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ABSTRACT: In the process of coal mining, a certain amount of
gas will be produced. Environmental perception is very important
to realize intelligent and unmanned coal mine production and
operation and to reduce the accident rate of gas explosion and
other disasters. The identification of geometric features of the coal
mine working face is the main part of the environmental perception
of the working face. In this study, we identify geometric features in
a large-scale coal mine working face point cloud (we take the ball
as an example) so as to provide a method for the environmental
perception of the coal mine working face. On the basis of previous
research, we upgrade the dynamic graph convolution neural
network (DGCNN) for directly processing point clouds from two
aspects: extracting local features and global features of point clouds.
First, a multiscale dynamic graph convolution neural network (MS-DGCNN) is proposed, and the combination of max-pooling and
average-pooling is used as the symmetry function. Second, we use MS-DGCNN to learn the features of a variety of geometric point
clouds in the point cloud data set we make and then look for the ball in the large-scale point cloud of the coal mining working face.
Finally, we compare the performance of MS-DGCNN with that of other deep neural networks directly processing point clouds. This
study enables MS-DGCNN to obtain more powerful feature expression ability and enhance the generalization of the model. In
addition, this study provides a solid foundation for the geometric feature identification of MS-DGCNN in the environmental
perception of the coal mine working face and creates a precedent for the application of MS-DGCNN in the field of energy. At the
same time, this study makes a beneficial exploration for the development of a transparent coal mine working face.

1. INTRODUCTION

Coal is an important basic energy and raw material.1 As the
core technical support to realize the high-quality development
of the coal industry, intelligent coal mining is the development
direction and inevitable trend of safe and efficient coal mining,
which has become an industry consensus.2,3 Intelligent coal
mining is the deep integration of equipment and technologies,
such as artificial intelligence, big data, and robots with coal
mine working face to form an intelligent mining system with
comprehensive perception, autonomous learning, and collab-
orative control.4,5 The coal mine working face is one of the
most complex places for the coal mining operation. It should
be noted that to realize the high intelligence of the coal mine
working face, it is necessary to be based on environmental
perception.6−8 Environmental perception is an indispensable
part for the development of an intelligent coal mine working
face.
The identification of geometric features of coal mine

working face is a necessary part of the environmental
perception of the coal mine working face. The realization of

the identification of target feature in the coal mine working
face can provide data basis for intelligent decision-making and
control of mining equipment.9,10 In this study, we have used
our proposed method to perceive and recognize the target
features in the point cloud of the coal mine working face (we
take the ball in the coal mine working face as an example) so as
to provide an effective method for the environmental
perception of the actual coal mine working face. This method
has strong generalization and universality and can provide the
premise and basis for identifying a variety of geometric features
and more complex geometric features. For example, the
subsequent extension of this method is to identify each
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hydraulic support in the point cloud of coal mine working face,
which can provide a basis for adaptive straightening of the coal
mine working face.
The existing method of environmental perception in coal

mine working face is the machine vision method. The machine
vision method uses multiple cameras to collect the images of
the coal mining environment and realizes the environmental
perception in coal mine working face through relevant image
processing algorithms.11,12 This method has the advantages of
a large measurement range, a large amount of information, and
a low cost. However, due to the low illumination and large dust
in the coal mine working face, the image quality is affected and
the measurement effect depends on the position and number
of cameras, which affects the measurement accuracy and
stability. Furthermore, machine vision is mainly used in
occasions with low real-time requirements. Subject to the
hardware processing speed and the error of visual measure-
ment, the machine vision method has certain limitations for
the environmental perception in coal mine working face.13,14

Another method is the ultra-wide-band method, which
transmits data through nanosecond to microsecond non-sine
wave narrow pulses, which can realize the detection of targets
in the coal mine working face. It has the advantages of a fast
transmission speed and a low power consumption.15,16

However, in the coal mine working face, due to the high
equipment density, the reflection, refraction, and diffraction of
the metal surface on the pulse signal are serious, resulting in a

low refresh rate and increased power consumption, which
affects the range and accuracy of ultra-wide-band sensing.17,18

The inertial navigation method is a completely autonomous
sensing system. It relies on gyroscopes and accelerometers and
uses the track estimation algorithm of integral operation to
continuously provide a variety of parameters such as the
azimuth of fully mechanized mining equipment.19 However,
the inertial navigation method involves integral operation, and
the error will gradually increase with time. It is not suitable for
fully mechanized mining equipment with a low speed and high
vibration, and its long-time work will produce a large
accumulated error. In addition, the initialization time is long
when the inertial navigation system is started.20,21

