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A B S T R A C T   

Search for new antiviral medications has surged in the past two years due to the COVID-19 crisis. Toll-like re-
ceptor 7 (TLR7) is among one of the most important TLR proteins of innate immunity that is responsible for 
broad antiviral response and immune system control. TLR7 agonists, as both vaccine adjuvants and immune 
response modulators, are among the top drug candidates for not only our contemporary viral pandemic but also 
other diseases. The agonists of TLR7 have been utilized as vaccine adjuvants and antiviral agents. In this study, 
we hybridized a statistical learning-based QSAR model with molecular docking and molecular dynamics simu-
lation to extract new antiviral drugs by drug repurposing of the DrugBank database. First, we manually curated a 
dataset consisting of TLR7 agonists. The molecular descriptors of these compounds were extracted, and feature 
engineering was done to restrict the number of features to 45. We applied a statistically inspired modification of 
the partial least squares (SIMPLS) method to build our QSAR model. In the next stage, the DrugBank database 
was virtually screened structurally using molecular docking, and the top compounds for the guanosine binding 
site of TLR were identified. The result of molecular docking was again screened by the ligand-based approach of 
QSAR to eliminate compounds that do not display strong EC50 values by the previously trained model. We then 
subjected the final results to molecular dynamics simulation and compared our compounds with imiquimod (an 
FDA-approved TLR7 agonist) and compound 1 (the most active compound against TLR7 in vitro, EC50 = 0.2 nM). 
Our results evidently demonstrate that cephalosporins and nucleotide analogues (especially acyclic nucleotide 
analogues such as adefovir and cidofovir) are computationally potent agonists of TLR7. We finally reviewed some 
publications about cephalosporins that, just like pieces of a puzzle, completed our conclusion.   

1. Introduction 

TLR7, as a member of the Toll-like receptor (TLR) family, is located 
in the endosomal compartment. TLR7 is principally expressed in plas-
macytoid dendritic cells and B cells, but a low level of its expression can 
be observed in non-immune cells such as hepatocytes, epithelial cells, 
and keratinocytes. Stimulation of TLR7 in dendritic cells causes the 
production of various interleukins like IL-12 and type I interferons 
(IFNs) by these cells. IL-12 enhances the cytotoxic activity of T lym-
phocytes and natural killer cells [1]. TLR7 receptor is able to recognize 
viral single-stranded viral RNA (ssRNA) as well as synthetic tricyclics 

belonging to the imidazoquinoline series by using two different pockets 
[2]. 

The pathway triggered in TLR activation is either mediated by 
myeloid differentiation primary response gene 88 (MyD88) or TIR- 
domain-containing adapter-inducing interferon-β (TRIF). TLR7 carries 
its signals via the activation of MyD88, and its activation is confirmed to 
be involved in 1- the production of many cytokines such as IL-29 
(implicated in the immune response against pathogens), 2- the upre-
gulation of anti-tumor proteins like tissue inhibitor of metal-
loproteinases 1 (TIMP1) and phosphatidylinositol 3,4,5-trisphosphate 3- 
phosphatase and dual-specificity protein phosphatase (PTEN), and 3- 
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the marginal suppression of oncogenes like vascular endothelial growth 
factor (VEGF) [3]. The development of antiviral and antibacterial 
compounds, adjuvants in vaccines, and new drugs for cancer therapy, 
allergy, and asthma have been inspired by the TLR7 mechanism of ac-
tion [4]. Upon activation of the TLR7 pathway, a variety of transcrip-
tional factors and interferon regulatory factors are recruited, and various 
cytokines will be released, including the type I interferons (namely 
IFN-α and IFN-β), which act in both paracrine and autocrine manners on 
infected and uninfected cells to generate antiviral immunity. The 
pathway of IFN-I activation finally leads to the activation of 
interferon-stimulated genes (ISGs), which are a broad set of proteins 
involved in versatile aspects of response to viral pathogens. For example, 
protein kinase R, activated by such ISGs, inhibits viral protein synthesis, 
or the 2′,5′-oligoadenylate synthetase family degrades viral RNA [5]. 

Imiquimod and its derivatives resiquimod and gardiquimod are 
among the most studied TLR7 agonists (Fig. 1). Imiquimod (compound 
9) is a tricyclic nitrogen molecule belonging to the imidazo[4,5-c] 
quinoline series, which indirectly inhibits viral replications of certain 
viruses such as herpes simplex virus type 2 (HSV-2), Sendai virus, 
human papillomavirus (HPV), Rift Valley fever virus (RVFV), hepatitis C 
virus (HCV), Banzi virus, poxvirus (molluscum contagiosum disease) by 
induction of IFN-α [6]. Typically, imidazoquinolines like resiquimod can 
activate TLR7 and TLR8 simultaneously [7], but some of them, like 
imiquimod, can act as a TLR7-specific agonist [8]. Aldara® (5% cream) 
and Zyclara® (3.75% cream) are two commercially available 
FDA-approved imiquimod-containing products for the treatment of 
actinic keratosis, superficial basal cell carcinoma, external genital, and 
perianal warts in people of 12 years of age or older [9]. 

Antiviral activity of imidazoquinoline is perhaps their most notable 
studied activity, but their therapeutic significance is not limited to that. 
Gardiquimod has been employed in cancer therapy. Inhibition of cell 
proliferation, promotion of apoptosis, and suppression of metastasis are 
suggested as possible mechanisms that this drug exerts its anti-tumor 
activity [14]. Imiquimod was shown to prevent the growth of 

cutaneous breast cancer by a CD8+ T cell-dependent mechanism [15]. 
Resiquimod has been illustrated to have tumor regression activities by 
impeding the suppression that is mediated by tumor-associated macro-
phages (TAMs) and myeloid-derived suppressor cells (MDSC) in the 
tumor microenvironment [16]. The reversal of suppressive actions of 
regulatory T cells (Treg) and stimulation of natural killer cells are two 
other pathways by which TLR7 activation exert anticancer effects [17]. 
Though little is known about how TLR7 can recognize and develop an 
immune response against bacterial RNA, its activity against bacterial 
recognition in conventional dendritic cells and subsequent activation of 
T helper type 1 (Th1) responses is established [18]. 

