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Introduction 

Breast cancer is one of the leading causes of death in women all over the world [1]. There 
are many subtypes in breast cancer identified based on the origin, hormone receptors ex-
pression, and response to treatment. There are four basic subtypes namely luminal-A, lu-
minal-B, human epidermal growth factor receptor-2 (HER2) and triple-negative breast 
cancer (TNBC) [2]. Among all the subtypes, the TNBC is very aggressive and has poor 
prognosis compared to other subtypes and very few systemic treatment options are avail-
able other than chemotherapy [3]. Luminal-A (estrogen receptor [ER]+ and/or progester-
one receptor [PR]+, HER2−) because of ER expression, has better prognosis compared to 
TNBC [2]. Epigenetic regulation via histone modification of microRNA (miRNA) pro-
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Breast cancer is one of the leading causes of cancer in women all over the world and ac-
counts for ~25% of newly observed cancers in women. Epigenetic modifications influence 
differential expression of genes through non-coding RNA and play a crucial role in cancer 
regulation. In the present study, epigenetic regulation of gene expression by in-silico anal-
ysis of histone modifications using chromatin immunoprecipitation sequencing (ChIP-Seq) 
has been carried out. Histone modification data of H3K4me3 from one normal-like and 
four breast cancer cell lines were used to predict miRNA expression at the promoter level. 
Predicted miRNA promoters (based on ChIP-Seq) were used as a probe to identify gene 
targets. Five triple-negative breast cancer (TNBC)-specific miRNAs (miR153-1, miR4767, 
miR4487, miR6720, and miR-LET7I) were identified and corresponding 13 gene targets 
were predicted. Eight miRNA promoter peaks were predicted to be differentially expressed 
in at least three breast cancer cell lines (miR4512, miR6791, miR330, miR3180-3, 
miR6080, miR5787, miR6733, and miR3613). A total of 44 gene targets were identified 
based on the 3′-untranslated regions of downregulated mRNA genes that contain putative 
binding targets to these eight miRNAs. These include 17 and 15 genes in luminal-A type 
and TNBC respectively, that have been reported to be associated with breast cancer regula-
tion. Of the remaining 12 genes, seven (A4GALT, C2ORF74, HRCT1, ZC4H2, ZNF512, ZNF655, 
and ZNF608) show similar relative expression profiles in large patient samples and other 
breast cancer cell lines thereby giving insight into predicted role of H3K4me3 mediated 
gene regulation via the miRNA-mRNA axis. 
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moters is known to play a crucial role in breast cancer regulation 
[4]. Histone modifications wrapped around genes play an import-
ant role in gene regulation by providing access to transcription fac-
tors, RNA-polymerases, and other regulatory mechanisms [5]. 
There are several histone post-translational modifications identified 
earlier with a unique regulatory function for each of them. Using 
chromatin immunoprecipitation followed by sequencing (ChIP-
Seq), one can identify the position of targeted protein binding 
(transcription factors, histone modifications) regions in the ge-
nome [6]. 

Epigenetic gene regulation occurs in three major ways namely 
DNA methylation of CpG islands, histone modifications, and 
non-coding RNA mediated [7]. Each regulatory level has a crucial 
role in normal cell development and diseases such as cancer and 
other non-communicable diseases. Gene level histone modifications 
can be used to predict the status of a gene whether it is active or inac-
tive. H3K4me3 modification at the promoter level provides infor-
mation about active genes, whereas H3K27me3 and H3K9me3 
modifications provide the inactive status of the gene [8]. Previous 
studies provided evidence for correlation of histone modifications 
(H3K36me3, H3K9ac, H3K27ac, and H3K4me1) with gene ex-
pression. Combinations of two or more histone modifications at 
gene promoter and gene body level provides more resolution to 
predict gene activity [8]. 