Due to the fluctuation of coal seams in the working face, the
changeable geological environment, the influence of water
mist, and electromagnetic interference in the workplace, a
variety of perception means cannot be applied. At present,
there are still many difficulties in the accurate perception of the
mining environment of the coal mine working face. It is an
urgent need to find out an effective and reliable perception
means that can adapt to the special mining process in the coal
mine working face.22−26 Laser has characteristics of strong dust
penetration, good unidirectionality, and strong anti-interfer-
ence ability.27,28 Therefore, we collect the point cloud of the
whole coal mine working face by LiDAR to characterize the
mining environment of the working face. Furthermore, the
expression of point cloud is simpler. Any geometric feature in

Figure 1. MS-DGCNN is trained in the point cloud data set we have made (bottom) and the trained MS-DGCNN identifies the ball in the point
cloud of the coal mine working face (top).
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the point cloud of the coal mining face can be expressed as an
N*D matrix. Most importantly, point cloud has three-
dimensional coordinates compared with images, which can
better and more accurately express the spatial attribute
relationship of environmental elements, such as coal wall,
underground fully mechanized mining equipment, and so on.
At present, the point cloud feature extraction methods based

on the deep neural network can be mainly divided into three
categories: multiview method, voxelization method, and direct
point cloud processing method.29,30 However, the multiview
method changes the local and global structures of the point
cloud in the transformation process, which reduces the feature
discrimination.31 In the voxelization method, to avoid voxels
occupying a lot of storage space, resulting in high computing
and memory requirements, the resolution of three-dimensional
voxels cannot be too high, so the expression of point cloud
data will be lost, and it is difficult to extract the fine-grained
features of the point cloud.32 PointNet, directly processing the
point cloud, breaks through the bottleneck of deep neural
network to process the point cloud, but PointNet is so
independent to process each point in the point cloud that it
ignores the relevant information between points, resulting in
the loss of part of the local feature information of the point
cloud.33 By comparison, DGCNN can directly take the point
cloud as the input, which uses the edge convolution operation
to extract the features of the center point and the edge vectors
of K points near the center point to obtain the local features of
the point cloud.34,35

However, some of the local feature areas of the working face
point cloud extracted by single-scale edge convolution in
DGCNN will be missing or redundant, which affects the
geometric feature extraction effect of DGCNN on the working
face point cloud. Besides, DGCNN takes max-pooling as a
symmetric function to extract the global features of the point
cloud.36,37 Although this operation can ensure the disorder of
the point cloud, it lacks the information of all points except the
point with the largest eigenvalue in the point cloud. Therefore,
based on the previously established DGCNN model, we
proposed MS-DGCNN to extract the local features of point
clouds. This can not only solve the problems of single-scale
edge convolution, but also multiscale edge convolution uses
different scales to build dynamic local neighborhoods and
splice the features extracted at different scales, which learns the
local features of point cloud at a deeper and more level. It is
remarkable because average-pooling is an operation consider-
ing the features of all points in the point cloud, so we have
added average-pooling as the symmetric function of MS-
DGCNN to extract the global features of the point cloud on
the basis of the max-pooling, which can not only ensure the
disorder of the point cloud but also can effectively solve the
problem of global information loss caused by the max-pooling
in DGCNN.
We have used MS-DGCNN to find the target (ball) in the

point cloud of coal mine working face, which not only provides
a solid foundation for the geometric feature identification in
the coal mine working face environmental perception but also
makes a beneficial exploration for promoting the development
of transparent coal mine working face. Apparently, this study
innovates the research method of coal mine working face
environmental perception and creates a precedent for the
application of MS-DGCNN in the field of energy.

2. MATERIALS AND METHODS
We drive the inspection robot with battery power and carry the
LiDAR to realize rapid movement so as to collect the point
cloud of the whole coal mine working face. Most importantly,
we propose MS-DGCNN to find the ball in the large-scale
point cloud data of the coal mining environment (Figure 1).

