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Abstract

The role that balancing selection plays in the maintenance of genetic diversity remains unre-

solved. Here, we introduce a new test, based on the McDonald–Kreitman test, in which the

number of polymorphisms that are shared between populations is contrasted to those that

are private at selected and neutral sites. We show that this simple test is robust to a variety

of demographic changes, and that it can also give a direct estimate of the number of shared

polymorphisms that are directly maintained by balancing selection. We apply our method to

population genomic data from humans and provide some evidence that hundreds of nonsy-

nonymous polymorphisms are subject to balancing selection.

Introduction

How genetic variation is maintained, either in the form of DNA sequence diversity or quanti-

tative genetic variation, remains one of the central problems of population genetics. Balancing

selection encapsulates several selective mechanisms that increase variability within a popula-

tion. These include heterozygote advantage (also referred to as overdominance), frequency-

dependent selection, and selection that varies through space and time [1]. However, although

there are some clear examples of each type of selection [2,3], the overall role that balancing

selection plays in maintaining genetic variation, either directly or indirectly through linkage,

remains unknown.

Numerous methods have been developed to detect the signature of balancing selection [4–

15]. Application of these methods have identified a number of loci subject to balancing selec-

tion, largely in the human genome, in which most of this research has taken place. However,

many of these methods are quite complex to apply, often leveraging multiple population

genetic signatures of balancing selection and requiring simulations to determine the null dis-

tribution. Furthermore, they do not readily yield an estimate of the number of polymorphisms

that are directly subject to balancing selection, as opposed to being in linkage disequilibrium
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(LD) with them. Here, we introduce a method that is simple to apply and which generates a

direct estimate of the number of polymorphisms subject to balancing selection.

One signature of balancing selection that has been utilised in several studies is the sharing

of polymorphisms between species [5,8,10]. If the species are sufficiently divergent that they

are unlikely to share neutral polymorphisms, then shared genetic variation can be attributed to

balancing selection. These studies have concluded that there are relatively few balanced poly-

morphisms that are shared between humans and chimpanzees [5,8]. However, this test is likely

to be weak because humans and chimpanzees diverged millions of years in the past, and it is

unlikely that any shared selection pressures will be maintained over that time period.

The major problem with approaches that consider the sharing of polymorphisms between

species or populations is differentiating selectively maintained polymorphisms from neutral

variation inherited from the common ancestor. This problem can be solved by comparing the

number of shared polymorphisms at sites that are selected, to those that are neutral. We expect

the number of shared polymorphisms at selected sites to be lower than at neutral sites because

many mutations at selected sites are likely to be deleterious, and hence unlikely to be shared.

However, we can estimate the proportion that are effectively neutral by considering the ratio

of polymorphisms, which are private to one of the 2 populations or species, at selected versus

neutral sites. Although the method can be applied to any group of neutral and selected sites

that are interspersed with one another, we will characterise it in terms of nonsynonymous and

synonymous sites. Let the numbers of polymorphisms that are shared between 2 populations

or species be SN and SS at nonsynonymous and synonymous sites, respectively, and the num-

bers that are private to one of the populations be RN and RS, respectively. Let us assume that

synonymous mutations are neutral and nonsynonymous mutations are either neutral or

strongly deleterious. Then, it is evident that
SN
SS
¼

RN
RS
¼ f , where f is the proportion of the non-

synonymous mutations that are neutral. However, if there is balancing selection acting on

some nonsynonymous SNPs, and this selection persists for some time such that the balanced

polymorphisms are shared between populations then
SN
SS
>

RN
RS

. A simple test of balancing selec-

tion is therefore whether Z> 1, where

Z ¼
SN=SS
RN=RS

; ð1Þ

a simple corollary of the McDonald–Kreitman test for adaptive divergence between species

[16]. It can be shown, under some simplifying assumptions in which synonymous mutations

are neutral and nonsynonymous mutations are strongly deleterious, neutral or subject to bal-

ancing selection, that an estimate of the proportion of nonsynonymous mutations subject

directly to balancing selection is ab ¼ 1 �
SSRN
SNRS

(see Results section). In this analysis, we per-

form population genetic simulations to investigate whether the method can detect the signa-

ture of balancing selection and assess whether the method is robust to demographic change.

Second, we apply the method to human population genetic data. We estimate that substantial

numbers of nonsynonymous polymorphisms are likely being maintained by balancing selec-

tion in humans.

Results

Simulations

We propose a new test for balancing selection in which the ratio of selected to neutral poly-

morphisms is compared between those that are shared between populations or species and

those that are private to populations or species. To explore the properties of our method to
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detect balancing selection, we ran a series of simulations in which an ancestral population

splits to yield 2 descendent populations. We initially simulated loci under a simple stationary

population size model where the ancestral population is duplicated to form 2 equally sized

populations (equal to each other and the ancestral population). This is an unrealistic scenario,

but it has the advantage that it involves no demographic change in the transition from ances-

tral to descendent populations. We assume that synonymous mutations are neutral, and we

explore the consequences of different selective models for nonsynonymous mutations. If all

nonsynonymous mutations are neutral, then as expected Z = 1 (Fig 1a), and if we make some

of the nonsynonymous mutations deleterious, drawing their selection coefficients from a

gamma distribution, as estimated from human polymorphism data [17] we find that Z< 1(Fig

1a). Again, this is expected because slightly deleterious mutations (SDMs) are likely to contrib-

ute more to the level of private than shared polymorphism. If we simulate a locus in which

most nonsynonymous mutations are deleterious, drawn from a gamma distribution, but each

locus contains a single balanced polymorphism that is shared between populations, then Z> 1

(Fig 1a). It is important to note that the density of balanced polymorphisms (i.e., the number

per bp) is substantial in these simulations because we have simulated a short exon, of just 288

bp, the average length in humans [18], and each one contains a balanced polymorphism. If we

were to reduce the density of balanced polymorphisms, then Z could be less than 1 even if

there is balancing selection operating.

SDMs tend to depress the value of Z because they are more likely to segregate within a pop-

ulation than to be shared between populations that diverged sometime in the past; this will

tend to make our test (i.e., whether Z> 1) conservative. There are 2 potential strategies for

coping with this tendency. We can test for the presence of balancing selection as a function of

the frequencies of the polymorphisms in the population, because SDMs will tend to be

enriched among the rarer polymorphisms in the population. A similar approach has been used

successfully to ameliorate the effects of SDMs in the classic MK approach for estimating the

rate of adaptive evolution between species [19–21]. Or we can explicitly model the generation

of shared and private polymorphisms under a realistic demographic and selection model to

Fig 1. Stationary population size simulations. The ancestral population is duplicated to form 2 daughter populations of the same

size to each other and the ancestor. The tMRCA is measured in N generations, where N is the population size. In panel (a), we show

the value of Z as a function of the tMRCA for 3 scenarios: all nonsynonymous mutations are neutral; all nonsynonymous mutations

are deleterious; and all nonsynonymous mutations are neutral except for a single balanced polymorphism in the middle of the locus.

In panels (b) and (c) polymorphisms have been binned by minor allele frequency, in bins of size 0.1. In panel (b), we show the case

where all nonsynonymous mutations are deleterious and panel (c) all nonsynonymous mutations are deleterious except for a single

balanced polymorphism in the middle of the locus. Code to perform these simulations can be at https://github.com/vivaksoni/test_

for_balancing_selection. tMRCA, time to the most recent common ancestor.

https://doi.org/10.1371/journal.pbio.3001645.g001
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control for the effects of SDMs. We focus our attention here on the first of these strategies,

although we touch on the latter strategy in the discussion. We apply the frequency filter to

both the private and shared polymorphisms; this is necessary because if we applied the filter

only to the private polymorphisms, we could be comparing high frequency private polymor-

phisms, with a low ratio of RN to RS, because SDMs have been excluded, to low frequency

shared polymorphisms, which may contain many SDMs and hence have a high value of SN/SS;

this can yield artefactual evidence of balancing selection. This could be exacerbated if some of

the SDMs are recessive. For shared polymorphisms, we estimated their frequency in the popu-

lation from which the private polymorphisms are drawn. To investigate the effects of polymor-

phism frequency on our estimate of Z, we divided polymorphisms into 5 bins of 0.1 (we did

not orient SNPs). If we simulate a population in which nonsynonymous mutations are delete-

rious, whose effects are drawn from a gamma distribution, we find that Z< 1 but this is less

marked for the high frequency categories, as we expect (Fig 1b). For the lowest frequency cate-

gory, Z decreases as a function of the time to most recent common ancestor, whereas for the

higher frequency categories, it is either unaffected or increases slightly (Fig 1b). If we include a

balanced polymorphism, introduced prior to the population split and subject to strong selec-

tion, into the model, which still also includes deleterious mutations, we find that Z> 1 for all

frequency bins except the lowest one (Fig 1c). Note, once again that the level of balancing

selection in these simulations is substantial because every locus contains a balanced

polymorphism.

