information need to be achieved. For example, cell differenti-
ation changes the intracellular molecular properties of original

stem cells, resulting in changes in their morphology and motil-
ity. Buggenthin et al. combined CNN with RNN architecture
to predict single-cell lineages when identifying hematopoietic
lineages (Figure 9(b)) [92]. The model first used a CNN archi-
tecture to extract local abstract features of stem cells under
bright field images, and the vector of outputs indicated
whether they were similar to certain cell patches. Then, the
vector of outputs was fed into an RNN with a bidirectional
long short-term memory network (LSTM) architecture to
model cell dynamics. The effect of temporal information of
the cells in the video was analyzed, and individual cells were
classified as belonging to a certain lineage. This hybrid method
improved the prediction ability of the model compared with
that of CNN; moreover, it predicted the pedigree selection of
primary hematopoietic cells. Using a similar approach, it
would also be possible to identify the shape of the cells and
analyze the movement morphology.

4.2. Deep Learning in OoCs. In this section, we discuss vari-
ous applications of deep learning in OoCs. By discussing
examples of each type of application in detail, the power
and versatility of the integration of deep learning with OoCs
were illustrated.
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Dendritic cells play a critical role in the recognition of
tumor cells by absorbing tumor antigens and presenting
them to T cells. The effectiveness of immune therapy there-
fore relies heavily on the interaction between the tumor and
dendritic cells in the tumor microenvironment to induce an
effective antitumor response [93]. Parlato et al. recon-
structed an interconnected 3D immune cell-tumor ecosys-
tem by combining OoCs with advanced microscopy
techniques (Figure 10(a)) [94]. The device was composed
of a central immune chamber, which was interconnected
with the tumor chamber via an array of microchannels. On
this tumor-on-a-chip device, CellHunter [95], an unsuper-
vised cell tracking analysis algorithm based on deep learning,
was used to quantify the number, velocity, displacement, and
other parameters representing the migration capacity of
dendritic cells. With the support of this system, the effective
movement of dendritic cells toward tumor cells was assessed.

As immune cells explore known environments such as
probes, the analysis of the environment could yield informa-

tion about how human peripheral blood mononuclear cells
(PBMC:s) approach tumor cells. To monitor the interaction
between PBMCs and tumor cells, Biselli et al. utilized OoC
technology and reconstructed a tumor-on-a-chip that cocul-
tured the PBMCs with HER2" tumor cells (Figure 10(b))
[96]. Through a customized algorithm, the authors showed
that the experimental conditions of time-lapse microscopy
directly influenced the accuracy of the cell tracking algo-
rithm. Based on the same chip, Comes et al. further investi-
gated the impact of temporal and spatial resolutions on the
reliability of OoC experimental results (Figure 10(c)) [97].
Using this method, the authors successfully obtained the
kinematic characteristics of cells under different therapeutic
conditions and revealed the efficacy of targeted therapy. This
work also demonstrated the important role of OoCs as a
bridge between biology and computer science in high-
content image-based data extraction.

A major challenge in cancer research is an increase in the
complexity of the tumor microenvironment. Related to the
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aforementioned examples, Nguyen et al, in the group
mentioned earlier, built a more sophisticated HER2"
breast tumor microenvironment in the tumor-on-a-chip
(Figure 11(a)) [98]. In addition to HER2" breast cancer cells,
endothelial cells and fibroblasts were cocultured to better
replicate the microenvironment of the tumor tissue. Similar
to previous studies, immune cells were applied, and CellHun-
ter [95] was used to track the interactions between cells in
OoCs. This integration of deep learning and OoCs enabled
visualization and quantification of the complex dynamics of
the tumor cells in the model. The results demonstrated that
the tumor-on-a-chip was a powerful platform for the study
of the interaction between immune cells and the tumor
microenvironment, as well as the responses of the immune
cell-tumor ecosystem to drug treatment.

The same group further optimized the algorithm and
developed a novel deep learning tool called deep tracking
[99]. The first step was to acquire a video of cells moving
on an OoC platform. In the video, the trajectory images were
collected under a range of circumstances. For a human
expert, this step made the cell trajectories more conspicuous
than the multichannel time-series approach. The second
step utilized a pretrained CNN architecture, AlexNet, to
classify the cell trajectories from the visual atlas of each
experiment. The author tested deep tracking in two types
of tumor-on-a-chip (Figure 11(b)). By using deep tracking,
the addition of the immunotherapy drug trastuzumab was
found to increase cancer-immune cell interactions. The high

accuracy of the model illustrates the versatility of deep track-
ing. Normally, manually collected information is necessary
in deep learning; however, the parameters in deep tracking
algorithms are not tuned according to cyclic experiments.
Therefore, we believe that by adding key parameters that
are manually tuned by experts to the system, an even higher
accuracy will be realized for deep tracking.