2.1. Edge Convolution Operation on Graph Struc-
ture. In this study, point cloud data can be represented as
graph structure data, each point in the point cloud can be
represented by vertices in the graph structure, and the
relationship between two points in the point cloud can be
represented by edges connecting vertices. The degree matrix D
on the graph structure only has values on the diagonal, and the
rest are 0. The internal value of adjacency matrix A is 1 only
between two nodes with edge links, and 0 in other places,
which is used to describe the topology of the graph.38 Laplace
matrix L is D−A. It can be expressed as eq 1.
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where d is the degree of the node and a is the edge relationship
between the two nodes. Since the L matrix is a positive
semidefinite symmetric matrix, we can perform spectral
decomposition of the L matrix to obtain eq 2.
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where C is a matrix in which the column vector is a unit
eigenvector, C is an n eigenvector of L, C = (c1⃗, c2⃗, ..., cn⃗), and
δn represents the eigenvalue corresponding to the nth
eigenvector.
We change the eigenfunction of the Laplacian operator into

the eigenvector of the Laplacian matrix in the graph structure
so as to obtain the Fourier transform on the graph structure,
such as eq 3.39,40

F x f f i c i( ) ( ) ( ) ( )l
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∑δ= ̂ = *
= (3)

where f is the N-dimensional vector on the graph structure,
f(δ) corresponds to the nodes on the graph one by one, cl*(i)
represents the ith component of the lth eigenvector, and the
Fourier transform of f on the graph structure data is essentially
the inner product operation of the eigenvector corresponding
to δl and cl. The above inner product operation is defined in
the complex space, so cl*(i) is adopted, that is, the conjugate of
the eigenvector cl. We use matrix multiplication to extend the
Fourier transform on the graph structure to the matrix form,
such as eq 4.
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Similarly, we can obtain the matrix form of the inverse
Fourier transform on the graph structure. Based on the above
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data, we first define the theorem of convolution, as shown in eq
5.41,42

f p F F P F P( ) ( )
1

2
( ) ( ) e dt1 i∫ω ω

π
ω ω ω* = [ ] = ω−

(5)

For functions f and p, their convolution is the inverse
transformation of their Fourier transform product. Second, we
extend convolution to the graph structure and use edge links to
represent the relationship between two nodes. Finally, we bring
the Fourier transform of the graph defined in eq 3 into eq 5 to
obtain the definition of convolution operation on the graph
structure, as shown in eq 6.
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where ⊙ is the operation symbol of Hadamard product, which
means element by element multiplication for two-point cloud
data with the same dimension. The internal propagation rule of
DGCNN is expressed as eq 7.

H f H A D AD H W( , ) ( )l l l l( 1) ( ) 1/2 1/2 ( ) ( )σ= = ̂ ̂ ̂+ − −
(7)

where H is the eigenvector of nodes in the graph structure,
where H(0) = X. X ∈ RN*D, X is the feature matrix of N*D (N
is the number of nodes and D is the dimension of input
feature); l is the number of layers of the model; σ is the
activation function; Â = A + I, where A is the adjacency matrix
and I is the identity matrix; D̂ is the diagonal matrix of Â; and
W(l) is the perceptron model. The feature of the center point vi
in the l + 1 layer can be expressed as eq 8.

h
c

h W
1

vi
l

j N ij
vi

l l( 1) ( ) ( )

i

∑σ=+

∈

i

k

jjjjjjj
y

{

zzzzzzz
(8)

where j is the neighbor node index of the central point vi, Ni is
all neighbors of the central point vi, Cij is the normalized
constant of the edge, and hvi

(l) is the feature of the node vi in the
L layer. Based on the above theory, edge convolution extracts
the edge features between the center point and several
neighbor points, and then aggregates the edge feature, which
considers the local feature of point cloud.
2.2. Method of Multiscale Edge Convolution. The

point cloud in the edge convolution is represented in the form
of a directed graph. The node is each point in the point cloud,
and the set of nodes is represented by eq 9.

X x x x R, , ..., n
F

1 2= { } ⊆ (9)

where n represents the number of point clouds and F
represents the dimension of point clouds. The feature of the
edge can be expressed as eq 10.

e h x x x( , )ij i j i= −Θ (10)

where hΘ: R
F × RF → RF′, Θ is a learnable parameter, Θ = (θ1,

..., θi, ϕ1, ..., ϕi); xi represents the currently selected center
point, i = 1, 2, ..., n; and xj represents the adjacent point near
the center point, where j depends on the value of K in edge
convolution. Therefore, different K values affect the local
feature of point cloud extracted by DGCNN.