Due to the high similarity in function and structure, TLR7 and TLR8 
are studied together most of the time. Pyrimidine and purine de-
rivatives, (hetero)bicyclic compounds, (hetero)tricyclic compounds, 
macromolecular RNA or DNA have demonstrated TLR7/8 agonistic ac-
tivity. The last group (DNA and RNA oligomers) seems less promising 
than others because TLR7 agonists will be ineffective unless sufficiently 
delivered to endosomal compartments, where TLR7 resides. Compound 
4 (Fig. 1), as an 8-hydroxyadenine derivative, demonstrated an IFN- 
inducing activity of 10 times higher than imiquimod and with better 
oral tolerance. Guanosine analogues such as loxoribine activate immune 
cells exclusively via TLR7. In vitro studies of loxoribine efficacy in mice 
display substantial inhibition of B16 melanoma lung tumor metastasis 
[4]. 

Computer-aided drug design (CADD) methods have facilitated the 
discovery of new compounds without recourse to expensive synthetic 
tools and various pharmacological tests. This article consists of different 
phases of computational methods, aiming to verify each other in a step- 
by-step fashion. 

Fig. 1. An overview of seven previously characterized N9-pyridinylmethyl analogues with their EC50 values and some other well-known TLR7 agonists [10]. Also, 
the EC50 values for imiquimod [11], resiquimod [12], and gardiquimod [11] have been deduced from the references in the BindingDB database [13]. 
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2. Methods and materials 

2.1. Overview 

In the first phase, 256 TLR7 agonists were collected from a number of 
articles. In the next phase, molecular descriptors of these compounds 
were calculated with the MOE software. The prepared data must have 
been curated in a way to improve the quantitative structure-activity 
relationship (QSAR) model quality. Not all of the descriptors could be 
implemented with reliable predictability for the final model. Thus, 
redundant descriptors had to be excluded. Our feature selection method 
for this process was forward and backward elimination. We tested 
different methods to this aim, but the best method was found to be R 
Square. Statistical learning procedures were used to create the rela-
tionship between molecular descriptors and the potency of each com-
pound to generate a robust QSAR model. Docking-based virtual 
screening as the other computational method was implemented to sug-
gest new repurposed drugs from the DrugBank database capable of 
agonizing the TLR7 receptor. In the next step, the statistical-based model 
was used to filter out the best-predicted compounds in the virtual 
screening step to yield the top compounds. It is essential to apply a 
statistical algorithm to confirm data prepared by virtual screening as a 
dual-validating procedure. At the final phase, molecular dynamics was 
utilized as the ultimate computational verifying tool to unravel the real 
binding residency and the interactions of the ligand molecules with the 
TLR7 receptor and to determine the correctness and veracity of the 
virtual screening and machine-learning processes. This work-flow is 
depicted in Fig. 2, and each procedure will be elaborated in the next 
parts in further detail. 

2.2. Dataset collection and descriptors calculation 

A dataset of 256 TLR7 ligands with their EC50 and structures was 
generated from the literature [10,19–27]. This dataset was generated 
using a set of search criteria in Scopus database using these three key-
words “TLR7” AND “Agonist” AND “EC50”. A total of 13 results have 
been obtained in the Scopus, which were manually filtered for the 
studies that used the design/discovery purposes of novel compounds. In 
these selected studies, some compounds had displayed no or very mild 
agonistic activity on TLR7, which were also included in the dataset as 
decoys. Random number generation of calculators was used to assign a 
number to the EC50 of such values. Then the structures were imported 
manually in the Molecular Operating Environment (MOE) software and 
prepared by the QuickPrep module. In the structure preparation, Pro-
tonate3D was exploited for the protonation of the required atoms. The 
3D structure preparation was performed to reach a gradient of less than 
0.001 kcal/mol/Å. After preparation, a dataset of these molecules was 
built along with their EC50 values. Some of the EC50 had no activation for 
concentrations less than a specified range. We used a random number 
generator (in that range) to create random EC50 values since having 
diversity in the range of EC50 values by data augmentation has gained 
much attention due to its undeniable improvement in the model 
accuracy. 

In the MOE software (2015.10 version), physicochemical descriptors 
can be computed, including 2D, i3D, and x3D descriptors. Many of the 
descriptors with constant 0 or 1 for all molecules manually deleted 
(expert opinion) and 135 remained or with irrelevant values that could 
not be used in the QSAR model was removed. Descriptors that were used 
for building the model were further screened in the feature selection. 

Fig. 2. The general procedure of this research work. Note how QSAR and MD are used to doubly verify the activity of molecular docking-based screening.  
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2.3. Feature selection 

For the best combination of descriptors, the forward and backward 
selection method was used. The EC50 was converted to a negative log-
arithmic scale, and all features (descriptors) were normalized. The P- 
value threshold (0.25) was used as the stopping rule. 

The following statistics have been applied to the feature selection 
model: RMSE (root mean square error), AICc (Akaike information cri-
terion, corrected), BIC (Bayesian information criterion), and R2 (coef-
ficient of determination). Both the AIC and BIC combine absolute fit by 
considering model parsimony. In other words, they penalize by adding 
parameters to the model, but they achieve this by different means. Of the 
two, the BIC penalizes by adding parameters to the model more strongly 
than the AIC. For both of these parameters, a more negative value rep-
resents a better fit and will be chosen as the final model [28]. 

2.4. Partial least squares regression (PLSR) model 

In this study, the statistically inspired modification of the partial 
least squares (SIMPLS) method was used to predict EC50 based on the 
descriptors. Partial least squares (PLS) is known as a multivariate ma-
chine learning or statistical learning algorithm that succeeds in cir-
cumstances where the application of ordinary least squares does not 
produce satisfactory results, such as highly correlated X variables, 
several Y (dependent) variables, and lots of X variables [29]. The 
SIMPLS method is suitable for large-scale datasets with collinearity, 
such as QSAR data. PLSR is an expeditious method because it converts 
complex matrix calculations into simple regressions. PLSR works by 
discovering a linear regression model by projecting the predicted vari-
ables and the response variables into a new lower-dimensional space, 
similar to principal component analysis (PCA) that regulates the 
collinearity among the variables. PLSR exploits the correlations between 
the Xs and the Ys to reveal the underlying latent structure and to identify 
the principal components (PCs) that explain the highest covariance be-
tween the predictors and the response. Dataset centering and scaling 
were performed on the dataset, which means the data matrix has zero 
mean and unit variance. 