The simulation above does not take into account the demographic effects that a division in

a population involves. We therefore performed more realistic simulations that involve vicari-

ance and dispersal scenarios with and without migration between the sampled populations

(S1–S13 Figs). We also simulated with and without expansion after separation. We performed

all simulations under 2 distributions of fitness effects (DFEs), which were estimated from

human and Drosophila melanogaster populations. In the vicariance scenario, the ancestral pop-

ulation splits into 2 daughter populations of equal or unequal sizes. In the dispersal scenario, a

single daughter population is generated by duplicating part of the ancestral population, which

remains the same size as it was before; we vary the daughter population size. In both cases, we

explore the consequences of expansion after separation of the populations, and we explore the

consequences of migration between the 2 populations.

None of the simulated demographic scenarios is capable of generating Z values greater than

1 under either DFE—i.e., the method does not seem to generate false positives (S1–S13 Figs).

However, it is worth noting that a more severe difference in the size of the descendant popula-

tions results in depressed Z values in the smaller of the 2 populations, demonstrating that

demography can affect the value of Z. In all cases, the value of Z is smallest for the lowest fre-

quency category, those polymorphisms with frequencies <0.1, and this frequency category

often shows a dramatic difference to the other categories. We therefore suggest combining the

polymorphisms above 0.1 when data are limited. As expected, we find that Z< 1 in all simula-

tions when we sum all polymorphisms with frequencies >0.1 (S14 and S15 Figs).

Statistical tests

We can test for balancing selection by testing whether Z is significantly greater than 1, since Z

is expected to be 1 when all mutations are neutral, and less than 1 when some nonsynonymous

mutations are slightly deleterious. To test for statistical significance at the single gene level, we

recommend using a simple chi-squared test of independence on the 2 × 2 contingency table

that is formed from SN, SS, RN, and RS; this is appropriate given that nonsynonymous and syn-

onymous sites share the same genealogies. For analyses involving more than 1 gene, we
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recommend summing the values SN, SS, RN, and RS across genes and bootstrapping at a level

that encompasses all sources of possible variance to derive confidence intervals. In many spe-

cies, this will be at the gene level. For example, in humans, gene density is such that there is lit-

tle linkage between genes—there is approximately 1 gene every 150 kb and the average half-life

of LD is approximately 20 kb [22].

Estimating the level of balancing selection

One of the great advantages of our method is that it gives an estimate of the number of poly-

morphisms that are directly affected by balancing selection under a simple model of evolution.

Let us assume that synonymous mutations are neutral and that nonsynonymous mutations are

strongly deleterious, neutral, or subject to balancing selection; we further assume that all bal-

anced polymorphisms arose before the 2 populations split. Then, the expected numbers of

nonsynonymous, RN, and synonymous, RS, private polymorphisms are

Rs ¼ yrW

RN ¼ yrWf ;
ð2Þ

where θ = 4Neu, Ne is the effective population size, and u is the mutation rate per site per gen-

eration. ρ is the proportion of polymorphisms that are private to the population, W is Watter-

son’s coefficient, and f is the proportion of nonsynonymous mutations that are neutral, (1-f)
being deleterious or subject to balancing selection.

In deriving expressions for SN and SS, we have to take into account that a balanced polymor-

phism can maintain neutral variation in LD that may also be shared between populations. If

we have b balanced nonsynonymous polymorphisms and each of those maintains x neutral

mutations in LD, then the expected values of SN and SS are

SS ¼ yð1 � rÞW þ bx

SN ¼ yð1 � rÞWf þ bþ bxf :
ð3Þ

It is then straightforward to show that the proportion of shared nonsynonymous polymor-

phisms that are directly maintained by balancing selection is

ab ¼ 1 � 1=Z ¼ 1 �
SSRN

SNRS
¼

b
SN
: ð4Þ

This is clearly an unrealistic model in several respects. First, it can be expected that there

are SDMs in many populations and this will lead to an underestimation of αb, and second, it is

likely that new balanced polymorphisms will be arising all the time and these will contribute to

private polymorphism, increasing RN/RS and leading to a conservative estimate of αb.

To investigate the extent to which this estimate might be biased we ran simulations, assum-

ing that synonymous mutations were neutral and nonsynonymous mutations were deleteri-

ous, with their selection coefficients drawn from a gamma distribution; we simulated loci with

and without a single balanced polymorphism in the centre of the locus. We then mixed these

simulations and estimated αb comparing it to the true value of αb. We considered 2 sampling

points at 0.2 and 1.0 N generations after the populations had divided, where N is the ancestral

population size. We find that αb is almost always underestimated, and that the underestima-

tion is greater for lower frequency polymorphisms (S16–S33 Figs); this is expected, since

SDMs are expected to depress the estimate of αb. Among the highest frequency polymor-

phisms, αb is quite well estimated when the true value of αb> 0.3; in these cases αb is >0.5 of

its true value. The estimate is greater using private polymorphisms from the population that is
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larger. There is 1 circumstance in which αb can be overestimated; this is where there has been

a bottleneck and then expansion; in this case αb is overestimated in the expanding population

among the highest frequency polymorphisms. Surprisingly, this overestimation only affects

cases in which there is at least some level of balancing selection; if we consider only simulations

in which there is no balancing selection then Z< 1, and αb is underestimated (S5 Fig).

Single gene power

Our method is unlikely to have much power to detect balancing selection in single genes,

because rather than leveraging the effects of balancing selection on patterns of linked polymor-

phism, our method simply looks for an excess of shared polymorphism; in fact, linkage con-

founds the signal of balancing selection in our method. This is in contrast to most other

methods, which consider patterns of linked polymorphism and can have considerable power

to detect balancing selection on single genes [6,7,9–11,13–15]. To investigate whether our

method has any power to detect balancing selection in single genes, we simulated a locus with

structure conforming to the average human gene, in which an ancestral population was split

into 2 descendant populations. In half our simulations, we introduced a balanced polymor-

phism into each exon, and in the other simulations there was no balancing selection. We find

that the distribution of Z values overlaps substantially for the simulations with and without

balancing selection, independent of the sampling time point (S34 Fig). If we make the locus

10-fold larger in terms of the number of exons and introns, we find the distributions show less

overlap, but the overlap remains considerable (S35 Fig). This analysis demonstrates that the

method has little power for single genes, or even small collections of genes.

Data analysis—Humans

We have shown that the method has the potential to detect balancing selection under realistic

evolutionary models. We therefore applied our method to human data from the 1000

Genomes Project [22] focussing on 4 populations—Africans, Europeans, East Asians, and

South Asians. We derived confidence intervals on our estimates of Z by bootstrapping the data

by gene. The analysis of the individual populations shows a mixed picture (Fig 2); generally,

comparisons involving African private polymorphisms show Z> 1 for polymorphisms at fre-

quencies above 0.1; the results among the Asian and European populations are more erratic,

and it is clear from the confidence intervals that we cannot reliably estimate Z for many fre-

quency categories. In fact, for many frequency categories we do not have enough polymor-

phism data to estimate Z. As a consequence, we summed the data for all frequencies above 0.1.

Here, a more consistent picture emerges with the data from at least 1 population in each com-

parison showing Z> 1. In the comparisons involving African private polymorphisms, Z is sig-

nificantly greater than 1 for the comparisons involving the Asian populations and for the

comparison between the African and non-African populations. It is worth noting that our sim-

ulations suggest that Z will tend to vary between populations which imply that in some com-

parisons Z can be less than 1 in 1 population but greater than 1 in another if there are modest

levels of balancing selection.