Non-coding (nc) RNAs (LncRNAs, long intervening/intergenic 
noncoding RNA, miRNA, and small interfering RNA) play a major 
role in gene regulation of different biological processes such as cell 
cycle and proliferation along with developmental and metabolic 
processes [9]. The most widely studied ncRNAs are miRNAs 
which are small ncRNA ~22nt in length, evolutionarily conserved, 
and have a wide regulatory role in development and diseases. They 
play an important role in gene regulation by targeting complemen-
tary binding sites in untranslated region (UTR) regions of gene 
transcripts or by targeting promoters or other miRNA or LncRNA 
[10]. Interestingly, miRNAs are also involved in the upregulation of 
specific genes via binding to their promoters in the nucleus and 
thereby controlling gene expression [11]. An actively transcribed 
miRNA is able to regulate ~100–1,000 genes by complementary 
binding to their targeted genes. Based on conserved base-pairing 
homology, it has been predicted that ~60% of human genes are tar-
geted by miRNAs [12]. In many cancers dysregulation of miRNA 
causes cancer progression and drug resistance. The role of miRNA 
deregulation in breast cancer was first reported in 2005 wherein the 
role of miR548 as an oncogenic regulator in breast cancer was elab-
orated [13]. There are other miRNAs such as let-7, miR145, 
miR200, and miR497 with a definitive role in breast cancer [14]. 

The present study is limited to normal-like, luminal-A and TN-

BC-claudin subtypes of breast cancer based on hormonal receptor 
expression. One each of normal subtype, ER positive subtype (Lu-
minal-A) and ER negative (TNBC-claudin) were chosen for analy-
sis. In the current study, ChIP-Seq data corresponding to histone 
modification H3K4me3 for one normal-like (MCF10A) and four 
breast cancer cell lines (luminal-A [MCF7, ZR751], TNBC 
[MB231, MB436]) were chosen to understand role of miR-
NA-gene promoter regulation of miRNA-mRNA axis. An attempt 
has been made to map the epigenetic expression patterns (histone 
H3K4me3) with RNA-sequencing (RNA-Seq) expression of miR-
NA targeted genes. Analysis of such combined data promises to 
provide insights into understanding epigenetic gene regulation 
(chromatin) as well as gene expression [15]. 

Methods 

ChIP-Seq data were downloaded from Gene Expression Omni-
bus (GEO) for breast cancer pertaining to six cell lines, viz., nor-
mal-like (MCF10A and 76NF2V), luminal-A subtype (MCF7 
and ZR751), and TNBC subtype (MB231 and MB436), each 
with one activation histone modification H3K4me3 and two rep-
licates (sequenced as Illumina single-end reads) (Supplementary 
Tables 1, 2) [16]. RNA-Seq data for the above-mentioned cell 
lines with four replicates were also downloaded from GEO (Sup-
plementary Table 3) [16]. 

The raw reads were checked for quality using FastQC (version 
0.11.7) [17]. BWA-MEM (Burrows-Wheeler alignment–Maximal 
Exact Matches) version 0.7.17 was used for alignment with refer-
ence genome build hg38 [18]. Samtools (version 1.8) was used to 
manage replicates and for sam to bam conversion [19]. ChIP-Seq 
analysis was done using model-based analysis of ChIP-Seq 
(MACS2, version 2.1.1.20160309) [20]. Peak calling was done us-
ing narrowpeak as H3K4me3 generates narrow histone marks [21]. 
p-value thresholds for peak calling were set to 0.001 for all samples 
and all replicates (Fig. 1A) [22]. Raw ChIP-Seq data of both 
H3K4me3 and corresponding input sequence was used for peak 
calling. To identify the reproducibility within the biological repli-
cates IDR2.0.3 tool was used with a threshold of 0.05 to obtain sta-
tistically significant peaks [23,24]. Pseudo replicate analysis was 
carried out to identify low reproducible replicates which satisfy the 
criteria of N1/N2 ≥  2 and Np/Nt ≥  2 (where N1 represents the 
number of replicate1 self-consistent peaks, and N2 represents the 
number of replicate two self-consistent peaks; Np represents the 
number of peaks consistent between pooled pseudoreplicates, and, 
Nt represents the number of peaks consistent between true repli-
cates) [24]. Peaks were annotated using HOMER (v3.12) tool 
[25]. Peaks corresponding to miRNA promoter genes were extract-
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Fig. 1. (A) Chromatin immunoprecipitation sequencing (ChIP-Seq) peak calling workflow for miRNA promoter prediction. (B) ChIP-Seq 
and RNA sequencing (RNA-Seq) data integration workflow for prediction of miRNA-mRNA interaction via 3′-untranslated region (3′-UTR) 
binding target prediction.