In this step, the following statistical values were calculated: root 
mean PRESS (root mean predicted residual sum of squares), R2, and Q2 

(the cross-validated coefficient of determination), and VIP (variable 
importance projection). 

2.5. Model evaluation 

Leave one out cross-validation (LOOCV) was used for determining 
the optimal number of factors to extract. All the processes mentioned 
above were done using JMP Statistical Discovery Software 13. Some 
Python libraries were used for other analyses (Seaborn and Matplotlib 
for graph drawings and NumPy and Pandas for numerical computations 
and analyses). 

2.5.1. Root mean predicted residual sum of squares (PRESS) 
The root mean PRESS depends on the cross-validation process. The 

PRESS residuals are defined as e(i) = yi – y’
I where y’i is the predicted 

value for the ith test compound, yi is its observed value, and n is the total 
number of objects (ligands) in the entire data set. It is noteworthy to 
state that in these equations, y generally refers to the biological value 
(EC50), and x refers to the physicochemical features in the QSAR model. 

The process is repeated for all n observations, and the PRESS statistic 
is computed as follows: 

PRESS =
∑n

i=1
e2
(i) =

∑n

i=1

(
yi − y

′

i/i

)2  

where the notation i/i indicates that the model predicts the response 
estimated when the ith sample is left out from the training set. 

Root Mean PRESS =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
PRESS

√

2.5.2. Cross-validated coefficient of determination (Q2) 
Q2 is calculated as follows: 

Q2 = 1 −

∑n
i=1

(
yi − y′

i/i

)2

∑n
i=1(yi − y− )2 = 1 −

PRESSi

SSYi  

where y-
i is the calculated average of the observed values, and SSY is the 

sum of squares for Y averaged across all responses and based on the 
validation set observations. 

2.6. Molecular docking-based virtual screening 

Virtual screening is a computationally intensive method utilized for 
the identification of potent ligands from a training set of compounds 
extracted from a database. Hence, the full database of DrugBank was 
extracted and employed for this purpose. 

Extra precision (XP) molecular docking technique was performed to 
determine the best structures due to their docking energies and the 
molecular interactions with TLR7. The prepared training set was im-
ported to Glide of Schrodinger, and the energy values (XP GlideScores 
(XP GScore)) were computed using the Optimized Potentials for Liquid 
Simulations 2005 (OPLS_2005) force-field. Glide was enabled to sample 
flexible ligand structures based on considering ring conformations and 
nitrogen inversion of ligands. Epik state penalties of stable ligands were 
calculated at a pH of 7.2 (intracellular pH) and added to the GlideScores 
[30,31]. 

Finally, the structures with the most negative docking scores were 
passed to the QSAR model evaluations. The top ten compounds, which 
displayed the lowest EC50 values on the statistical learning-based QSAR 
model, were further assessed for their interactions with TLR7 by mo-
lecular dynamics studies. The recent structure of TLR7 (5ZSF from PDB 
database, from Macaca mulatta) was used for this study. TLR7 is known 
to harbor two spatially distinct binding sites based on the study of Zhang 
et al. [32]. The first binding site, which is conserved in TLR7 and TLR8 
structures, recognizes small molecules and is critical for their activation, 
and the second pose recognizes single-stranded RNA molecules (ssRNA). 
In that study, the authors also stated that the first site preferentially 
binds to guanosine, whereas the second site typically binds to uridine 
moieties in ssRNA structures. In this study, the first binding site was used 
since it has been evolutionary designed to accommodate small mole-
cules (guanosine analogues). This binding site is located a bit down at 
the intersection of two subunits of TLR7. Lys432 was used at the center 
of the grid generation with a box of 25*25*25 Å size. 

2.7. Molecular dynamics (MD) 

Molecular dynamics (MD) is a widely used computational method for 
the understanding of the interactions between various molecules under 
desired circumstances [33,34]. MD studies were used in this study to 
verify if the ligand is able to reside in the binding pocket of the TLR7 for 
an acceptable period of time with satisfactory binding properties or not. 
In other words, MD acted as a verification part for the virtual screening 
that was achieved using the QSAR and molecular docking section. 

MD studies were performed using the Desmond package (D.E. Shaw 
research [35]) for a period of 20 ns for each (top eight) ligand. 
OPLS_2005 force-field was applied for the simulation, with the SPC 
water model and a concentration of 0.15 M of NaCl. Steepest descent 
minimization and the Limited-memory Broyden--
Fletcher-Goldfarb-Shanno (LBFGS) method of energy minimization 
were used to converge the energy of the system to a gradient of 1 
kcal/mol/Å with a maximum iteration of 2000. MD simulation was set 
in NPT (constant atom numbers, pressure (1.01325 bar), and constant 
temperature (310 K)) ensemble, and before running the MD simulation, 
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simulated annealing was performed. In simulated annealing, the tem-
perature of the system was enhanced to 400 K to remove the 
non-selective interactions for 0.5 ns and returned to the normal 310 K 
afterward. Additionally, the SHAKE algorithm was exploited to impose a 
constraint on the geometry of water molecules and heavy atom bond 
lengths with hydrogen to accelerate the calculations with acceptable 
precision. The Nose-Hoover chain and Martyna-Tobias-Klein approach 
were employed as the thermostat and barostat adjustment methods with 
1.0 ps and 2.0 ps intervals using isotropic coupling style, respectively. 
The summation of long-range electrostatic forces was accomplished by 
the famous Particle Mesh Ewald (PME) approach. A 2 fs and 6 fs 
Reversible Reference System Propagator Algorithm (RESPA) integrator 
time-step was exploited for the calculation of near and far range forces. 
A cut-off radius of 9.0 Å was maintained for the calculation of the 
Coulombic forces. The Root Mean Square Deviation (RMSD), Root Mean 
Square Fluctuation (RMSF) of proteins and ligands, and also ligands’ 
torsional profile were monitored in reference to the first frame of the 
simulation. Interactions lasting more than 15% of the time of simulation 
were documented in the final results. 

3. Results and discussion 

3.1. Feature selection 

Of the 135 descriptors, 45 features were selected. Several parameters 
were calculated for this step, which are depicted in Table 1 below. 