If we estimate αb in those comparisons in which Z is significantly greater than 1, we esti-

mate that approximately 2% to 4% of the nonsynonymous shared polymorphisms between the

African and other human populations are subject to balancing selection (Table 1). These esti-

mates are likely to be underestimates because there will still be SDMs segregating in our data,

even though we have removed the lowest frequency variants (see simulation results). The pro-

portions suggest that at least 200 to 400 polymorphisms, which are shared between the African

and other populations, are maintained by balancing selection (Table 1).
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A concern in any analysis of human population genetic data is the influence of biased gene

conversion (BGC). This process tends to increase the number and allele frequencies of

AT> GC mutations, and reduce the number and allele frequencies of GC > AT mutations. If

this process differentially affects synonymous and nonsynonymous sites and shared and pri-

vate polymorphisms, then it could potentially lead to Z> 1. To investigate whether BGC has

Fig 2. Testing for balancing selection in human. The value of Z is plotted against the frequency of shared and private

polymorphisms, for pairs of populations: AFR, EAS, EUR, and SAS. In each panel, we show the value of Z for a

comparison of 2 populations using the private polymorphisms from each, the population used being indicated in the

plot legend. Data binned by minor allele frequency bins of size 0.1 on the x-axis. The final bin is 0.1–0.5 (i.e., all data

minus the lowest frequency bin). Only data points in which there were at least 20 polymorphisms for all polymorphism

categories were plotted, because the confidence intervals were very large otherwise. Code to extract and analyse the

data can be found at https://github.com/vivaksoni/test_for_balancing_selection. The data underlying this figure can be

found in S3 Data. AFR, Africans; EAS, East Asians; EUR, Europeans; SAS, South Asians.

https://doi.org/10.1371/journal.pbio.3001645.g002

Table 1. The level of balancing selection in humans. Estimates of the proportion of shared nonsynonymous polymorphisms under balancing selection, αb, and the num-

ber of polymorphisms, b, being directly maintained by balancing selection for population comparisons in which Z> 1. Code to extract and analyse the data can be found

at https://github.com/vivaksoni/test_for_balancing_selection.

Target population Comparative population αb αb_low αb_high b blow bhigh

African Non-African 0.0407 0.0123 0.0671 366 111 604

African European 0.0400 0.0100 0.0600 577 176 926

African East Asian 0.0174 0.0003 0.0351 223 4 451

African South Asian 0.0251 0.0064 0.0439 341 87 595

https://doi.org/10.1371/journal.pbio.3001645.t001
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an effect, we performed 2 analyses. In the first, we divided our genes according to whether

they were in high and low recombining regions, dividing the data at the median recombina-

tion rate (RR). Our 2 groups differ substantially in their mean rate of recombination (mean

RR in low group = 1.2 × 10–7 centimorgans per site and high group = 1.8 × 10–6 centimorgans

per site). We find that Z is actually higher in the low RR regions, although not significantly so

(Table 2). However, neither estimate of Z is significantly greater than 1.

In the second test of the influence of BGC on the value of Z, we limited our analysis to

mutations that are not affected by BGC—i.e., G<>C and A<>T mutations. This reduces our

dataset by about 80%. As a consequence, we summed the data for all polymorphisms with fre-

quencies >0.1. We find that our estimates are largely unchanged compared to when all poly-

morphisms are included, except in the case of the African-East Asian comparison; however,

the confidence intervals are increased substantially so that Z is not significantly greater than 1

for any comparison (Table 3). Our 2 tests are inconclusive; in both cases, our values of Z are

largely unaffected, but the reduction in sample size increases the variance of our estimate and

all estimates become nonsignificant.

Groups of genes

We can potentially apply our test of balancing selection to individual genes or groups of genes,

where we have enough data. Balancing selection has been implicated in the evolution of

immune-related genes (e.g., [4,15,23,24]), particularly major histocompatibility complex

(MHC) or human leukocyte antigen (HLA) genes [25,26]. To investigate whether we could

detect this signature in our data, we split our dataset into HLA and non-HLA genes [27]. Due

to a lack of private polymorphisms, we combined all frequency categories >0.1. We find that

Z> 1 for HLA genes in those population comparisons in which Z> 1 overall and in most

cases this pattern is significant. We estimate that a very substantial proportion of nonsynon-

ymous genetic variation is being maintained by balancing selection, although the confidence

intervals on our estimates are large; roughly 50% of the shared nonsynonymous SNPs are

being maintained by balancing selection between African and non-African populations in the

HLA region and this equates to approximately 200 polymorphisms (Table 4). If we consider

non-HLA genes, we find that Z> 1; however, the values are never significant and the

Table 2. Testing for the influence of biased gene conversion I. Estimates of Z for data split by median recombina-

tion rate. Code to extract and analyse the data can be found at https://github.com/vivaksoni/test_for_balancing_

selection.

Mean recombination rate Z Zlow Zhigh

1.20 × 10–9 1.02 0.99 1.06

1.80 × 10–8 1.00 0.96 1.04

https://doi.org/10.1371/journal.pbio.3001645.t002

Table 3. Testing for the effects of biased gene conversion II. The values of Z when only G<>C and A<>T mutations are considered. Code to extract and analyse the

data can be found at https://github.com/vivaksoni/test_for_balancing_selection.

Target population Comparative population All polymorphism data Filtered for BGC

Z Zlow Zhigh Z Zlow Zhigh

African Non-African 1.04 1.01 1.07 1.03 0.94 1.12

African East Asian 1.02 1.00 1.04 0.96 0.91 1.02

African South Asian 1.03 1.01 1.05 1.02 0.96 1.08

BGC, biased gene conversion.

https://doi.org/10.1371/journal.pbio.3001645.t003
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estimated proportion of shared polymorphisms that are being maintained by balancing selec-

tion is very low (Table 5).

If we run our analysis grouping genes by their Gene Ontology (GO) category and restricting

the analysis to those groups that have at least 100 polymorphisms with frequencies >0.1, we

find 606 categories in which Z is significantly greater than 1 in at least 1 population compari-

son comparing all pairs of populations (S1 Fig). We list those significant in 5 or more popula-

tion comparisons in Table 6. One of these GO categories, “endoplasmic reticulum membrane”

is shared across 6 of the 14 population comparisons; among those categories shared among 5

are “viral process” and “response to stimulus.” Fifty-four categories are shared between 4 or

more population comparisons, and 108 among 3 or more population comparisons. These

include 6 categories related to immunity (including immune system process which is signifi-

cant in 5 population comparisons), and 40 categories that are linked to antigen presentation

Table 4. Balancing selection in HLA genes. Estimates of the proportion of shared nonsynonymous polymorphisms under balancing selection, αb, and the number of

polymorphisms being directly maintained by balancing selection, b, for population comparisons in the HLA region for population comparisons in which Z> 1 when

using all genes. Estimates for polymorphisms with frequency>0.1. Missing values indicate the lower confidence interval was less than 1. Data consist of 177 genes. Code to

extract and analyse the data can be found at https://github.com/vivaksoni/test_for_balancing_selection.

Target Comparative α αb_low αb_low b blow bhigh

AFR Non-AFR 0.70 0.19 0.79 208 56 233

AFR EAS 0.28 - 0.46 131 - 213

AFR SAS 0.54 0.28 0.69 253 129 323

AFR, Africans; EAS, East Asians; HLA, human leukocyte antigen; SAS, South Asians.

https://doi.org/10.1371/journal.pbio.3001645.t004

Table 5. Balancing selection in non-HLA genes. Estimates of the proportion of shared nonsynonymous polymorphisms under balancing selection, αb, in non-HLA

genes, and the number of polymorphisms being directly maintained by balancing selection, b, for population comparisons in which Z> 1 when using all genes. Missing

values indicate the lower confidence interval was less than 1. Data consist of 19,212 genes. Code to extract and analyse the data can be found at https://github.com/

vivaksoni/test_for_balancing_selection.

Target Comparative αb αb_low αb_high b blow bhigh

AFR Non-AFR 0.024 - 0.050 207 - 433

AFR EAS 0.002 - 0.020 21 - 245

AFR SAS 0.009 - 0.025 120 - 332

AFR, Africans; EAS, East Asians; HLA, human leukocyte antigen; SAS, South Asians.

https://doi.org/10.1371/journal.pbio.3001645.t005

Table 6. GO category analysis. GO categories in which Z is significantly greater than 1 in at least 5 population com-

parisons. Code to extract and analyse the data can be found at https://github.com/vivaksoni/test_for_balancing_

selection.

GO category Counts

Endoplasmic reticulum membrane 6

Nucleic acid binding 5

Viral process 5

Response to stimulus 5

Intermediate filament 5

Zinc ion binding 5

Chromatin binding 5

Chromosome 5

https://doi.org/10.1371/journal.pbio.3001645.t006
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though not classified as immune-related categories. There are also 2 viral-related categories

(including viral process which is significant in 5 population comparisons).

Individual genes

Although our test is likely to have little power for individual genes (see above), we applied our

statistic, combining all frequency bins (0 to 0.5) due to a lack of polymorphism data. We tested

for significance using a 1-tailed Fisher’s exact test. Of the 14,261 genes, we analysed 514 had

Z> 1 in at least 1 population comparison. Eighteen of these were nominally significant at

p< 0.1 (S2 Data), but no gene was individually significant when we corrected for multiple test-

ing using a Bonferroni correction. Eighteen genes have Z> 1 in at least 9 population compari-

sons; note that since populations share polymorphisms, we cannot combine the evidence for

balancing selection across these populations (Table 7). Four of these genes, MUC4, RP1L1,

PKD1L2, and ZAN, have Z> 1 in all population comparisons.