Peak-Annotation

miRNA-Promoter

Common-Peaks

Cancer vs. Normal

IDR-Analysis

Differentially/
Uniquely expressed 
promoter-miRNA

ChIP-Peaks

Integration with
RNA-Seq results

DEseq2-Results

Feature counts

3'-UTR Fasta of 
downregulated genes

HISAT2

RNA-hybrid analysis

FastQC

miRNA-Targets

RNA-Seq data

ChIP-Seq

Peak calling

RNA-Seq
Integration

H3K4me3

Input

Peak calling
MACS2

Peak calling
MACS2

Rep2

Rep2

Rep1

Rep1

Ref. Alignment
BWA-MEM

Ref. Alignment
BWA-MEM

Ref. Alignment
BWA-MEM

Ref. Alignment
BWA-MEM

Ra
w

 d
at

a

A

B

3 / 13https://doi.org/10.5808/gi.21020

Genomics & Informatics 2021;19(2):e17



Fig. 2. Total number of peaks predicted using MACS2 for biological replicates with H3K4me3 histone modification (p = 0.001). Replicate 1 
and 2 are coloured as green and blue respectively.
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ed using in-house scripts. Cis-regulatory Element Annotation Sys-
tem (CEAS -0.9.9.7) was used to get statistics on ChIP enrichment 
for genomic features such as chromosomes, promoters, gene bod-
ies, or exons, to infer genes that are most likely to be regulated by a 
binding factor [26]. For RNA-Seq analysis HISAT2 (v2.1.0) was 
used for alignment of raw reads [27] and feature counts (v1.5.0p1) 
tool was used to count reads mapped on to each gene [28]. DEseq2 
(v1.24) was used for differential gene expression of subtypes [29]. 
Downregulated and upregulated genes were selected based on log-
2fold change >  2 as per guidelines for analysis of multi-omics data 
[30]. Differential expression of genes for normal-like (MCF10A) 
vs. luminal-A (MCF7 and ZR751) and normal-like (MCF10A) vs. 
TNBC (MB231 and MB436) was carried out (Supplementary Fig. 
1). miRNA sequences were extracted and checked for complemen-
tarity with 3′-UTRs of downregulated genes. RNAhybrid server 
(https:// bibiserv.cebitec.uni-bielefeld.de/rnahybrid) was used to 
predict miRNA-mRNA interactions with seedmatch (2–8 bp) us-
ing the helix constraint “from” and “to” parameter along with cutoff 
of ≤ –25 kcal/mol [31]. In the current analysis, we used stringent 
minimum free energy ( ≤ –25 kcal/mol, except for miR3613 ( ≤ –
18 kcal/mol) due to low GC content) to predict strong putative 
targets with high miRNA-mRNA duplex binding stability [31]. 
These energy cutoffs were used based on previous studies of 
miR1306-ADAM10 duplex that have been experimentally validat-
ed [32]. The workflow for ChIP-Seq and RNA-Seq data integra-
tion is depicted in Fig. 1B. 

Relative expressions of the gene targets identified were verified 
using the UALCAN (http://ualcan.path.uab.edu) and CCLE 
(Broad Institute Cancer Cell Line Encyclopedia, https://portals.
broadinstitute.org/ccle) databases. ACTB gene was used as a con-

trol for relative expression analysis using the CCLE database. The 
UALCAN hosts the relative expression of genes across normal ver-
sus different cancer types from the TCGA (The Cancer Genome 
Atlas) cancer resource associated with clinicopathological data 
[33]. The breast cancer cell line data (60) available in CCLE data-
base was also incorporated into the study for validation. Ka-
plan-Meier (KM) plots from Human Protein Atlas were used for 
survival analysis (https:// www.proteinatlas.org). 