3.2. SIMPLS QSAR model 

Using the descriptors selected in the previous step, the SIMPLS model 
was constructed. In Fig. 3, we show the coefficients of essential de-
scriptors in the SIMPLS model. The descriptors employed in our model 
are depicted in Fig. 4A. The model was able to provide satisfactory re-
sults (Fig. 4B and C), as indicated by the good regression coefficient (R2 

= 0.8054) and cross-validation regression coefficient (Q2 = 0.5856) 
values (Table 2). The minimum root mean PRESS was 0.6534, and the 
minimizing number of factors was 14 (Fig. 4D). The maximum number 
of factors was set to 15, and 14 gave us the lowest minimizing factor 
value. Thirty-two descriptors could get a VIP value greater than 0.8, 
suggesting that they have played an important role in predicting EC50. 
The model provides a regression equation of the descriptors that is 
computationally efficient with desirable accuracy. 

GCUT_SLOGP, reactive, SMR_VSA0, PEOE_VSA+1, and PEOE_VSA-3 
were the most important descriptors. The GCUT descriptors exploit the 
atomic contribution to logP (using the Wildman and Crippen SlogP 
method) instead of partial charge. Reactive is an indicator of the pres-
ence of reactive groups. VSA is an abbreviation for van der Waals surface 
area, and SMR denotes the sum of vi such that Ri is in [0,0.11], in which 
Ri denotes the contribution to Molar Refractivity for atom i, and vi refers 
to the van der Waals surface area (Å2) of atom i. The Partial Equalization 
of Orbital Electronegativities (PEOE) is a method for the calculation of 
atomic partial charges, and the charge is transferred between bonded 
atoms until equilibrium [36]. We can roughly conclude that features 
related to solubility and energy values were the most relevant features in 
our model. 

Variable importance in projection (VIP) score estimates the impor-
tance of each variable in the projection used in the model (Fig. 5). The 
Python code of the SIMPLS model is attached to the supplementary 
materials. 

The correlation matrix between the features and the target value (1/ 
Log(EC50)) is illustrated by Seaborn and Matplotlib (Fig. 6). In this figure 
lighter colors indicate less linear (Pearson) correlation whereas stronger 
colors indicate more robust linear correlations. We used this plot to 
decrease the amount of multicollinearity and to assess whether the 
contribution of each descriptor is sufficient enough to the accuracy of 
the final model. 

3.3. Molecular docking-based virtual screening 

The results of virtual screening by molecular docking identified the 
top compounds capable of binding to TLR7 at is guanosine binding site 
(with Lys432 as one of the most important residues). At this step, 8665 
compounds were docked at the receptor site (the ligands that were too 
unstable in the binding site are therefore not counted in this number), 
and the top 100 were selected for the next step of QSAR-based verifi-
cation. The most potent compound identified by molecular docking was 
2′deoxy-Thymidine-5′-Diphospho-Alpha-D-Glucose with an XP GScore 
of − 16.24. It is no surprise that a nucleotide-linked sugar has the best 
docking score since this binding pocket is mainly designed to bind to 
guanosine. Several other nucleotides/nucleosides or their analogues 
also displayed amazingly negative energy values in docking. For 
example, 1- Phosphomethylphosphonic Acid-Guanylate Ester, 2- Phos-
phoaminophosphonic Acid Guanylate Ester, 3- Thymidine-5′-Diphos-
pho-Beta-D-Xylose were among the second to fourth top compounds in 
terms of their binding energies. Denufosol, a drug consisting of two 
conjoined nucleotides used for cystic fibrosis [38], ranked fifth in this 
category (Table 3). The full list of the virtual screening results is pro-
vided in the supplementary materials. 

Since nucleotides have been studied in various studies and their 
analogues can interfere with many pathways in viral pathogenesis, this 
study focused on other possible ligands for agonizing the activity of 
TLR7. 

One of the most interesting and prominent results of this study is that 
cephalosporins like ceftiofur, cefotiam, ceftriaxone, cefdinir, cefditoren, 
and cefpodoxime displayed stronger inhibitory activity than previously 
recognized inhibitors like imiquimod and resiquimod. Typically, ceph-
alosporins are β-lactam antibacterial agents used to combat a range of 
infections from gram-positive to gram-negative bacteria. Historically, 
they were derived from the fungus Cephalosporium sp., and by covalently 
inhibiting penicillin-binding proteins required for cell wall synthesis like 
peptidoglycan transpeptidase, they exert their pharmacological activity 
[39,40]. 

Surprisingly, there are some reports in the literature that mention the 
confirmed antiviral activity of cephalosporins. In a study dated back to 
1988 by Swiss researchers, it was demonstrated that some cephalosporin 
derivatives were capable of inhibiting two DNA-containing viruses, 
namely vaccinia virus and herpes simplex I (HSV-I) but not RNA- 
containing viruses (and also no activity on normal cells) [41]. It is 
very likely now that some of the effects observed for those derivatives 
were related to TLR pathways (essentially TLR7 and TLR8). Cephalo-
sporins have also been documented as potential inhibitory compounds 
against nucleocapsid protein C-terminal domain (N-CTD) of 
SARS-CoV-2, with ceftriaxone indicating the strongest inhibitory po-
tential [42]. Ceftriaxone has been tested for its inhibitory activity 
against novel human coronavirus (SARS-CoV-2), and it displayed 16.14 
μM inhibition for this virus, and a stronger inhibition was also reported 
for cefoperazone (12.36 μM) [43]. There seems to be a loose connection 
between these inhibitory values and their corresponding inhibitory 
values for TLR7 (-12.614 XP GScore for ceftriaxone and − 7.825 XP 
GScore for cefoperazone). In an in silico study, cefotiam was found 
among the top potential compounds in inhibiting SARS-CoV-2 Mpro 

[44]. Hobi et al. indicated that some derivatives or degradation products 
of ceftazidime could have an anti-HIV-1 effect irrelevant to CD4/gp120 
interaction [45]. In another study by Pomorska-Mól et al., researchers 
found that ceftiofur distorts the humoral and cellular immune response 

Table 1 
Statistical results for the feature selection step. AICc (corrected version of AIC 
based on sample size) and BIC are measures of the feature selection performance.  