Substantial and energy metabolism are supported by
skeletal muscles. It is important to simulate the physiological
state in vitro because of the dynamic features of muscles.
Jena et al. cultured primary human skeletal muscle cells in
a 3D stretchable platform to generate a human muscle-on-
a-chip [100]. In this work, the authors used an RNN
architecture with LSTM memory blocks and the CNN archi-
tecture shown in Figure 11(c), where the algorithm is more
complicated than deep tracking [99]. They inferred differ-
ences in position and morphology based on the time
sequences of the images predicted by the RNN architecture.
The authors further applied these images to a further CNN
architecture. Using this deep learning framework, biochem-
ical markers were successfully determined based on static
and dynamic imaging of cells over time. This type of trained
CNN architecture can also be used to judge the physiological
status, contractile type, and performance of muscle cells,
without expensive and complicated biochemical detection.
Furthermore, this muscle-on-a-chip can provide a reference
for early diagnosis and methods for the development of per-
sonalized medicine.
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4.3. Key Applications of Deep Learning in OoCs. Through
examples of the successful integration of deep learning and
microfluidics, several key perspectives can be identified
(Figure 12). In the project preparation stage, deep learning
can be applied to the device design and material selection
of OoCs, resulting in OoCs more suitable for the particular
application. In addition, owing to the increasing popularity
of multiple-cell cultures in OoCs, deep learning can also be
used for robust discrimination of cell populations.

In some OoCs, it is important to segment the parts of the
images with special significance and extract the relevant fea-
tures to provide reliable results for the analysis of experi-
mental data. For instance, the brain tumor-on-a-chip
reported by Yi et al. printed brain tumor cells in 3D, where
endothelial cells were cultured surrounding the tumor cells
[101]. Several key actions in this study involved the separa-
tion of endothelial cells, neoplastic cells, and tumor stem
cells with different fluorescent labeling. An automatic
image-based system that can extract different segments of
the tumor-on-a-chip will facilitate the analysis of anticancer
drug therapy. However, the complexity of the image itself
and issues such as inhomogeneity and individual differences
in the segmentation process make it difficult for traditional
machine learning methods and typical neural networks to
achieve pixel-level segmentation of images.

In 2015, Long et al. first applied fully convolutional net-
works (FCNs), which can accept input images of arbitrary
size and perform pixel-by-pixel classification of images
[102]. The U-Net model is a modified FCN structure. It is
named for its structure, which is shaped like the letter U,
and is widely used in image semantic segmentation [68].
Zaimi et al. used a U-Net architecture to achieve pixel-level
segmentation of axons, myelin sheaths, and backgrounds
in images [103]. The same system could be applied to the

pixel-level segmentation of images obtained from OoC.
The type of CNN architecture used in the downsampling
process can also be changed in semantic image segmenta-
tion. Lim et al. reconstructed all pixels of red blood cells
and greatly improved the image quality and superresolution
capability of the model [104]. This study contained two
highlights: one was the generation of digital phantoms as
input, which overcame the lack of ground truth and elimi-
nated the introduced distortions. The second was the pre-
sentation of a U-Net architecture with a skip connection
between input and output, which mitigated the vanishing
gradient problem during training and increased its perfor-
mance. Developers have now programmed a plug-in for
single-cell segmentation in the Image] software that allows
people who are unfamiliar with deep learning to use U-Net
to analyze data on a personal computer [105]. In addition
to the U-Net model, models, such as DeepCell [106],
CDeep3M [107], and CellProfiler [108], have been used to
achieve pixel-level segmentation of cellular images.

Finally, the real-time visualization of cell morphology
and trajectory is crucial for medical research. Zhao et al.
combined a classic U-Net architecture with glass—air Ander-
son localizing optical fibers (GALOFs) [109]. This imaging
system, named Cell-DCNN-GALOF, could transfer high-
quality images in real time. Furthermore, the image recon-
struction process was remarkably robust with respect to var-
ious depths, temperature variations, and fiber bending. Most
importantly, the system showed a unique transfer-learning
capability when cells with different morphologies and classes
were examined. This means that the system could be trained
with cell images from OoCs. Cell trajectory monitoring
could also be realized through Cell- DCNN-GALOF in real
time. By automatically detecting their trajectory and quanti-
fying relevant movement data, deep learning can also
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provide auxiliary references to quantify experimental results
and develop new experimental models for OoCs. Therefore,
we believe that OoCs will transform traditional approaches,
which rely heavily on manual data processing and operation,
into a highly automatic system by means of deep learning.