Results 

ChIP-Seq analysis 
All the ChIP-Seq datasets passed the quality check (Supplementary 
Fig. 2) and > 86% of reads were mapped to the reference genome 
for all replicates of H3K4me3 (for each cell line) used in the study. 
The number of peaks in the biological replicates varied from 27875 
to 64652 for different cell lines (Fig. 2). Reproducibility analysis of 
peaks (obtained for the replicates) enabled identification of statisti-
cally significant peaks (threshold 0.05) (Table 1, Supplementary 
Figs. 3, 4) which are common between biological replicates [21]. In 
the normal cell line (MCF10A) and luminal-A subtype (cell lines 
MCF7 and ZR751), 16,601 peaks (59.7%), 13,008 peaks (53.4%) 
and 10,158 peaks (48.1%) passed the reproducibility threshold re-
spectively. In the triple-negative subtype (cell lines MB231 and 
MB436), 14,339 peaks (65.7%) and 16,549 peaks (61.2%) passed 
the threshold. The highest percentage of overlapping peaks be-
tween the replicates was observed in cell line MB231 (65.7%) 
whereas the least percentage of peaks that passed the threshold was 
seen in cell line ZR751 (48.1%). All cell lines except 76NF2V cell 
line generated reproducibility ≥  2, which indicated that the peaks 
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were reproducible and statistically significant. Hence, cell line 
76NF2V was not used for further analysis because of the low repro-
ducibility of replicates, N1/N2 was 3.370 (Supplementary Table 4). 
Chromosomal-level distribution of ChIP-peaks is available in Sup-
plementary Fig. 5. 

miRNA promoter prediction analysis 
miRNA promoter regions were identified for each cell-line (Table 
2, Supplementary Table 5). Peaks corresponding to miRNA-gene 
promoters that are common and unique between normal versus 
cancerous cell lines were identified (normal vs. TNBC, normal vs. 
luminal-A, and TNBC vs. luminal-A) (Tables 3, 4, Fig. 3). The ma-
jority of the miRNAs predicted have been reported to have a role in 
breast cancer (Supplementary Table 6). 

Cell line‒specific miRNAs obtained in this study have been list-
ed in Table 3. Few of these miRNAs have been validated previ-
ously [34]. It is interesting to note that there are no common 
miRNAs between both the luminal-A cell lines used in this study; 
however, five TNBC-specific miRNAs viz., miR153-1, miR4767, 
miR4487, miR6720, and miR-LET7I were exclusively found in 
both the TNBC cell lines. Identification of target genes belonging 
to TNBC-specific miRNAs was carried out (Supplementary Ta-
bles 7, 8). It is to be mentioned that with the cutoff criteria for tar-
get-gene identification used in this study (refer to Methods sec-
tion), no targets were found for miR153-1. Of the five miRNA 
promoters found to be upregulated in the TNBC cell lines, 3 
miRNAs, viz., miR-153-1, miR-6720, and miR-LET7I were found 
to have similar relative expression in TCGA data samples. Of 
these, miR-LET7I was found to have higher expression in TNBC 

Table 1. Details of overlapping peaks obtained after IDR analysis of all cell lines (biological replicates)

Type Cell line Common peaks between replicates/IDR-pass peaks Percentage of common peaks
Normal-like MCF10A 16,601/27,802 59.7
Luminal-A type MCF7 13,008/24,382 53.4

ZR751 10,158/21,103 48.1
Triple-negative type MB231 14,339/21,821 65.7

MB436 16,577/27,067 61.2

Fig. 3. Common and unique miRNAs predicted across different cell 
lines.
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Table 2. List of H3K4me3 regulated miRNA promoter-specific peaks 
across cell lines