If we use the 514 genes and do a GO enrichment analysis, we find multiple GO categories

enriched for these genes including immune response categories with 3-fold enrichment. The

most highly enriched categories are involved in energy production and conversion (including

dynein binding) and intracellular transport (including microtubule motor activity) (S2 Data).

Discussion

We propose a new method for detecting and quantifying the amount of balancing selection

that is operating on polymorphisms, in which the numbers of nonsynonymous and synony-

mous polymorphisms that are shared between populations and species are compared to those

that are private. The method is analogous to the McDonald–Kreitman test used to test and

quantify the amount of adaptive evolution between species [16]. Our method is simple to

apply and yields an estimate of the number of polymorphisms directly subject to balancing

Table 7. Single gene analysis. Genes with Z> 1 in multiple population comparisons. Code to extract and analyse the

data can be found at https://github.com/vivaksoni/test_for_balancing_selection.

Gene symbol Number of population comparisons in which Z > 1

MUC4 14

RP1L1 14

PKD1L2 14

ZAN 14

C1orf167 13

SPTBN5 12

MKI67 12

DNAH14 11

WDFY4 10

FAM230G 10

CMYA5 9

CRIPAK 9

SYNE2 9

FSIP2 9

GREB1 9

ALMS1 9

MUC19 9

CENPF 9

https://doi.org/10.1371/journal.pbio.3001645.t007
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selection, as opposed to those affected by linkage. We show that our test is robust to the pres-

ence of SDMs under simple demographic models of population division, expansion, and

migration. When we apply our method to data from human populations, we find evidence

that hundreds of nonsynonymous polymorphisms are probably being maintained by balanc-

ing selection in human populations. However, most of this signal comes from the HLA region.

Our method for detecting balancing selection appears to be robust to changes in demogra-

phy. The classic MK test of adaptive evolution between species can generate artefactual evi-

dence of adaptive evolution if there are SDMs and there has been population size expansion

[16,28]; this is because SDMs that might have been fixed when the effective population size

was small, no longer segregate once the population size is large. A similar bias does not appear

to affect our test, although we have only investigated 2 DFEs and a limited number of demo-

graphic scenarios. Our test is likely to be more robust than the classic MK test because the

shared polymorphisms are affected by the demographic changes that affect the private poly-

morphisms, i.e., if the population expands this will increase the effectiveness of natural selec-

tion on both the private and the shared polymorphisms. However, although our method seems

to be relatively robust to changes in demography, in the sense that it does not generate artefac-

tual evidence of balancing selection, it is evident that demography does affect the chance of

balancing selection being identified, because the values of Z depend on the demography and

which population the private polymorphisms are taken from (Fig 2). Furthermore, the method

generally underestimates the number of balanced polymorphisms.

The method can in principle be applied to any pair of populations or species. However, the

test is likely to be weak when the populations/species are closely related for 2 reasons. First,

there will be relatively few private polymorphisms, and second, the proportion of shared poly-

morphisms that are subject to balancing selection is likely to be low, because so many neutral

polymorphisms are shared between populations because of recent common ancestry. As the

populations/species diverge so the number of private polymorphisms will increase, and the

proportion of shared polymorphisms that are balanced will increase. Of course, as the time of

divergence increases so the selective conditions that maintained the polymorphism are likely

to change and the polymorphism might become neutral or subject to directional selection.

Our method is also likely, like all methods, to be better at detecting balanced polymor-

phisms that are common, because most populations are dominated by large numbers of rare

neutral variants. The method requires that the neutral and selected sites are interdigitated; the

method is therefore easy to apply to protein coding sequences, but may be more difficult to

apply to other types of variation, such as that which affects gene expression. The method is

weakly powered to detect balancing selection in individual genes (S34 and S35 Figs). Most

other methods or analyses have leveraged patterns of variation in LD with a balanced polymor-

phism [6–15]; such variation obscures the signal that our method detects, which is an excess of

shared variation.

The great advantage of our method is that it gives an estimate of the proportion and num-

ber of shared polymorphisms that are directly subject to balancing selection, under a set of

simplifying assumptions, and it is simple to apply. However, the method is likely to yield

underestimates of the proportion of balanced polymorphisms, under more realistic models of

evolution, something we have confirmed by simulation (S16–S33 Figs). We have assumed, in

deriving αb, that all nonsynonymous mutations are either strongly deleterious, neutral, or sub-

ject to balancing selection. However, a substantial fraction of nonsynonymous mutations

appear to be slightly deleterious in humans [19,29–32] and other species [19,30,33,34]—i.e.,

they are deleterious, but sufficiently weakly selected that they contribute to polymorphism.

Under stationary population size assumptions—i.e., in which the ancestral population is dupli-

cated to form the daughter populations—this will lead to an underestimate of αb because
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SDMs tend to contribute more to private than shared polymorphism, and hence inflate RN/RS

relative to SN/SS (Fig 1). Under more realistic demographic models, in which at least one of the

derived populations is reduced, this is expected to depress αb in the population that is being

reduced because more SDMs will tend to segregate in smaller populations, hence inflating RN/

RS (compare Fig 2 and S3 Fig).

The second reason that we are likely underestimating the number of balanced polymor-

phisms using our simple method is that we assume that there are no balanced polymorphisms

that are private to each population; these would inflate RN/RS. Private balanced polymor-

phisms might arise from an ancestral polymorphism that is lost from 1 of the daughter popula-

tions or 1 that arises de novo. A more realistic model of balancing selection is one in which

balanced polymorphisms are continually generated with the selective forces persisting for

some time before they dissipate [35] and the balanced polymorphism is lost. The process of

population division itself is likely to lead to the loss of many balanced polymorphisms as the

environment shifts in the 2 daughter populations.

A potential solution to the tendency for our method to underestimate Z and αb is to simu-

late data under a realistic demographic model both with and without balancing selection, and

use the simulations to estimate the proportion of balanced polymorphisms. However, there

are challenges in this approach; in particular, we need an accurate demographic model. We

have performed simulations under the commonly used human demographic model inferred

by Gravel and colleagues [36] estimating the DFE from the current African population, assum-

ing no balancing selection; we chose the African population because it has been subject to rela-

tively modest demographic change. Our observed Z values do not match the simulated values

(S36 Fig); in particular, we find that the observed values of Z are substantially greater than the

simulated among the low frequency polymorphisms. However, the model of Gravel and col-

leagues does not fit the site frequency spectrum (SFS) of the individual populations of 1,000

genome data; for example, in the African population there are far too many singleton SNPs

even among the putative neutral synonymous mutations (S37 Fig). The lack of fit is perhaps

not surprising; Gravel and colleagues inferred their model using 80 chromosomes per popula-

tion, whereas the 1,000 genome data contain >1,000 chromosomes per population. Further-

more, the inference of a demographic model should take into account the influence of BGC

and background selection, which appear to be pervasive factors in the human genome [37], so

these simulations will be complex.

We have analysed data from human populations and find some evidence for widespread

balancing selection, particularly using private polymorphisms from the African population. It

might be argued that detecting a signal of balancing selection using the private polymorphisms

from 1 population is weak evidence of balancing selection. However, simulations suggest that

this is likely to be common under many demographic models (S1–S15 Figs) when there are

modest levels of balancing selection.

Controlling for BGC in our data analysis leads to inconclusive results; our estimates are not

greatly affected by BGC, but because of the reduction in the sample size the confidence inter-

vals increase and our estimates are not significantly different from zero. Much of the signal for

balancing selection comes from the HLA genes. However, an analysis of GO categories sug-

gests that numerous categories show evidence of balancing selection across multiple popula-

tion comparisons (S1 Data). Some of these are expected, but many are not, such as “nucleic

acid binding,” which is significant in 5 of the 14 population comparisons (12 population com-

parisons plus African–non-African).

No individual gene is significant when we control for multiple testing; however, several

genes have Z> 1 in multiple population comparisons including 10 that are shared across at

least 10 of the 14 population comparisons. Three of these overlap with previous genome-wide
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scans of selection, namely the protein-coding gene DNAH14, implicated in brain compression

and encoding axonemal dynein [38]; MUC4, implicated in biliary tract cancer [39]; and ZAN,

which encodes a protein involved in sperm adhesion, previously implicated in balancing selec-

tion and positive selection in human populations [40]. Two of these 10 genes are associated

with tumours. MKI67 expression is associated with a higher tumour grade and early disease

recurrence [41], and WDFY4 plays a critical role in the regulation of certain viral and tumour

antigens in dendritic cells [42]. PKD1L2 is associated with polycystic kidney disease, and

RP1L1 variants are associated with several retinal diseases including occult macular dystrophy

[43]. SPTBN5 encodes for the cytoskeletal protein spectrin that plays a role in maintaining

cytoskeletal structure [44], and C1orf167 expresses open reading frame protein that is highly

expressed in the testis [45]. Finally, FAM230G is highly expressed in testes [46].