The aggregation operation of the center point can finally be
expressed as eq 11.43

x x x xmax ReLU ( )
j i j

j i iim
:( , )

m mθ φ′ = { [ · − + · ]}
ε∈ (11)

where m represents the number of feature channels, θ and ϕ
are the learning parameters of Θ; and ε represents the edges in
the graph structure.
In addition, point cloud data is a low-resolution sampling of

the three-dimensional physical world, which has the character-
istic of uneven density, as shown in Figure 2.

In Figure 2, the area size of the green ellipse is the same, but
the number of points in the point cloud is different, which will
lead to some missing or redundant local feature areas in the
point cloud extracted by the single-scale edge convolution in
DGCNN. Therefore, based on the previously established
DGCNN, we have proposed multiscale edge convolution to
extract the local feature of point cloud. This can not only solve
the problems of single-scale edge convolution, but also
multiscale edge convolution uses different scales to construct
dynamic local neighborhoods and splice the feature extracted
in different scale regions so that the local feature of point cloud
can be learned at more levels.
Through the preliminary research of the research group

where the author works, it is known that when K = 20, the
performance of DGCNN is the best. In this study, K = 10, 20,
and 30 are used to extract the neighborhood features of
different scales for each central point, and the local feature of
different scales are spliced. We analyze the performance of
DGCNN under multiscale and different single-scale edge
convolution in Section 3.1.

2.3. Processing Method of Point Cloud Disorder. The
point cloud has the characteristics of disorder, that is, the
information expressed by the point cloud will be not changed,
no matter how the position of each point in the point cloud is
permuted. This requires a symmetric function to ensure the
disorder of point cloud. The symmetric function can be
expressed by eq 12.

Figure 2. Local enlargement of point cloud in coal mine working face.
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f x x x f x x x( , , ..., ) ( , , ..., )n n1 2 1 2≡ π π π (12)

where x1, x2, ..., xn represents each point in the point cloud,
respectively, and π represents the permutation function.
We can know that for a point cloud with n points, there are n

factorial permutations. DGCNN uses the symmetric function
max-pooling to meet the permutation invariance of the point
cloud after edge convolution and uses max-pooling to obtain
the global feature of the point cloud, as shown in eq 13.

G x x x E x E x E x( , , ..., ) max ( ), ( ), ..., ( )n n1 2 1 2= [ ] (13)

where G represents the global feature of the point cloud,
[E(x1), E(x2), ..., E(xn)] represents the output of the point
cloud after multilayer edge convolution, and max represents
the max-pooling operation.
However, using the max-pooling operation to deal with the

disorder of point cloud will lead to the loss of point cloud

information. Because average-pooling is an operation consid-
ering the feature of all points in the point cloud, we have added
average-pooling as a symmetric function to extract the global
feature in the point cloud on the basis of the max-pooling,
which can not only ensure the disorder of the point cloud but
also effectively solve the problem of global information loss
caused by the existing max-pooling in DGCNN. As shown in
eq 14.

G x x x E x E x E x

E x E x E x

( , , ..., ) max ( ), ( ), ..., ( )

mean ( ), ( ), ..., ( )
n n

n

1 2 1 2

1 2

= [ ]

+ [ ] (14)

where mean represents the average-pooling operation. The
MA-pooling operation of the point cloud after edge
convolution is shown in Figure 3.

Figure 3. MA-pooling of point clouds after edge convolution at different scales.

Figure 4. Point cloud data set with different degrees of noise added.
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As shown in Figure 3, after multiscale edge convolution, the
local features of the point cloud are fully learned. We splice the
feature of point cloud after edge convolution at different scales
and then use MA-pooling to better extract the global feature of
point cloud. We compare the effects of DGCNN on MA-
pooling and max-pooling in Section 3.2.
2.4. Data Set Description. To make different deep neural

network models fully learn the feature of the ball, we first
generate a variety of geometries including the ball. Second, we
set the positions of all geometry to be random within a certain
range, including complete balls and incomplete balls appearing.
And we generate point clouds from a variety of individual

geometries and combinations in different cases. Finally, we add
different degrees of noise to each point cloud file in the data set
so that the deep neural network can deeply learn the feature of
each geometry, as shown in Figure 4 (because there are too
many kinds of geometry, we select the point cloud of balls,
combination of ball and cuboid, combination of ball and cone,
and combination of ball and cube for display).
To verify the correctness of our proposed method, we have

collected the point cloud of coal mine working face on the
spot. Shendong Coal Group of China National Energy Group
has several production mines, among which Yujialiang coal
mine has a mine field area of 56.33 km2, a mine geological

Figure 5. Location of Yujialiang coal mine.