Subtype Cell line No. of peaks
Normal MCF10A 53
Luminal-A MCF7 44

ZR751 44
TNBC MB231 42

MB436 54

(Supplementary Fig. 6). 
Eight miRNAs obtained are found to be common across two 

cancer subtypes (Table 4). miR4512 was observed in all cancerous 
cell lines, both luminal-A (MCF7 and ZR751) and TNBC (MB231 
and MB436) subtypes. miR3180-3 was observed in luminal-A 
(MCF7 and ZR751) and TNBC subtypes (MB231 and MB436). 
miR6791 and miR330 were observed to be common in three can-
cer cell lines, two luminal-A (MCF7 and ZR751) and one TNBC 
(MB231) subtypes. miR5787, miR6733, and miR3613 were ob-
served in three cancer cell lines, two TNBC (MB231 and MB436) 
and luminal-A (ZR751) subtypes. miR6080 was observed to be 
present in three cancer cell lines, two TNBC (MB231 and MB436) 
and luminal-A (MCF7) subtypes. All the eight miRNAs listed 
above have been used for further downstream analysis to identify 
their putative gene targets based on mRNA expression data. Of the 
eight miRNA promoters found to be upregulated across breast can-
cer cell lines, the relative expression of three miRNAs, viz., miR-
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(Supplementary Fig. 7). The relative expression of the other five 
miRNAs in this resource was found to be insufficient to draw any 
conclusion. 

RNA-Seq analysis 
All the RNA-Seq datasets passed the quality check ( > 28) and 
hence were retained for further analyses (Supplementary Fig. 8). 
About 96% reads mapped for cell lines MCF10A, MCF7, and 
MB231 whereas, for cell lines ZR751 and MB436 > 93% mapping 
was observed (Supplementary Table 9). In normal-like vs. lumi-
nal-A type, a total of 1,189 genes were upregulated (Supplementary 
Table 10) and 687 genes were downregulated (Supplementary Ta-
ble 11). In normal-like vs. TNBC type, a total of 954 genes were 
upregulated (Supplementary Table 12) and 167 genes were down-
regulated (Supplementary Tables 13, 14, Supplementary Fig. 9). 
Five miRNAs specific to the TNBC cell lines were further studied 
to identify their binding to downregulated 3′-UTR gene targets 
(Supplementary Tables 8, 15). 

TNBC-specific miRNA target analysis of the downregulated 
genes helped in the identification of 13 genes (Supplementary Ta-
ble 7). Of the 13 genes, ADAMTSL1, STC2, CPA4, and NUPR1 
have been previously reported (Supplementary Table 6). It is inter-
esting to note that FOXL2 is a target for multiple miRNAs, viz., 
miR4767, miR4487, and miR6720 in TNBC cell lines. Compari-
son of these target genes to other breast cancer cell lines from the 
CCLE database revealed that all of them have low expression as 
compared to the ACTB control gene (Supplementary Fig. 10). 

Table 3. Predicted cell line specific miRNAs

Cell line No. of unique miRNAs miRNA
MCF10A - Normal-like 9 miR4790

miR4687
miR4530
miR6892
miR4520-1
miR548AJ1
miR4279
miR1470
miR3675

MCF7 - Luminal-A 7 miR4734
miR4520-2
miR4521
miR4519
miR4497
miR4477B
miR1244-3

ZR751 - Luminal-A 11 miR6850
miR4761
miR200C
miR4738
miR1282
miR4781
miR7706
miR4756
miR6090
miR375
miR6515

MB231 - TNBC 5 miR1260B
miR1258
miR7704
miR574
miR4651

MB436 - TNBC 12 miR34B
miR1184-3
miR6875
miR6790
miR11401
miR4482
miR6743
miR148A
miR544B
miR4799
miR4466
miR9-3

TNBC, triple-negative breast cancer.