Twenty-five of the 514 genes with Z> 1 overlap with those genes identified by Bitarello

and colleagues [15], but this is similar to the level of overlap expected at random, i.e., they

observed that 7.9% of protein coding genes overlapped regions identified by their method as

being subject to balancing selection, and we identified 514 candidates, so we expect

0.079 × 514 = 41 by chance alone. The lack of a significant overlap is possibly not surprising;

we have applied our method to nonsynonymous variation, whereas the method of Bitarello

and colleagues [15] considers all variation. Furthermore, the method of Bitarello and col-

leagues [15] is most powerful at detecting balancing selection over long time periods; in the

case of humans, over periods of millions of years. In contrast, we have applied our method to

populations that diverged 10,000s of years ago.

A signature of overdominance or heterozygous advantage can be produced by linkage to

recessive or partially recessive deleterious mutations. For example, let us imagine that we have

2 closely linked loci at which we have deleterious alleles; let the A2 allele be the recessive allele

at the A locus and the B2 allele at the B locus. Now consider a third neutral locus with alleles

C1 and C2. If C1 is in LD with the A2 allele, and C2 is in LD with the B2 allele, then C1C2 het-

erozygous individuals will have higher fitness than C1C1 and C2C2 homozygotes. This form

of selection is known as associative overdominance and can lead to the maintenance of genetic

variation [47] in low RR regions. However, there is no reason why nonsynonymous mutations

should be linked to other deleterious recessives more frequently than synonymous mutations,

and Z is not substantially greater in regions of low recombination, so associative overdomi-

nance seems an unlikely explanation for our results (Table 2).

Conclusion

We present a new approach to test for the presence of balancing selection and to the number

of polymorphisms that are directly affected by it. Our method appears to be robust to demo-

graphic change. Application of the method to human population genetic data suggests that

100s of nonsynonymous polymorphisms shared between populations might be maintained by

balancing selection.

Methods and materials

Human data

Human variation data were obtained from 1,000 genomes Grch37 vcf files [22]. Variants were

annotated using Annovar’s hg19 database [48]. The annotated data were then parsed to

remove multinucleotide polymorphisms and indels. Because 1,000 genomes data provide allele

frequencies for the non-reference allele rather than the minor allele, the minor allele frequency

for each superpopulation and also for the global minor allele frequency was calculated. We

used 1,000 genomes from the African, South Asian, East Asian, and European populations.
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The American population was removed due to the fact that it is an admixed population. GO

category information was obtained from Ensembl’s BioMart data mining tool [18]. We used

pyrho demography-aware recombination rate maps [49] for analyses that control for recombi-

nation rate.

Data analysis

We calculated our test statistic Z for each pair of human populations, and also for the compari-

son between African and non-African data separating polymorphisms by frequency into bins

of 0.1. We do not attempt to orient SNPs but use the folded site frequency spectrum. This is

because there are potential difficulties with inferring the ancestral state when some sites such

as CpG dinucleotides have rates of mutation; this is compounded by the fact that there is sub-

stantial variation in the mutation rate that is not associated with sequence context [50] and is

therefore difficult to control for; as a consequence, a fraction of high frequency variants may

simply be due to misinference. The folded site frequency spectrum does not suffer from these

problems. We take the frequency of the shared polymorphism to be the frequency in the popu-

lation from which the private polymorphisms are drawn. To test for statistical significance, we

summed the values of SN, SS, RN, and RS across genes and bootstrapped the data by gene 100

times to derive the 95% confidence intervals and standard error.

Simulations

All simulations were run using the SLiM 3.1 [51]. Parameter values were taken from human

estimates. Almost all simulations were of a 288 bp locus, this being the average size of a human

exon [18]. Unless otherwise stated, the scaled recombination rate and scaled mutation rate

were set at r = 1.1 × 10–8 [52], μ = 2.5 × 10–8 [53] in the ancestral population. The distribution

of fitness effects was assumed to be a gamma distribution, and the shape and mean strength of

selection estimates for humans were taken from Eyre-Walker and colleagues [17] (shape

parameter β = 0.23; mean Nes = 425). For Drosophila, estimates were taken from Keightley and

Eyre-Walker [54] (β = 0.35; mean Nes = 1,800); again these were values in the ancestral popula-

tion. Unless dominance was fixed, it was calculated using the model of Huber and colleagues

[55], which was estimated from Arabidopsis species. The Huber model varies the dominance

coefficient depending on the selection coefficient of the mutation, where the dominance

coefficient increases with the strength of selection. Its formula is h ¼ f sð Þ ¼ 1
1

yintercept
� yrates

, where

θintercept defines the values of h at s = 0, and θrate determines how quickly h approaches 0 with

decreasing negative selection coefficient. We set θintercept to 0.5 so that all mutations with a

selection coefficient of s = 0 have a dominance coefficient, h = 0.5, and θrate = 41225.56. This

assumes an inverse relationship between h and s, which gives the highest log likelihood score

of the relationships compared by Huber and colleagues [55]. For balancing selection simula-

tions, we assume a model of negative frequency-dependent selection; the equilibrium fre-

quency was sampled from a uniform distribution between 0 and 1, with the Ns value at

equilibrium set to 20, where N is the ancestral population size (see recipe 10.4.1 in SLiM [51]

for details on how this was coded); however, it should be noted that some balanced polymor-

phisms with low equilibrium frequencies were lost in one of the descendent populations, so

the realised distribution of frequencies is biased towards common polymorphisms (S38 Fig).

Simulations in which the balanced polymorphism was lost from one of the 2 populations were

discarded. The balanced polymorphism is introduced at the centre of the 288-bp region. Two

million simulation runs were conducted for each model. This reduced the standard error on

our estimates of Z to very low levels.
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For the generic simulations (i.e., not those involving the human demographic model), the

ancestral population size was set at 200. This was allowed to equilibrate for 15 N generations

before a balanced polymorphism was introduced 5 N generations before the population was

split into 2. The descendant populations were then sampled every 0.05 N generations up to 20

N generations after the split. We ran 5 different generic simulations: (i) simulations in which

the ancestral population was duplicated; (ii) vicariance simulations in which the ancestral pop-

ulation was divided between the daughter populations in splits of 0.5 N to 0.5 N, 0.75 N to 0.25

N, 0.9 N to 0.1 N; (iii) variance simulations in which the descendant populations expanded;

(iv) dispersal simulations, in which some variable fraction (0.5 N, 0.25 N, 0.1 N) of the ances-

tral population is duplicated to form the dispersal population, and the ancestral population

continues as the other daughter population; and (v) dispersal with population increase of the

dispersal population. The dispersal population starts as 0.1 N and expands exponentially 2 to

10× its original size after 21 N generations. Scenarios (ii) to (v) were repeated with migration

rates of 0.01 N and 0.001 N of the ancestral population size between the descendant

populations.

To investigate the power of the method to detect balancing selection in single genes, we ran

a series of simulations of a single human gene; on average human genes are 32 kb in length,

with an average exon size of 288 bp [18], 8.8 exons per gene, and 7.8 introns [56]. We simu-

lated 9 exons of length 288 bp separated by 8 introns of 5,419 bp [56]. These loci were subject

to human levels of mutation and recombination. We also ran a series of simulations of a gene

that was 10-fold larger, in terms of the number of introns and exons. We ran simulations in

which all mutations were deleterious and drawn from a gamma distribution, and a series of

simulations in which a balanced polymorphism was introduced in the centre of each exon 5 N

generations before the population was divided into 2 equal size populations (half the original

population size). We only kept those balancing selection simulations in which at least 1 balance

polymorphism survived to the sampling time point in both populations. In these simulations,

we calculated Z using polymorphisms at all frequencies.

We also ran some simulations under the human demographic model of Gravel and col-

leagues [36]. The distribution of fitness effects for deleterious mutations was assumed to be a

gamma distribution using the parameters estimated from the African superpopulation using

the GammaZero model within the Grapes software [57]; the parameters are similar to those

estimated by Eyre-Walker and colleagues [17], and used in the generic simulations (gamma

shape = 0.17 and mean Nes = 1144). We chose to infer the DFE for the African superpopula-

tion because this is currently the largest dataset available for a population that has been

inferred to be relatively stable. Dominance was calculated using the Huber model discussed

above. Sampling of all populations (African, East Asian, and European) was conducted at the

end of the simulation (i.e., the equivalent of the present day). Each simulation was run 2 mil-

lion times.

Supporting information

S1 Data. GO categories for which Z is significantly greater than 1, for each of the popula-

tion comparisons.