RMSE R Squared R Squared Adj. AICc BIC 

0.0102 0.7909 0.7461 − 1555.61 − 1410.68  
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to vaccines, as expected for a TLR agonist [46]. 
The amount of previous literature data that are coherent with our 

findings do not end here. Accumulating evidence points out that ceph-
alosporins could be linked with some forms of autoimmunity. For 
example, acute and fatal incidences of cephalosporin-induced autoim-
mune hemolytic anemia have been reported, but the underlying 

mechanism has not been established [47–51]. Ceftriaxone, especially, 
has been reported to cause other types of autoimmune reactions like 
acute autoimmune hepatitis, which could lead to fulminant hepatic 
failure [52]. Ceftriaxone and cefepime have been linked to drug-induced 
autoimmune systemic lupus erythematosus (SLE) [53,54]. Cephalospo-
rins and penicillins have been generally identified as drugs that could 

Fig. 3. The main steps in the generation of the PLSR-based QSAR model for TLR7 agonists.  

Fig. 4. A) Coefficients of important variables in the SIMPLS model. B) Left plot is actual (1/Log (EC50)) over the predicted plot for training data. C) The residual 
values over predicted values of 1/Log (EC50) for the training set. D) Minimum root mean PRESS = 0.6534 for the minimizing number of factors of 14. 
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exacerbate the progression of SLE [55]. In parallel with these findings, 
we know that some TLR agonists could be used as artificial producers of 
autoimmune reactions in animal models. In fact, TLR4 and TLR9 ligands 
are frequently used to induce autoimmune diseases or idiosyncratic 
adverse drug reactions in animal models because they stimulate 
inflammation and activate the innate immune system [56]. Even topical 
usage of TLR7 agonists has been exploited to induce lupus-like diseases 
in mice [57]. TLR7 antagonists have also been suggested as possible 
treatment strategies for autoimmune diseases [2]. These pieces of in-
formation strongly underscore the role of cephalosporins in TLR ago-
nism and autoimmune diseases, which is now computationally 
confirmed by our study and has also been reported in many in vitro and in 
vivo conditions discussed earlier. It is likely that activation of several 
different TLRs could contribute to such effects observed for cephalo-
sporins. This useful TLR agonism of cephalosporins can be cautiously 
used to treat viral diseases, especially when a bacterial cause is addi-
tionally suspected. 

To add extra importance to the fact of how much TLR7 can exhibit 

antiviral properties, one should look at the paper by Bam and colleagues. 
They demonstrated that GS-9620, a TLR7 agonist, results in potent in-
hibition of HIV-1 infection in blood mononuclear cells [5]. Furthermore, 
GS-9620 has been shown to reduce liver and serum hepatitis B virus 
(HBV) DNA, HBeAg, and HBsAg concentrations in chronically infected 
chimpanzees [58]. Interestingly, resiquimod has been found to display 
antiviral activity against HIV replication in monocytes [59]. 

Among the compounds in the shortlisted series of potential TLR7 
agonists, valtorcitabine has shown remarkable suppression of serum 
HBV DNA and has been well-tolerated in patients with chronic HBV 
[60]. Gemcitabine, a nucleoside analog used as an anticancer medica-
tion, has demonstrated broad-spectrum antiviral activity and can sup-
press enterovirus infections through innate immunity [61]. 

3.4. QSAR-based verification of virtual screening 

The shortlisted compounds of virtual screening with the lowest 
negative binding energy (XP GScore of more negative than − 10) were 
subjected to QSAR-based verification (note that nucleotide analogues 
were knowingly ignored, as stated earlier). In this step, the top com-
pounds with agonistic activity on TLR7 were identified. Since molecular 
docking can only tell us about the binding and not necessarily the 
agonistic or antagonistic effects, this verification can enhance the ac-
curacy of finding the right compounds with demonstrable agonistic ac-
tivity (and not merely strong binding affinities). The best compounds of 
this section were ceftiofur, cefotiam, ceftriaxone, cefdinir, cidofovir, 
gemcitabine, cefditoren, valtorcitabine, cytochlor, cefpodoxime, aba-
cavir hydroxyacetate, adefovir, and D-Eritadenine, 5-[4-Tert-Butylphe-
nylsulfanyl]-2,4-Quinazolinediamine (DB01958). The first eight 
compounds were tested in an additional step using MD simulation to 
ensure if they reveal considerable binding residency in the binding 
pocket of TLR7. Table 4 presents the QSAR results of the verification 
parts for the top ten compounds. 

3.5. Molecular dynamics (MD) 

The MD was performed for the strongest TLR7 agonist (Fig. 1, 
compound 1), imiquimod, and 6 other compounds identified in this 
study (three of them were cephalosporins, including ceftriaxone, cefdi-
toren, and cefpodoxime plus 3 other compounds, namely cidofovir, 
adefovir, and D-Eritadenine). In all cases, the ligand remained stable in 
the binding pocket attached to TLR7, but there were some nuances be-
tween each ligand molecule (their binding orientation and affinity), 
which will be discussed in extensive detail. 

The most impactful results were seen for adefovir and cefditoren, and 
we limit the discussion here for these two compounds compared with 
imiquimod and compound 1 (for a full description of the results for each 

Table 2 
Details of statistical results for cross-validation of SIMPLS model in training phase.  

Number of factors Root Mean PRESS Q2 Cumulative Q2 R2X Cumulative R2X R2Y Cumulative R2Y 

0 1.0039 − 0.0079 − 0.0079 0.0000 0.0000 0.0000 0.0000 
1 0.7774 0.3957 0.3957 0.2970 0.2970 0.4204 0.4204 
2 0.7215 0.4794 0.6854 0.1255 0.4225 0.0984 0.5189 
3 0.6890 0.5253 0.8506 0.0515 0.4740 0.0666 0.5855 
4 0.6889 0.5254 0.9291 0.1867 0.6607 0.0071 0.5926 
5 0.6956 0.5162 0.9657 0.0521 0.7128 0.0209 0.6135 
6 0.7078 0.4990 0.9828 0.0114 0.7243 0.0368 0.6502 
7 0.6850 0.5308 0.9919 0.0294 0.7537 0.0111 0.6614 
8 0.6735 0.5464 0.9963 0.0312 0.7849 0.0080 0.6694 
9 0.6619 0.5619 0.9984 0.0159 0.8008 0.0077 0.6771 
10 0.6624 0.5612 0.9993 0.0163 0.8170 0.0062 0.6833 
11 0.6632 0.5602 0.9997 0.0183 0.8354 0.0058 0.6891 
12 0.6619 0.5618 0.9999 0.0117 0.8471 0.0075 0.6966 
13 0.6594 0.5652 0.9999 0.0109 0.8580 0.0059 0.7026 
14 0.6535 0.5730 1.0000 0.0129 0.8709 0.0054 0.7080 
15 0.6640 0.5591 1.0000 0.0161 0.8870 0.0048 0.7127  