Table 4. Predicted TNBC and luminal-A specific miRNAs common 
across (≥3) cancer cell lines

Cell line No. of common miRNAs miRNA
MB231 (TNBC) 1 miR4512
MB436 (TNBC)
MCF7 (Luminal-A)
ZR751 (Luminal-A)
MB231 (TNBC) 2 miR6791
MCF7 (Luminal-A) miR330
ZR751 (Luminal-A)
MB436 (TNBC) 1 miR3180-3
MCF7 (Luminal-A)
ZR751 (Luminal-A)
MB231 (TNBC) 1 miR6080
MB436 (TNBC)
MCF7 (Luminal-A)
MB231 (TNBC) 3 miR5787
MB436 (TNBC) miR6733
ZR751 (Luminal-A) miR3613

TNBC, triple-negative breast cancer.

330, miR-3613, and miR-6733 were found to be complementary in 
studies reported in TCGA data samples using UALCAN webserver 
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Genes STC2, CPA4, and NUPR1 were found to have a relatively 
higher expression amongst the 13 target genes of TNBC cell lines. 
In larger breast cancer samples obtained from TCGA, with the ex-
ception of SPOCK2, CPA4, C1orf228, and NFE2, the other target 
genes are found to have relatively low expression in TNBC as com-
pared to normal samples (Supplementary Fig. 11). Relative expres-
sion of these genes in other cancer subtypes hints at the down-reg-
ulatory effect of TNBC-specific miRNAs. Survival plots of most of 
the downregulated genes (with the exception of NUPR1, CPA4, 
EPHA3, ADAMTSL1, and ATP13A4) were found to be associated 
with poor patient survival (Supplementary Fig. 12). 

Eight miRNA promoters that are common across more than 
three cancer cell lines were also used as probes to identify the gene 
targets (Table 4, Supplementary Tables 16‒18). A total of 44 down-
regulated gene targets were identified across luminal-A and TNBC 
subtypes. In normal-like (MCF10A) vs. luminal-A (MCF7 and 
ZR751) downregulated genes, 17 genes have been predicted and 
their role in breast cancer has been reported earlier (RERG, IG-
FBP6, SPATA18, AXL, BMF, FXYD5, PTRF, RUNX2, UGT8, CFB, 
CSF3, HEG1, PLAU, PTER, S100A3, SNURF, and WIPF1) [35-
51] (Fig. 4, Supplementary Tables 6, 19, Supplementary Fig. 13). 
In normal-like (MCF10A) vs. TNBC (MB231 and MB436) 
downregulated genes, 15 genes have been predicted in this study 
and their role in breast cancer have also been previously reported 
(TNFSF10, TMEM47, IQGAP2, FAT4, NUPR1, HOXC13, 
PRRX1, STC2, AC108941.2, ADAMTSL1, ARHGEF5, BNC1, 
CPA4, PPL, and TNFRSF10D) [52-66] (Fig. 5, Supplementary Ta-

bles 6, 20, Supplementary Fig. 14). 
Of the remaining 12 target genes identified, nine genes in luminal-A 
were identified to be regulated by their corresponding miRNAs 
(gene A4GALT targeted by miR3180-3, miR4512, and miR6791; 
gene C10orf55 targeted by miR330, miR3180-3, miR5787, and 
miR6791; gene C2ORF74 targeted by miR330 and miR5787; gene 
ZC4H2 targeted by miR330 and miR5787; gene ZNF512 targeted 
by miR330, miR3180-3, miR5787, and miR6791; gene ZNF655 
targeted by miR5787; gene ZNF71 targeted by miR5787 and 
miR6791; gene HCG2042738 targeted by miR6791; gene HRCT1 
targeted by miR4512 and miR5787) (Table 5). Similarly, three 
genes in TNBC were also identified to be regulated by their corre-
sponding miRNAs (gene HIST3H2A targeted by miR6791; 
ZNF608 targeted by miR5787; ELOVL4 targeted by miR5787) 
(Supplementary Table 18). Comparison of these 12 target genes to 
other breast cancer cell lines from the CCLE database revealed that 
all of them have low expression as compared to the ACTB control 
gene (Supplementary Fig. 15). Genes HIST3H2A and C2ORF74 
were found to have a relatively higher expression amongst the 12 
target genes. In larger datasets of breast cancer, with the exception 
of ZNF71 and HIST3H2A, all other gene targets were found to 
be downregulated (Supplementary Figs. 13, 14, 16–18). This ob-
servation supports the probable role of miRNA-mRNA axis in 
gene regulation. The down-regulation of A4GALT, C2ORF74, 
HRCT1, ZC4H2, ZNF512, ZNF655, ZNF608, and HIST3H2A 
genes were found to be independently associated with poor sur-
vival in breast cancer patients (Table 5, Supplementary Fig. 19). It 