(XLSX)

S2 Data. Individual genes for which Z> 1, for each of the population comparisons.

(XLSX)

S3 Data. Data underlying Fig 2 and S36–S38 Figs.

(XLSX)
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S1 Fig. Vicariance simulations, with human DFE, in which the ancestral population splits

to form 2 daughter populations of the size specified in the panel. Each column is a separate

set of simulations, with the top row plotting Z against tMRCA (measured in N generations,

where N is the population size) for the larger daughter population, and the bottom row the

smaller. There is no balancing selection and deleterious mutations are drawn from a gamma

DFE with parameters inferred from human population data. Code to run these simulations

can be found at https://github.com/vivaksoni/test_for_balancing_selection. DFE, distributions

of fitness effect; tMRCA, time to the most recent common ancestor.

(TIF)

S2 Fig. Dispersal simulations, with human DFE, in which a single daughter population dis-

perses from the ancestral population. Each column is a separate set of simulations, with the

top row plotting Z against tMRCA (measured in N generations, where N is the population

size) for the ancestral population, and the bottom row the daughter population. There is no

balancing selection and deleterious mutations are drawn from a gamma DFE with parameters

inferred from human population data. Code to run these simulations can be found at https://

github.com/vivaksoni/test_for_balancing_selection. DFE, distributions of fitness effect;

tMRCA, time to the most recent common ancestor.

(TIF)

S3 Fig. Vicariance and expansion simulations, with human DFE, in which both daughter

populations expand. The ancestral population (of size N = 200) splits to form 2 daughter pop-

ulations of size N = 100. Both daughter populations go on to expand in size. In the left column,

the daughter populations double in size. In the right panel, they reach 10× their initial size.

There is no balancing selection and deleterious mutations are drawn from a gamma DFE with

parameters inferred from human population data. Code to run these simulations can be found

at https://github.com/vivaksoni/test_for_balancing_selection. DFE, distributions of fitness

effect; tMRCA, time to the most recent common ancestor.

(TIF)

S4 Fig. Vicariance and expansion simulations, with human DFE, in which only 1 daughter

population expands. The ancestral population (of size N = 200) splits to form 2 daughter pop-

ulations of size N = 100. One daughter population (upper panels) goes on to expand in size. In

the left column, the daughter populations double in size. In the right panel, they reach 10×
their initial size. There is no balancing selection and deleterious mutations are drawn from a

gamma DFE with parameters inferred from human population data. Code to run these simula-

tions can be found at https://github.com/vivaksoni/test_for_balancing_selection. DFE, distri-

butions of fitness effect; tMRCA, time to the most recent common ancestor.

(TIF)

S5 Fig. Dispersal and expansion simulations, with human DFE, in which a single daughter

population disperses from the ancestral population and then expands. The ancestral popu-

lation (of size N = 200) splits to form a daughter population of size N = 100, which expands to

the final population size shown in the panel. Each column is a separate set of simulations, with

the top row plotting Z against tMRCA (measured in N generations, where N is the population

size) for the ancestral population, and the bottom row the daughter population. There is no

balancing selection and deleterious mutations are drawn from a gamma DFE with parameters

inferred from human population data. Code to run these simulations can be found at https://

github.com/vivaksoni/test_for_balancing_selection. DFE, distributions of fitness effect;

tMRCA, time to the most recent common ancestor.

(TIF)
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S6 Fig. Vicariance simulations, with Drosophila DFE, in which the ancestral population

splits to form 2 daughter populations of the size specified in the panel. Each column is a

separate set of simulations, with the top row plotting Z against tMRCA (measured in N genera-

tions, where N is the population size) for the larger daughter population, and the bottom row

the smaller. There is no balancing selection and deleterious mutations are drawn from a

gamma DFE with parameters inferred from D. melanogaster population data. Code to run

these simulations can be found at https://github.com/vivaksoni/test_for_balancing_selection.

DFE, distributions of fitness effect; tMRCA, time to the most recent common ancestor.

(TIF)

S7 Fig. Dispersal simulations, with Drosophila DFE, in which a single daughter population

disperses from the ancestral population. Each column is a separate set of simulations, with

the top row plotting Z against tMRCA (measured in N generations, where N is the population

size) for the ancestral population, and the bottom row the daughter population. There is no

balancing selection and deleterious mutations are drawn from a gamma DFE with parameters

inferred from D. melanogaster population data. Code to run these simulations can be found at

https://github.com/vivaksoni/test_for_balancing_selection. DFE, distributions of fitness effect;

tMRCA, time to the most recent common ancestor.

(TIF)

S8 Fig. Vicariance expansion simulations, with Drosophila DFE, in which both daughter

populations expand. The ancestral population (of size N = 200) splits to form 2 daughter pop-

ulations of size N = 100. Both daughter populations go on to expand in size. In the left column,

the daughter populations double in size. In the right panel, they reach 10× their initial size.

There is no balancing selection and deleterious mutations are drawn from a gamma DFE with

parameters inferred from D. melanogaster population data. Code to run these simulations can

be found at https://github.com/vivaksoni/test_for_balancing_selection. DFE, distributions of

fitness effect; tMRCA, time to the most recent common ancestor.

(TIF)

S9 Fig. Vicariance expansion simulations, with Drosophila DFE, in which only 1 daughter

population expands. The ancestral population (of size N = 200) splits to form 2 daughter pop-

ulations of size N = 100. One daughter population (upper panels) goes on to expand in size. In

the left column, the daughter populations double in size. In the right panel, they reach 10×
their initial size. There is no balancing selection and deleterious mutations are drawn from a

gamma DFE with parameters inferred from D. melanogaster population data. Code to run

these simulations can be found at https://github.com/vivaksoni/test_for_balancing_selection.

DFE, distributions of fitness effect; tMRCA, time to the most recent common ancestor.

(TIF)

S10 Fig. Dispersal expansion simulations, with Drosophila DFE, in which a single daughter

population disperses from the ancestral population and then expands. The ancestral popu-

lation (of size N = 200) splits to form a daughter population of size N = 100, which expands to

the final population size shown in the panel. Each column is a separate set of simulations, with

the top row plotting Z against tMRCA (measured in N generations, where N is the population

size) for the ancestral population, and the bottom row the daughter population. There is no

balancing selection and deleterious mutations are drawn from a gamma DFE with parameters

inferred from D. melanogaster population data. Code to run these simulations can be found at

https://github.com/vivaksoni/test_for_balancing_selection. DFE, distributions of fitness effect;

tMRCA, time to the most recent common ancestor.

(TIF)
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S11 Fig. Vicariance simulations with migration and human DFE, in which the ancestral

population splits to form 2 daughter populations of the size specified in the panel. Each

column is a separate set of simulations, with the top row plotting Z against tMRCA (measured

in N generations, where N is the population size) for the larger daughter population, and the

bottom row the smaller. There is no balancing selection and deleterious mutations are drawn

from a gamma DFE with parameters inferred from human population data. Migration rate is

0.01 N. Code to run these simulations can be found at https://github.com/vivaksoni/test_for_

balancing_selection. DFE, distributions of fitness effect; tMRCA, time to the most recent com-

mon ancestor.

(TIF)

S12 Fig. Dispersal simulations with migration and human DFE, in which a single daughter

population disperses from the ancestral population. Each column is a separate set of simula-

tions, with the top row plotting Z against tMRCA (measured in N generations, where N is the

population size) for the ancestral population, and the bottom row the daughter population.

There is no balancing selection and deleterious mutations are drawn from a gamma DFE with

parameters inferred from human population data. Migration rate is 0.01 N. Code to run these

simulations can be found at https://github.com/vivaksoni/test_for_balancing_selection. DFE,

distributions of fitness effect; tMRCA, time to the most recent common ancestor.

(TIF)

S13 Fig. Dispersal expansion simulations with migration and human DFE, in which a sin-

gle daughter population disperses from the ancestral population and then expands. The

ancestral population (of size N = 200) splits to form a daughter population of size N = 100,

which expands to the final population size shown in the panel. Each column is a separate set

of simulations, with the top row plotting Z against tMRCA (measured in N generations, where

N is the population size) for the ancestral population, and the bottom row the daughter popu-

lation. There is no balancing selection and deleterious mutations are drawn from a gamma

DFE with parameters inferred from human population data. Migration rate is 0.01 N. Code to

run these simulations can be found at https://github.com/vivaksoni/test_for_balancing_

selection. DFE, distributions of fitness effect; tMRCA, time to the most recent common ances-

tor.

(TIF)

S14 Fig. Simulations, with human DFE, for combined 0.1–0.5 minor allele frequencies.