Fig. 5. Variable importance in projection (VIP) value over the corresponding 
coefficients in SIMPLS model. 
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compound, please visit the supplementary material; cefpodoxime, D- 
Eritadenine, ceftriaxone, and cidofovir were the other four top com-
pounds). The first fact when analyzing the results should be that we 

exploited the 5ZSF crystal structure from PDB that is TLR7 co- 
crystallized with imiquimod. Therefore, the RMSD diagram is consid-
erably lower for imiquimod than other ligands (Fig. 7A). This should not 
give a false impression that other compounds are weak inhibitors of 
TLR7. Indeed, the MD results of compound 1 strongly support this 
concept (we expected to see lower fluctuations in the RMSD diagram of 
this compound compared with imiquimod). In line with this observa-
tion, compound 1 was set as the true reference to evaluate the binding 
fluctuations of different drug ligands in the guanosine binding pocket of 
TLR7 (Fig. 7B). Adefovir and cefditoren displayed the most promising 
results in MD simulation among all compounds studied in this research 
work. After stabilization in the binding site (after 7.5 ns), adefovir 
exhibited less than 0.1 Å, which is quite remarkable and even superior to 
compound 1 (Fig. 7C). Cefditoren seemed to have been stabilized even 
faster but displayed around 0.15 Å fluctuations, again superior to 

Fig. 6. The correlation matrix between the 45 fea-
tures and target values. The more the colors are 
dispersed, the more the model lacks multicollinearity, 
and the more robust the model will become. The color 
(value) of the first row can be an indicator (beside 
VIP) of the contribution of the descriptor in the pre-
diction of EC50 (this plot is drawn using Seaborn). For 
a full list of abbreviations of this diagram, please visit 
the supplementary material of Bernal et al. [37]. (For 
interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of 
this article.)   

Table 3 
The list of some of the compounds with strong binding affinities to TLR7 (less 
than − 10 XP GScores). Nucleotide analogues are intentionally limited to the top 
five compounds (rows 1 to 5). Cephalosporins displayed large (absolute) values 
for XP GScore, indicating high potential for their application as TLR7 agonists.   

Name of the compound XP GScore 

1 2′deoxy-Thymidine-5′-Diphospho-Alpha-D-Glucose − 16.242 
2 Phosphomethylphosphonic Acid-Guanylate Ester − 15.877 
3 Phosphoaminophosphonic Acid Guanylate Ester − 15.654 
4 Thymidine-5′-Diphospho-Beta-D-Xylose − 15.514 
5 Denufosol − 15.261 
6 Icariin − 14.363 
7 Rutin − 13.733 
8 Carboxyethyllumazine − 13.101 
9 Azacitidine − 13.057 
10 Ceftiofur − 12.728 
11 Cefotiam − 12.653 
12 Ceftriaxone − 12.614 
13 Guanylate − 12.525 
14 Cefdinir − 12.448 
15 Cidofovir − 12.361 
16 Gemcitabine − 12.328 
17 Hesperidin − 12.172 
18 Acarbose − 12.109 
19 Cefditoren − 11.863 
20 Valtorcitabine − 11.86 
21 Hygromycin B − 11.825 
22 Cefpodoxime − 11.73 
23 Adefovir − 11.529 
24 D-Eritadenine − 11.475 
25 Imiquimod − 11.372 
26 Abacavir − 10.948 
27 Resiquimod − 10.114  

Table 4 
The predicted 1/Log(EC50) values of the top compounds of virtual screening 
compared with the actual value of imiquimod. All identified compounds are 
expected to produce a greater response in TLR7 than imiquimod according to 
our model, especially cephalosporins. Note that the compounds in this table are 
sorted according to their molecular docking scores and not predicted QSAR 
values.   

Name of the compound Predicted 1/Log(EC50) 

1 Adefovir − 0.0131 
2 Ceftriaxone − 0.0268 
3 Cidofovir − 0.0358 
4 Busulfan − 0.0243 
5 D-Eritadenine − 0.0290 
6 Cefpodoxime − 0.0308 
7 Cefditoren − 0.0306 
8 Cefdinir − 0.0302 
9 Ceftiofur − 0.0329 
10 Imiquimod − 0.0616 (actual)  
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compound 1 (Fig. 7D). 
RMSF study of the protein for various ligands, in general, appeared to 

be similar for the compounds of this study with some subtle differences. 
Interestingly, cefditoren indicated lower RMSF values (even lower than 

imiquimod as the co-crystallized ligand of TLR7), which signifies a very 
strong binding orientation for this ligand in the TLR7 pocket (visit 
supplementary material, protein RMSF). Based on the RMSF diagram of 
the protein, it can also be inferred that the residues engaged in 

Fig. 7. RMSD diagrams of the imiquimod (FDA-approved drug that acts by agonizing TLR7), compound 1 (the most potent TLR7 agonist with 0.2 nM EC50), and two 
of the most potent inhibitors discovered in this study, i.e., adefovir and cefditoren. RMSD values have been calculated for both Cα of TLR7 and ligands compared with 
their first frame. 

Fig. 8. Simulation interaction diagrams by Desmond software for the compounds studied in this research work. Thr586, Asp55, and Phe408 are the most important 
residues in the guanosine binding site of TLR7. 
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interaction with the ligands are the same for adefovir, cefditoren, and 
compound 1, but a bit different from imiquimod. Imiquimod did not 
display any interactions with the ligand in the residues around 260 to 
390, whereas the three others indicated such interactions. Thr586 was 
one of the most prominent residues for the interaction of all compounds, 
highlighting its importance in the guanosine binding site of TLR7. 
Asp555 was another highly important residue in the guanosine binding 
site, having interactions with all four compounds. Phe408 displayed pi- 
pi stacking bonds with various rings in the ligands for all compounds. 
Lys432 that was used as the center of our grid for the molecular docking, 
represented hydrogen bonds with adefovir and compound 1 (Fig. 8). 