Table 5. Predicted gene targets of differentially regulated miRNAs in breast cancer cell lines (TNBC and luminal-A) proposed using ChIP-Seq–
RNA-Seq integrated analysis

No. Gene name miRNA Status in TCGA/CCLE/survival plot
Luminal-A
  1 A4GALT Alpha 1,4-galactosyltransferase miR4512, miR6791, miR3180-3 Down/down/poor-survival
  2 C10orf55 Chromosome 10 open reading frame 55 miR6791, miR330, miR3180-3, miR5787 Down/down/high-survival
  3 C2ORF74 Chromosome 2 open reading frame 74 miR330, miR5787 Down/down/poor-survival
  4 HCG2042738 Isoform CRA_b and AC124312.1 miR6791 Down/down/poor-survival
  5 HRCT1 Histidine rich carboxyl terminus 1 miR4512, miR5787 Down/down/poor-survival
  6 ZC4H2 Zinc-finger family of protein miR330, miR5787 Down/down/poor-survival
  7 ZNF512 Zinc-finger protein 512 miR3180-3, miR6080, miR5787, miR6733 Down/down/poor-survival
  8 ZNF655 Zinc-finger protein 655 miR5787 Down/down/poor-survival
  9 ZNF71 Zinc-finger protein 71 miR6791, miR5787 Up/up/high-survival
TNBC
  1 HIST3H2A Histone cluster 3 H2A miR6791 Up/up/poor-survival
  2 ZNF608 Zinc-finger protein 608 miR5787 Down/down/poor-survival
  3 ELOVL4 ELOngation of very long chain fatty acids-4 miR5787 Down/down/high-survival

TNBC, triple-negative breast cancer; ChIP-Seq, chromatin immunoprecipitation sequencing; RNA-Seq, RNA-sequencing; TCGA, The Cancer Genome Atlas; 
CCLE, Broad Institute Cancer Cell Line Encyclopedia.
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Fig. 4. Relative gene expression (The Cancer Genome Atlas [TCGA] breast cancer samples) of luminal-A downregulated gene targets (12 
of the total 17 genes) previously reported in breast cancer that correlate with predicted miRNA binding analysis: (A) PTER, (B) HEG1, (C) 
SPATA18, (D) PTRF, (E) SNURF, (F) RERG, (G) AXL, (H) FXYD5, (I) WIPF1, (J) CSF3, (K) UGT8, and (L) IGFBP6.
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Fig. 5. Relative gene expression (TCGA breast cancer samples) of triple-negative breast cancer downregulated gene targets (12 of the total 
15 genes) previously reported in breast cancer that correlate with predicted miRNA binding analysis: (A) PPL, (B) ADAMTSL1, (C) TMEM47, (D) 
TNFSF10, (E) FAT4, (F) TNFRSF10D, (G) ARHGEF5, (H) BNC1, (I) PRRX1, (J) NUPR1, (K) STC2, and (L) IQGAP2.
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needs to be mentioned that relative expression data and survival 
plots for gene HCG2042738 could not be obtained due to insuffi-
cient annotation. 