Each panel is a separate simulated scenario, with population sizes listed in the panel legend. (�)

indicates simulations with migration (with migration rate 0.01 N). The first number is for the

filled in data lines, denoting the ancestral population in dispersal scenarios, and for the larger

population in the vicariance scenarios. The second number is for the dotted data lines, denot-

ing the daughter population in dispersal scenarios, and the smaller population in the vicariance

scenarios. For more details on each scenario, please see S1–S10 Figs. There is no balancing

selection and deleterious mutations are drawn from a gamma DFE with parameters inferred

from human population data. Code to run these simulations can be found at https://github.

com/vivaksoni/test_for_balancing_selection. DFE, distributions of fitness effect; tMRCA, time

to the most recent common ancestor.

(TIF)

S15 Fig. Simulations, with Drosophila DFE, for combined 0.1–0.5 minor allele frequencies.

Each panel is a separate simulated scenario, with population sizes listed in the panel legend. (�)

indicates simulations with migration (with migration rate 0.01 N). The first number is for the

filled in data lines, denoting the ancestral population in dispersal scenarios, and for the larger
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population in the vicariance scenarios. The second number is for the dotted data lines, denot-

ing the daughter population in dispersal scenarios, and the smaller population in the vicariance

scenarios. For more details on each scenario, please see Supporting information S1–S10 Figs.

There is no balancing selection and deleterious mutations are drawn from a gamma DFE with

parameters inferred from D. melanogaster population data. Code to run these simulations can

be found at https://github.com/vivaksoni/test_for_balancing_selection. DFE, distributions of

fitness effect; tMRCA, time to the most recent common ancestor.

(TIF)

S16 Fig. Comparison of αb inferred and αb true for dispersal simulation, sampled at 0.2 N

generations after the population split, in which the ancestral population is of size N = 200,

and the daughter population is size N = 20. The top row plots are for the ancestral popula-

tion, the bottom row for the daughter population. The left column plots αb inferred/αb true

against the proportion of balancing selection simulations. The right column plots αb true

against the proportion of balancing selection simulations. The 0–0.1 MAF category has been

removed, and negative values have been truncated to 0 for the sake of clarity. Deleterious

mutations are drawn from a gamma DFE with parameters inferred from human population

data. Code to run these simulations can be found at https://github.com/vivaksoni/test_for_

balancing_selection. DFE, distributions of fitness effect; MAF, minor allele frequency.

(TIF)

S17 Fig. Comparison of αb inferred and αb true for dispersal simulation, sampled at 1 N gen-

erations after the population split, in which the ancestral population is of size N = 200, and

the daughter population is size N = 20. The top row plots are for the ancestral population, the

bottom row for the daughter population. The left column plots αb inferred/αb true against the

proportion of balancing selection simulations. The right column plots αb true against the pro-

portion of balancing selection simulations. The 0–0.1 MAF category has been removed, and

negative values have been truncated to 0 for the sake of clarity. Deleterious mutations are

drawn from a gamma DFE with parameters inferred from human population data. Code to

run these simulations can be found at https://github.com/vivaksoni/test_for_balancing_

selection. DFE, distributions of fitness effect; MAF, minor allele frequency.

(TIF)

S18 Fig. Comparison of αb inferred and αb true for dispersal simulation, sampled at 0.2 N

generations after the population split, in which the ancestral population is of size N = 200,

and the daughter population is size N = 50. The top row plots are for the ancestral popula-

tion, the bottom row for the daughter population. The left column plots αb inferred/αb true

against the proportion of balancing selection simulations. The right column plots αb true

against the proportion of balancing selection simulations. The 0–0.1 MAF category has

been removed, and negative values have been truncated to 0 for the sake of clarity.

Deleterious mutations are drawn from a gamma DFE with parameters inferred from

human population data. Code to run these simulations can be found at https://github.com/

vivaksoni/test_for_balancing_selection. DFE, distributions of fitness effect; MAF, minor allele

frequency.

(TIF)

S19 Fig. Comparison of αb inferred and αb true for dispersal simulation, sampled at 1 N gen-

erations after the population split, in which the ancestral population is of size N = 200, and

the daughter population is size N = 50. The top row plots are for the ancestral population, the

bottom row for the daughter population. The left column plots αb inferred/αb true against the

proportion of balancing selection simulations. The right column plots αb true against the
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proportion of balancing selection simulations. The 0–0.1 MAF category has been removed,

and negative values have been truncated to 0 for the sake of clarity. Deleterious mutations are

drawn from a gamma DFE with parameters inferred from human population data. Code to

run these simulations can be found at https://github.com/vivaksoni/test_for_balancing_

selection. DFE, distributions of fitness effect; MAF, minor allele frequency.

(TIF)

S20 Fig. Comparison of αb inferred and αb true for dispersal simulation, sampled at 0.2 N

generations after the population split, in which the ancestral population is of size N = 200,

and the daughter population is size N = 100. The top row plots are for the ancestral popula-

tion, the bottom row for the daughter population. The left column plots αb inferred/αb true

against the proportion of balancing selection simulations. The right column plots αb true

against the proportion of balancing selection simulations. The 0–0.1 MAF category has been

removed, and negative values have been truncated to 0 for the sake of clarity. Deleterious

mutations are drawn from a gamma DFE with parameters inferred from human population

data. Code to run these simulations can be found at https://github.com/vivaksoni/test_for_

balancing_selection. DFE, distributions of fitness effect; MAF, minor allele frequency.

(TIF)

S21 Fig. Comparison of αb inferred and αb true for dispersal simulation, sampled at 1 N gen-

erations after the population split, in which the ancestral population is of size N = 200, and

the daughter population is size N = 100. The top row plots are for the ancestral population,

the bottom row for the daughter population. The left column plots αb inferred/αb true against the

proportion of balancing selection simulations. The right column plots αb true against the pro-

portion of balancing selection simulations. The 0–0.1 MAF category has been removed, and

negative values have been truncated to 0 for the sake of clarity. Deleterious mutations are

drawn from a gamma DFE with parameters inferred from human population data. Code to

run these simulations can be found at https://github.com/vivaksoni/test_for_balancing_

selection. DFE, distributions of fitness effect; MAF, minor allele frequency.

(TIF)

S22 Fig. Comparison of αb inferred and αb true for vicariance simulation, sampled at 0.2 N

generations after the population split, in which the ancestral population is of size N = 200,

and both daughter populations are size N = 100. The top row plots are for 1 daughter popu-

lation, the bottom row for the other. The left column plots αb inferred/αb true against the propor-

tion of balancing selection simulations. The right column plots αb true against the proportion

of balancing selection simulations. The 0–0.1 MAF category has been removed, and negative

values have been truncated to 0 for the sake of clarity. Deleterious mutations are drawn from a

gamma DFE with parameters inferred from human population data. Code to run these simula-

tions can be found at https://github.com/vivaksoni/test_for_balancing_selection. DFE, distri-

butions of fitness effect; MAF, minor allele frequency.

(TIF)

S23 Fig. Comparison of αb inferred and αb true for vicariance simulation, sampled at 1 N gen-

erations after the population split, in which the ancestral population is of size N = 200, and

both daughter populations are size N = 100. The top row plots are for 1 daughter population,

the bottom row for the other. The left column plots αb inferred/αb true against the proportion of

balancing selection simulations. The right column plots αb true against the proportion of bal-

ancing selection simulations. The 0–0.1 MAF category has been removed, and negative values

have been truncated to 0 for the sake of clarity. Deleterious mutations are drawn from a

gamma DFE with parameters inferred from human population data. Code to run these
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simulations can be found at https://github.com/vivaksoni/test_for_balancing_selection. DFE,

distributions of fitness effect; MAF, minor allele frequency.

(TIF)

S24 Fig. Comparison of αb inferred and αb true for vicariance simulation, sampled at 0.2 N

generations after the population split, in which the ancestral population is of size N = 200,

with 1 daughter population size N = 150 (top row) and the other size N = 50 (bottom row).

The left column plots αb inferred/αb true against the proportion of balancing selection simula-

tions. The right column plots αb true against the proportion of balancing selection simulations.

The 0–0.1 MAF category has been removed, and negative values have been truncated to 0 for

the sake of clarity. Deleterious mutations are drawn from a gamma DFE with parameters

inferred from human population data. Code to run these simulations can be found at https://

github.com/vivaksoni/test_for_balancing_selection. DFE, distributions of fitness effect; MAF,

minor allele frequency.

(TIF)

S25 Fig. Comparison of αb inferred and αb true for vicariance simulation, sampled at 1 N gen-

erations after the population split, in which the ancestral population is of size N = 200,

with 1 daughter population size N = 150 (top row) and the other size N = 50 (bottom row).

The left column plots αb inferred/αb true against the proportion of balancing selection simula-

tions. The right column plots αb true against the proportion of balancing selection simulations.