5. Summary and Prospects

5.1. Future Applications of OoCs. In recent years, deep learn-
ing has completely changed many traditional industrial sys-
tems. Moreover, researchers in different fields are trying to
integrate deep learning technology into their respective
fields. In particular, many research advances have shown
the promise of the integration of OoC technology and deep
learning. The main reasons for this are as follows.

First, the open-source projects implementing deep learn-
ing have gradually improved, including the open-source
code based on TensorFlow, Pytorch, and Keras frameworks.
These allow researchers to quickly reproduce open-source
engineering code in different fields and apply it to their
own specific tasks. Second, novel and better deep learning
models with excellent performance are constantly emerging.
These will ultimately be applied to the rapid development of
industries that are extensively integrated with deep learning.
Lastly, the multitype data generated by OoC experiments are
not only complex but also large in quantity. Deep learning
technology can be introduced to simplify the labor-
intensive data analysis and feature extraction steps, alleviate
the huge challenges brought by massive biomedical big data,
and solve tasks that were previously considered infeasible.

5.1.1. Organelle Segmentation and Tracking in OoCs. Cur-
rent applications of deep learning in cell biology mainly
focus on the morphological changes of whole cells; however,
the analysis of subcellular structures or organelles can pro-
vide additional and important information [110, 111]. Very
recently, Lefebvre et al. developed a shallow machine learn-
ing algorithm-based software package named Mitometer
that can rapidly segment and track cellular mitochondria
from both images and videos [112]. This provides a new
and exciting research direction for AI in cell biology. As
mentioned previously, deep learning captures the inherent
features of data in a more efficient and accurate way than
traditional machine learning. We therefore believe that deep
learning-based organelle segmentation and tracking can
generate comparatively richer information on the cell/tissue
behavior in the OoCs.

5.1.2. OoC Tissue Mechanical Force Control. Tissue mechan-
ical force control is one of the most important features of
00Cs. For example, in the case of a lung-on-a-chip, human
airway epithelial cells were cultured in a computer-
controlled two-phase microfluidic system. The system can
simulate the propagation and rupture of fluid embolism that
occurs during airway injury in obstructive lung disease
[113]. As the timing of applying the tissue mechanical force
is critical, it is necessary to develop an automatic instrument
based on the cell morphology and microenvironment. Deep
learning detects cell processes and biomarkers over time
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without affecting cell viability; therefore, it allows the moni-
toring of the performance of the entire system in real time
[114]. By integrating deep learning with OoC, the system
can exploit the potential to automatically regulate and con-
trol various functional parameters of OoCs.

5.1.3. Drug Screening on OoCs. OoCs have been widely
explored as in vitro human-related disease models, which
can be an excellent platform for the study of pharmacokinet-
ics, drug toxicity, and pharmacology. For example, Boos
et al. tested embryoid bodies, influenced by human liver
metabolites, in an organoid system [115]. The platform pro-
vides a promising tool that more comprehensively reflects
physiological processes in in vitro tests, thus increasing the
predictive power of adverse drug effects. Thus, OoCs can
be used to investigate embryotoxicity. Several examples
[116, 117] have also illustrated the potential of the deep
learning-based system in the accurate prediction of the effi-
cacy and toxicity of therapeutics. Therefore, the predictive
capabilities of deep learning and OoC integration are a
promising and important tool for future drug discovery.

5.1.4. Rare Disease-on-Chips. OoC technology has been
widely utilized to build various in vitro disease models [1].
However, in recent years, the development of new drugs
for rare diseases has been greatly hampered by the scarcity
of suitable preclinical models for clinical trials [118, 119].
OoC-based rare disease models generate important real-
time data that cannot usually be observed in in vivo or clin-
ical samples. These data can be further analyzed by deep
learning in real time, thus enabling the analysis of changes
in the development of such diseases at the molecular level
and ultimately obtaining the specific mechanisms of disease
occurrence.

5.1.5. Human-on-Chips. Human-on-chips, a further devel-
opment of OoCs, consist of interconnected compartments.
Each compartment (i.e., an OoC) contains specific cell types
that represent different organs. All compartments are con-
nected by a microfluidic circulation system [120], which is
highly modular in nature. The features of different compart-
ments can be extracted through deep learning, and the out-
put of the previous compartment can be utilized as the input
to the next compartment. The linkage of multiorgan tissue
system interaction is of great benefit to physiologically based
pharmacokinetic models, quantitative system pharmacology,
and other models [1]. Recently, a robotic interrogator auto-
matically cultured, perfused medium, and linked fluidic sys-
tems, to maintain the viability and organ-specific functions
of eight vascularized two-channel organ chips for three
weeks [121]. In addition, a high-throughput human-on-a-
chip system was formed on a medium circulation platform,
which enabled parallelized multiorgan experiments [122].
Furthermore, human-on-chips have already been used in
the study of intestinal absorption, hepatic metabolism, and
the activity of breast cancer drugs [123]. In the future,
through the analysis of multiple data of each OoC (such as
cell growth, differentiation, and metabolism) using deep
learning, OoCs can be combined into a highly integrated
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and controllable microfluidic regulatory system, thus achiev-
ing self-intelligent regulation of OoCs. Indeed, subsequent
work and collaborations are still required to push the develop-
ment of the integration of multiple OoCs and deep learning.