Discussion 

The interplay between epigenetic gene regulation through histone 
modifications and other regulatory mechanisms like ncRNA is of 
great interest in cancer biology. In the present analysis, the role of 
H3K4me3 in miRNA expression based on promoter level peaks 
has been studied using ChIP-Seq and RNA-seq data integration. To 
achieve the same, a novel approach of mapping data derived from 
ChIP-Seq (miRNA promoter peaks) and RNA-Seq (targets of 3′-
UTRs of genes binding to miRNA) was used to understand epi-
genetic regulation that may aid in the identification of subtype and 
cell line specific miRNAs [15,16]. 

In normal-like cell line MCF10A, of the nine unique miRNAs 
identified, miR4530 was found to have a role in the suppression of 
cell proliferation, promote angiogenesis and induce apoptosis by 
targeting gene VASH1 (Vasohibin 1) in breast carcinoma [67]. 
Hence, promoter-level epigenetic regulation of miR4530 by 
H3K4me3 may have a protective role in normal-like subtypes. 
miR34B was observed to be present only in cell line MB436 
(TNBC subtype). miR34B has high expression in TNBC tumors 
compared to normal types. Expression of miR34B highly correlates 
with clinical outcome of patients. Notch2 (notch receptor 2) gene 
that has a role controlling cell differentiation, is a direct target for 
miR34B [68]. miR6875 was observed in TNBC cell line MB436. 
According to previous reports, a high expression of miR6875 was 
observed in early breast cancer patients [69]. miR574-5p attenuates 
proliferation, migration, and epithelial mesenchymal transition 
(EMT) in TNBC cells by targeting genes BCL11A (BAF chroma-
tin remodeling complex subunit) and SOX2 (SRY-Box transcrip-
tion factor 2) to inhibit the SKIL (SKI like proto-oncogene)/TAZ 
(Tafazzin)/CTGF (connective tissue growth factor) axis [70]. 

Of the five TNBC subtype‒specific miRNAs, mir153, miR6720, 
and miR-LET7I were found to be upregulated in larger breast can-
cer datasets belonging to TCGA. miR153 has been reported to 
have a tumor suppressor role and has been suggested as a prognos-
tic marker for TNBC [34]. 

The majority of the predicted gene targets (total 44) overlap with 
previous experimental studies and include 32 gene targets (Figs. 4, 
5) of eight miRNAs (miR4512, miR6791, miR330, miR3180-3, 
miR6080, miR5787, miR6733, and miR3613) which are identified 
in more than three breast cancer cell lines and absent in normal-like 
cell lines. Overexpression of miR330-3p in breast cancer cell lines 
has been reported earlier, which results in greater invasiveness in-vi-

tro, and miR330-3p–overexpressing cells also metastasize more ag-
gressively ex-ovo [71]. Gene CCBE1 (collagen and calcium binding 
EGF domains 1) is a direct target of miR330-3p, and knockout of 
CCBE1 results in a greater invasive capacity [71]. Exosomal expres-
sion of miR3613-3p promotes breast cancer cell proliferation and 
metastasis. It has been previously reported that miR3613-3p levels 
were negatively correlated to SOCS2 (suppressor of cytokine sig-
naling 2) expression in breast cancer tissues [72]. Few genes were 
observed to be targeted by multiple miRNAs (like A4GALT and 
FOXL2 targeted by three miRNAs each) as it is known that miR-
NAs can regulate multiple targets based on seed match and se-
quence similarity between miRNA-mRNA [10]. 

Of the remaining 12 gene targets, relative gene expression of 
genes A4GALT, C2ORF74, HRCT1, ZC4H2, ZNF512, ZNF655, 
and ZNF608 agree with the proposed hypothesis of H3K4me3 
regulated miRNA-mRNA axis in large patient data (TCGA sam-
ples) along with their relative expression in other breast cancer cell 
lines (CCLE database). These genes were associated with poor sur-
vival based on KM plots (Human Protein Atlas). The proposed 
methodology of miRNA-mRNA regulation when analyzed in the 
context of other histone modifications like H3K27me3, H3K4me1, 
H3K9me3 will enable better insights into the underlying mecha-
nism of breast cancer regulation. 
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