Analyses of protein secondary structure during the simulation 
unraveled that cefditoren tends to fold the structure of the protein more 
than the other three structures at about 0.5% more compared with 
imiquimod and adefovir and 0.3% more than compound 1. It is not hard 
to suppose a possible link between such folding stability and ligands’ 
binding residency (see supplementary material, protein secondary 
structure). 

In summary, we want to lay emphasis on the important but possibly 
neglected role of cephalosporins in increasing the immune response by 
TLR activation. Cefditoren, which is our most potent cephalosporin 
capable of interacting with TLR7, has been reported to rarely cause drug 
reaction with eosinophilia and systemic symptoms (DRESS) [62]. Such 
reports are in keeping with our results that cephalosporins are strong 
modulators of TLR pathways in the cells. 

4. Conclusion 

TLR7 agonists are increasingly being heralded as immunostimula-
tory molecules, and their usage can encompass antiviral agents to ad-
juvants in vaccine formulations. We performed three independent 
computational approaches in a step-wise verifiable manner to reach the 
top compounds via a drug repurposing or repositioning approach. 

First, we built a dataset based on previously characterized TLR7 
agonists. Their physicochemical descriptors have been calculated, and 
after feature selection, a statistical learning method (SIMPLS) was 
employed to generate the QSAR model. Thus, the first computational 
model was constructed using QSAR. We then accomplished a structure- 
based virtual screening using molecular docking to rank the top com-
pounds that were capable of interacting with the guanosine binding 
pocket of TLR7. At this step, nucleotide analogues were found to have 
the most potent binding affinity to TLR7. Some cephalosporins ranked 
very high in our virtual screening, and we decided to study further 
whether these compounds are suitable TLR7 binders or not. 

Second, we used our previously trained QSAR model to act as a 
ligand-based screening for the results of structure-based virtual 
screening by molecular docking. Some previously identified antiviral 
agents, namely cidofovir and adefovir, in addition to cephalosporins, 
exhibited remarkable predicted EC50 values, more negative than 
imiquimod. 

Last, we did an MD simulation to understand whether the ligand- 
TLR7 complex remains stable until a decent time or not. Cefditoren of 
cephalosporins and adefovir from antivirals represented the best binding 
properties and are suggested as very potent TLR7-binders. The astute 
reader should remember that since the QSAR model was trained based 
on the agonists (and not merely binders to TLR7), our model has high 
reliability in terms of functionality (acting as agonist/antagonist versus 
only binding to the binding site of TLR7). 

Our literature surveys were further confirmed our findings that 
cephalosporins modulate the immune system. There are plenty of 
studies (enumerated in the discussion) indicating the possible relation-
ship of cephalosporins in drug-induced autoimmunity (which is ex-
pected for TLR7 agonists as well). Our findings could shed light on the 
smarter usage of cephalosporins and their possible repurposing ap-
proaches in viral diseases, especially when the immune system becomes 
compromised or weakened, e.g., in acquired immunodeficiency 

syndrome (AIDS). 
In short, cefditoren and adefovir demonstrated prominent in silico 

binding affinity to TLR7, even stronger than imiquimod and compound 
1 (the most potent in vitro TLR7 agonist to date). Cefpodoxime, D-Eri-
tadenine, ceftriaxone, and cidofovir were among the next candidates for 
strong TLR7 agonistic activity. Future in vitro and in vivo studies would 
uncover how precisely our three-combined (QSAR-docking-MD) plat-
form has performed. 
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Maria Natália Dias Soeiro Cordeiro (University of Porto), and Prof. 
Robert P. Sheridan (Merck & Co., Inc.) for their valuable comments to 
revise the methodology and the quality of this manuscript. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.imu.2021.100787. 

List of abbreviations/acronyms 

TLR7 Toll-like receptor 7 
SIMPLS statistically inspired modification of the partial least squares 
MyD88 myeloid differentiation primary response gene 88 
TRIF TIR-domain-containing adapter-inducing interferon-β 
TIMP1 tissue inhibitor of metalloproteinases 1 
PTEN Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and 

dual-specificity protein phosphatase 
VEGF vascular endothelial growth factor 
ISGs interferon-stimulated genes 
HPV human papillomavirus 
RVFV Rift Valley fever virus 
HCV hepatitis C virus 
TAMs tumor-associated macrophages 
MDSC myeloid-derived suppressor cells 
CADD computer-aided drug design 
QSAR quantitative structure-activity relationship 
MOE molecular operating environment 
RMSE root mean square error 
AICc Akaike information criterion, corrected 
BIC Bayesian information criterion 
PLSR partial least squares regression 
PLS partial least squares 
PCA principal component analysis 
PCs principal components 
PRESS predicted residual sum of squares 
OPLS optimized potentials for liquid simulations 
MD molecular dynamics 
LBFGS Limited-memory Broyden-Fletcher-Goldfarb-Shanno 
NPT (constant) number, pressure, temperature 
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PME Particle Mesh Ewald 
RESPA Reversible Reference System Propagator Algorithm 
RMSD Root Mean Square Deviation 
RMSF Root Mean Square Fluctuation 
ASA accessible surface area 
SMR molar refractivity (by SMR method) 
VSA van der Waals surface area 
PEOE partial equalization of orbital electronegativities 
VIP variable importance in projection 
BCUT  
FASA Fractional polar surface area 
HSV herpes simplex virus 
N-CTD nucleocapsid protein C-terminal domain 
SLE systemic lupus erythematosus 
DRESS drug reaction with eosinophilia and systemic symptoms 
AIDS acquired immunodeficiency syndrome 
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[47] Boilève A, Gavaud A, Grignano E, Franck N, Carlotti A, Mira JP, Bouscary D, 
Jozwiak M. Acute and fatal cephalosporin-induced autoimmune haemolytic 
anaemia. Br J Clin Pharmacol 2021;87:2152–6. https://doi.org/10.1111/ 
bcp.14612. 

[48] Malaponte G, Arcidiacono C, Mazzarino C, Pelligra S, Li Volti G, Bevelacqua V, Li 
Volti S. Cephalosporin-induced hemolytic anemia in a Sicilian child. Hematology 
2000;5:327–34. https://doi.org/10.1080/10245332.2000.11746527. 

[49] Guleria VS, Sharma N, Amitabh S, Nair V. Ceftriaxone-induced hemolysis. Indian J 
Pharmacol 2013;45:530–1. https://doi.org/10.4103/0253-7613.117758. 