The 0–0.1 MAF category has been removed, and negative values have been truncated to 0 for

the sake of clarity. Deleterious mutations are drawn from a gamma DFE with parameters

inferred from human population data. Code to run these simulations can be found at https://

github.com/vivaksoni/test_for_balancing_selection. DFE, distributions of fitness effect; MAF,

minor allele frequency.

(TIF)

S26 Fig. Comparison of αb inferred and αb true for vicariance simulation, sampled at 0.2 N

generations after the population split, in which the ancestral population is of size N = 200,

with 1 daughter population size N = 180 (top row) and the other size N = 20 (bottom row).

The left column plots αb inferred/αb true against the proportion of balancing selection simula-

tions. The right column plots αb true against the proportion of balancing selection simulations.

The 0–0.1 MAF category has been removed, and negative values have been truncated to 0 for

the sake of clarity. Deleterious mutations are drawn from a gamma DFE with parameters

inferred from human population data. Code to run these simulations can be found at https://

github.com/vivaksoni/test_for_balancing_selection. DFE, distributions of fitness effect; MAF,

minor allele frequency.

(TIF)

S27 Fig. Comparison of αb inferred and αb true for vicariance simulation, sampled at 1 N gen-

erations after the population split, in which the ancestral population is of size N = 200,

with 1 daughter population size N = 180 (top row) and the other size N = 20 (bottom row).

The left column plots αb inferred/αb true against the proportion of balancing selection simula-

tions. The right column plots αb true against the proportion of balancing selection simulations.

The 0–0.1 MAF category has been removed, and negative values have been truncated to 0 for

the sake of clarity. Deleterious mutations are drawn from a gamma DFE with parameters

inferred from human population data. Code to run these simulations can be found at https://

github.com/vivaksoni/test_for_balancing_selection. DFE, distributions of fitness effect; MAF,

minor allele frequency.

(TIF)
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S28 Fig. Comparison of αb inferred and αb true for expansion simulation, sampled at 0.2 N

generations after the population split, in which the ancestral population is of size N = 200,

and the daughter population is size N = 40. The top row plots are for the ancestral popula-

tion, the bottom row for the daughter population. The left column plots αb inferred/αb true

against the proportion of balancing selection simulations. The right column plots αb true

against the proportion of balancing selection simulations. The 0–0.1 MAF category has been

removed, and negative values have been truncated to 0 for the sake of clarity. Deleterious

mutations are drawn from a gamma DFE with parameters inferred from human population

data. Code to run these simulations can be found at https://github.com/vivaksoni/test_for_

balancing_selection. DFE, distributions of fitness effect; MAF, minor allele frequency.

(TIF)

S29 Fig. Comparison of αb inferred and αb true for expansion simulation, sampled at 1 N gen-

erations after the population split, in which the ancestral population is of size N = 200, and

the daughter population is size N = 40. The top row plots are for the ancestral population, the

bottom row for the daughter population. The left column plots αb inferred/αb true against the

proportion of balancing selection simulations. The right column plots αb true against the pro-

portion of balancing selection simulations. The 0–0.1 MAF category has been removed, and

negative values have been truncated to 0 for the sake of clarity. Deleterious mutations are

drawn from a gamma DFE with parameters inferred from human population data. Code to

run these simulations can be found at https://github.com/vivaksoni/test_for_balancing_

selection. DFE, distributions of fitness effect; MAF, minor allele frequency.

(TIF)

S30 Fig. Comparison of αb inferred and αb true for expansion simulation, sampled at 0.2 N

generations after the population split, in which the ancestral population is of size N = 200,

and the daughter population is size N = 400. The top row plots are for the ancestral popula-

tion, the bottom row for the daughter population. The left column plots αb inferred/αb true

against the proportion of balancing selection simulations. The right column plots αb true

against the proportion of balancing selection simulations. The 0–0.1 MAF category has been

removed, and negative values have been truncated to 0 for the sake of clarity. Deleterious

mutations are drawn from a gamma DFE with parameters inferred from human population

data. Code to run these simulations can be found at https://github.com/vivaksoni/test_for_

balancing_selection. DFE, distributions of fitness effect; MAF, minor allele frequency.

(TIF)

S31 Fig. Comparison of αb inferred and αb true for expansion simulation, sampled at 1 N gen-

erations after the population split, in which the ancestral population is of size N = 200, and

the daughter population is size N = 400. The top row plots are for the ancestral population,

the bottom row for the daughter population. The left column plots αb inferred/αb true against the

proportion of balancing selection simulations. The right column plots αb true against the pro-

portion of balancing selection simulations. The 0–0.1 MAF category has been removed, and

negative values have been truncated to 0 for the sake of clarity. Deleterious mutations are

drawn from a gamma DFE with parameters inferred from human population data. Code to

run these simulations can be found at https://github.com/vivaksoni/test_for_balancing_

selection. DFE, distributions of fitness effect; MAF, minor allele frequency.

(TIF)

S32 Fig. Comparison of αb inferred and αb true for expansion simulation, sampled at 0.2 N

generations after the population split, in which the ancestral population is of size N = 200,

and the daughter population is size N = 2,430. The top row plots are for the ancestral
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population, the bottom row for the daughter population. The left column plots

αb inferred/αb true against the proportion of balancing selection simulations. The right column

plots αb true against the proportion of balancing selection simulations. The 0–0.1 MAF category

has been removed, and negative values have been truncated to 0 for the sake of clarity. Delete-

rious mutations are drawn from a gamma DFE with parameters inferred from human popula-

tion data. Code to run these simulations can be found at https://github.com/vivaksoni/test_

for_balancing_selection. DFE, distributions of fitness effect; MAF, minor allele frequency.

(TIF)

S33 Fig. Comparison of αb inferred and αb true for expansion simulation, sampled at 1 N gen-

erations after the population split, in which the ancestral population is of size N = 200, and

the daughter population is size N = 2,430. The top row plots are for the ancestral population,

the bottom row for the daughter population. The left column plots αb inferred/αb true against the

proportion of balancing selection simulations. The right column plots αb true against the pro-

portion of balancing selection simulations. The 0–0.1 MAF category has been removed, and

negative values have been truncated to 0 for the sake of clarity. Deleterious mutations are

drawn from a gamma DFE with parameters inferred from human population data. Code to

run these simulations can be found at https://github.com/vivaksoni/test_for_balancing_

selection. DFE, distributions of fitness effect; MAF, minor allele frequency.

(TIF)

S34 Fig. The distribution of Z for simulations with (orange) and without (blue) balancing

selection for a locus that has average human dimensions. For each scenario 500,000 simula-

tions were run. (��� p< 0.001 for a test between 2 distributions). Code to run these simulations

can be found at https://github.com/vivaksoni/test_for_balancing_selection.

(TIF)

S35 Fig. The distribution of Z for simulations with (orange) and without (blue) balancing

selection for a locus that is 10-fold larger than the average human gene. For each scenario

500,000 simulations were run. (��� p< 0.001 for a test between 2 distributions). Code to run

these simulations can be found at https://github.com/vivaksoni/test_for_balancing_selection.

(TIF)

S36 Fig. Simulations using the Gravel model of human demography (Gravel and col-

leagues, 2011). Shown are the observed (filled circles) and simulated (crosses) values of Z.

Each column represents a different population comparison. From left to right: AFR and EAS,

AFR and EUR, EUR and EAS. The population name in the upper left indicates which set of

private polymorphisms are used to calculate Z in each population comparison. The x-axis rep-

resents private polymorphism minor allele frequency bins. Confidence intervals generated by

bootstrapping. Code to extract and analyse the data can be found at https://github.com/

vivaksoni/test_for_balancing_selection. The data underlying this figure can be found in S3

Data. AFR, Africans; EAS, East Asians; EUR, Europeans.

(TIF)

S37 Fig. Comparison of simulated (under the Gravel and colleagues (2011) model of

human demography) and observed SFS from the African population. The SFS is summa-

rised by combining SNPs at counts of 2 and 3, 4 to 7, 8 to 15. . .etc. with singletons considered

by themselves. Code to extract and analyse the data can be found at https://github.com/

vivaksoni/test_for_balancing_selection. The data underlying this figure can be found in S3

Data.

(TIF)
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S38 Fig. Balanced polymorphisms were introduced under a model of frequency-dependent

selection in which the equilibrium frequency was drawn from a uniform distribution.

However, rare polymorphisms are more likely to be lost; the figure shows the average minor

allele frequency of shared balanced polymorphisms in a simulation in which the population

was duplicated and sampled N generations after the duplication event. Code to run these simu-

lations can be found at https://github.com/vivaksoni/test_for_balancing_selection. The data

underlying this figure can be found in S3 Data.

(TIF)
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