5.2. Future Challenges in Deep Learning. Although deep
learning technology has excellent performance in feature
representation and data mining, its internal mechanism
and calculation strategy still need to be optimized for specific
applications. Therefore, the development of a highly auto-
mated OoC system to provide a convenient, reliable, and
integrated intelligent platform for researchers is the main
development direction and challenge in the future.

5.2.1. Data Processing. At present, the ability to acquire
experimental data on OoCs has been greatly improved, and
massive amounts of big data have been accumulated. How-
ever, reducing the huge cost of manual labeling and auto-
matically mining and refining the inherent characteristics
of massive data are key challenges that urgently need to be
overcome. The following aspects of this can be explored.

(1) Data Augmentation. The most advanced methods
such as GAN and unsupervised data augmentation
(the latest unsupervised data augmentation method
proposed by Google has a better application in the
field of natural scene images) can be introduced to
generate simulation data with real data characteris-
tics, expand the capacity of high-value data samples,
and reduce the cost of data acquisition.

(2) Automatic Data Annotation. The development of
automatic data annotation algorithms and tools
enables the automatic labeling of massive unlabeled
data, reducing the huge cost of manual labeling,
and improving the efficiency of labeling and
development.

(3) Semisupervised Learning. Semisupervised learning
[124] can be introduced to reduce the dependence
on massive labeled data. Active learning [125, 126],
a special learning method in semisupervised learn-
ing, uses a small amount of labeled data; its effect is
equal to supervised learning. Furthermore, self-
supervised learning, as an unsupervised learning
approach, only uses unlabeled data to learn a feature
extractor, whose performance is optimized by pre-
training and fine-tuning [127].

(4) Transfer Learning. Transfer learning can also be used
as an excellent technical means to reduce depen-
dence on a large volume of labeled data. The network
is pretrained using the labeled data from other
domains. Then, the fine-tuning of the network can
be completed with a small amount of labeled data
in a specific domain.

5.2.2. Algorithm Upgrading

(1) Customized Design of Deep Learning Models. Facing
the diverse application requirements in the field of
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00Cs, the deep learning models that are used in
the field of natural optical images cannot be directly
applied. Therefore, customized designs are required,
and improvements must be made in terms of the
model architecture and deep network layout.

(2) Automatic Network Design. For specific application
scenarios of OoCs, neural architecture search tech-
nology can be used to realize the automatic construc-
tion and the optimal intelligent design of deep
models, which avoids the complexity and limitations
of traditional deep models design based on expert
experience.

(3) Iterative Upgrade of Deep Models. Facing the increas-
ingly updated OoC data, deep learning models usu-
ally have the problem of “catastrophic forgetting.”
Therefore, enabling the deep learning model to han-
dle new data and maintain robust performance
requires further exploration of the iterative upgrade
technology of deep learning models.

(4) Interpretability. Deep learning models usually have
the problem of the “black box effect”; that is, the
internal mechanism is not clear. This limits the
understanding of the underlying mechanism and
interaction principle of the specific OoC, which then
lacks interpretability and reliability. Therefore, there
is an urgent need to develop interpretable deep
learning technology to transform the “black box” of
deep learning into a “white box” and enable mean-
ingful physical explanations from a biological point
of view.

(5) Model Compression and Acceleration. For online
scene applications, the accuracy and inference speed
of the model need to be balanced. Therefore, it is
necessary to thoroughly study the compression and
acceleration technology of deep learning models,
and under the premise of ensuring accuracy, com-
press the model volume to the extent possible to
improve the inference speed.

5.2.3. Computing Capability. At present, the application of
deep learning models is mainly based on computing hard-
ware including GPU, CPU, FPGA, and other devices. The
GPU and CPU are used for offline training of deep learning
models. In particular, owing to the efficient computing
power of the GPU, it has become the main hardware used
for deep learning model training, including many products
made by NVIDIA. FPGAs are mainly used in online applica-
tions and are edge devices for real-world applications.

With the development of distributed technology, cur-
rent devices such as GPUs and FPGAs have been able to
meet the application of deep learning models. In the
future, it will be necessary to combine hardware resources
to carry out research to improve the inference efficiency of
deep learning models and enhance the reliable transfer
and rapid deployment of models to meet additional appli-
cation scenarios.
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