[50] Leicht HB, Weinig E, Mayer B, Viebahn J, Geier A, Rau M. Ceftriaxone-induced 
hemolytic anemia with severe renal failure: a case report and review of literature. 
BMC Pharmacol. Toxicol. 2018;19:67. https://doi.org/10.1186/s40360-018-0257- 
7. 

[51] Singh A, Singhania N, Sharma A, Sharma N, Samal S. Ceftriaxone-induced immune 
hemolytic anemia. Cureus 2020;12:e8660. https://doi.org/10.7759/cureus.8660. 

[52] Cheema U, Ahmed M, Vogler C, Cumpa E, Ali A. Ceftriaxone induced acute 
autoimmune hepatitis and fulminant hepatic failure. Am J Gastroenterol 2011;106: 
S291. https://doi.org/10.14309/00000434-201110002-00774. 

[53] Reshkova V, Kalinova D, Rashkov R. Clinical course of drug-induced lupus and 
immunological profile of patients. Biotechnol Biotechnol Equip 2013;27:4294–6. 
https://doi.org/10.5504/BBeQ.2013.0098. 

[54] Niklas K, Niklas AA, Majewski D, Puszczewicz M. Rheumatic diseases induced by 
drugs and environmental factors: the state-of-the-art - part one. Reumatologia 
2016;54:122–7. https://doi.org/10.5114/reum.2016.61212. 

[55] Hogan JJ, Markowitz GS, Radhakrishnan J. Drug-induced glomerular disease: 
immune-mediated injury. Clin J Am Soc Nephrol 2015;10:1300–10. https://doi. 
org/10.2215/CJN.01910215. 

[56] Song B, Aoki S, Liu C, Susukida T, Ito K. An animal model of abacavir-induced HLA- 
mediated liver injury. Toxicol Sci 2018;162:713–23. https://doi.org/10.1093/ 
toxsci/kfy001. 

[57] Wirth JR, Molano I, Ruiz P, Coutermarsh-Ott S, Cunningham MA. TLR7 agonism 
accelerates disease and causes a fatal myeloproliferative disorder in NZM 2410 
lupus mice. Front Immunol 2019;10:3054. https://doi.org/10.3389/ 
fimmu.2019.03054. 

[58] Lanford RE, Guerra B, Chavez D, Giavedoni L, Hodara VL, Brasky KM, Fosdick A, 
Frey CR, Zheng J, Wolfgang G, Halcomb RL, Tumas DB. GS-9620, an oral agonist of 
toll-like receptor-7, induces prolonged suppression of hepatitis B virus in 
chronically infected chimpanzees. Gastroenterology 2013;144:1508–17. https:// 
doi.org/10.1053/j.gastro.2013.02.003. e10. 

[59] Nian H, Geng W-Q, Cui H-L, Bao M, Zhang Z, Zhang M, Pan Y, Hu Q-H, Shang H. R- 
848 triggers the expression of TLR7/8 and suppresses HIV replication in 
monocytes. BMC Infect Dis 2012;12:5. https://doi.org/10.1186/1471-2334-12-5. 

[60] Lim S, Lai C, Myers M, Yuen R, Wai C, Lloyd D, Pietropalolo K, Zhou X, Chao G, 
Brown N. 34 Final results of a phase I/II dose escalation trial of valtorcitabine in 
patients with chronic hepatitis B. J Hepatol 2005;42:16. https://doi.org/10.1016/ 
S0168-8278(05)81446-1. 

[61] Lee K, eun Kim D, Jang KS, Kim SJ, Cho S, Kim C. Gemcitabine, a broad-spectrum 
antiviral drug, suppresses enterovirus infections through innate immunity induced 
by the inhibition of pyrimidine biosynthesis and nucleotide depletion. Oncotarget 
2017;8:115315–25. https://doi.org/10.18632/oncotarget.23258. 

[62] Mori F, Caffarelli C, Caimmi S, Bottau P, Liotti L, Franceschini F, Cardinale F, 
Bernardini R, Crisafulli G, Saretta F, Novembre E. Drug reaction with eosinophilia 
and systemic symptoms (DRESS) in children. Acta Biomed 2019;90:66–79. https:// 
doi.org/10.23750/abm.v90i3-S.8167. 

A. Abiri et al.                                                                                                                                                                                                                                    

https://doi.org/10.3390/molecules24234358
https://doi.org/10.3390/molecules24234358
https://doi.org/10.1021/acsomega.0c04808
http://refhub.elsevier.com/S2352-9148(21)00258-6/sref39
https://doi.org/10.1039/D1MD00200G
https://doi.org/10.1016/0166-3542(88)90014-9
https://doi.org/10.3389/fchem.2020.624765
https://doi.org/10.3390/ph13120443
https://doi.org/10.3390/molecules25173830
https://doi.org/10.1177/095632020101200204
https://doi.org/10.1177/095632020101200204
https://doi.org/10.1186/s12917-015-0586-3
https://doi.org/10.1111/bcp.14612
https://doi.org/10.1111/bcp.14612
https://doi.org/10.1080/10245332.2000.11746527
https://doi.org/10.4103/0253-7613.117758
https://doi.org/10.1186/s40360-018-0257-7
https://doi.org/10.1186/s40360-018-0257-7
https://doi.org/10.7759/cureus.8660
https://doi.org/10.14309/00000434-201110002-00774
https://doi.org/10.5504/BBeQ.2013.0098
https://doi.org/10.5114/reum.2016.61212
https://doi.org/10.2215/CJN.01910215
https://doi.org/10.2215/CJN.01910215
https://doi.org/10.1093/toxsci/kfy001
https://doi.org/10.1093/toxsci/kfy001
https://doi.org/10.3389/fimmu.2019.03054
https://doi.org/10.3389/fimmu.2019.03054
https://doi.org/10.1053/j.gastro.2013.02.003
https://doi.org/10.1053/j.gastro.2013.02.003
https://doi.org/10.1186/1471-2334-12-5
https://doi.org/10.1016/S0168-8278(05)81446-1
https://doi.org/10.1016/S0168-8278(05)81446-1
https://doi.org/10.18632/oncotarget.23258
https://doi.org/10.23750/abm.v90i3-S.8167
https://doi.org/10.23750/abm.v90i3-S.8167