Figure 6. Equipment for obtaining point cloud of the coal mine working face.
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storage of 504 million tons, and a recoverable storage of 355
million tons. We have cooperated with Shendong Coal Group
to arrange the underground inspection robot purchased and
developed by us in Yujialiang coal mine. The location of
Yujialiang coal mine is shown in Figure 5.
Due to the harsh underground working environment, our

research team have installed a protective cover outside the
LiDAR of the underground inspection robot to prevent
damage and interference from external objects. The under-
ground inspection robot is equipped with LiDAR and runs on
the flexible track arranged on one side of the cable trough of
the scraper conveyor, and the springs with certain bearing
capacity are used between the tracks so as to scan and collect
the large-scale point cloud of the whole coal mine working
face, as shown in Figure 6. We have used the trained different
deep neural networks to identify the ball point cloud in the
point cloud of the coal mine working face by sliding the
window. If there is a ball point cloud in the current window,
the error of the ball center position between the found ball and
the real ball will be calculated.
The collected point cloud of the whole coal mine working

face is shown in Figure 7. Because the number of point clouds

in the whole coal mine working face reaches tens of millions,
the range of point clouds in the X direction is 0−350 m. To
intuitively and clearly observe the effect of different deep
neural networks, we have visualized the local segment of the
point cloud of the coal mine working face where the ball is
located.
2.5. Experimental Details. The central processing unit of

the experimental platform of this study is Intel Core(R) CPU
I7-9700@3.00GHz×8. The graphics processing unit is
NVIDIA GTX 2080 Super. The momentum factor is set to
0.9, and the weight attenuation coefficient is set to 10−4. The K
of edge convolution is set to 10, 15, 20, 25, and 30,
respectively, to observe the performance of DGCNN under
single-scale edge convolution and multiscale edge convolution.
To prevent overfitting, dropout is used in the full connection
layer. We have selected the variant of ReLU (Leaky ReLU) as
the activation function. Leaky ReLU changes the method of
complete inhibition of nonpositive part in ReLU and gives it a
smaller slope value. Adaptive motion estimation (Adam) is
used in the training process of deep neural network.44−47

We use accuracy and loss to evaluate the performance of
different networks. Accuracy indicates the proportion of all
samples correctly predicted in all test samples. Accuracy can be
expressed as eq 15.48

accuracy
TP TN

TP FP TN FN
= +

+ + + (15)

where TP (true positive) represents the number of samples
whose actual category and prediction category are positive
category. FP (false positive) represents the number of samples
whose actual category belongs to negative category but is
predicted to be positive category. FN (false negative)
represents the number of samples whose actual category
belongs to positive category but is predicted to be negative
category. TN (true negative) represents the number of samples
whose actual category and prediction category are negative
category.
Cross-entropy loss function is a way to measure the

predicted value and actual value of neural network. The loss
of neural network is the calculation result of cross-entropy loss
function, and its calculation formula can be expressed as eq
16.49,50

N
p x q xloss

1
( ) log ( )

x i

K

i i
1

∑ ∑= − [ ]
= (16)

where N is the number of samples, K is the category of
samples, p(x) is the probability distribution of the expected
output for sample x, and q(x) is the probability distribution of
the predicted output for sample x. Therefore, it can be seen
that the larger the accuracy and the smaller loss, the better the
performance of the neural network.
We have used the confusion matrix to analyze the extraction

effect of different networks on each geometric feature and
verified the results of accuracy and loss. The confusion matrix
CM can be expressed as eq 17.51,52

n n n

n n n

n n n

CM

m

m

m m m m

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

= [ ]

μ

μ

∂ ∂ ∂ ∂
μ (17)

where n represents the number of samples and m represents
the category of samples. The element in row i and column j
represents the number of class i identified as class j by classifier
C in the sample. Under the ideal condition, the accuracy of the
neural network is 100%, then the nondiagonal elements of the
confusion matrix are 0, and only the diagonal elements are
non-0.
In this study, six kinds of geometric point clouds were

generated, including the ball, and we represent each individual
geometric point cloud with a one-digit code (if there is a
geometric feature, its corresponding number is 1, and if there is
no geometric feature, its corresponding number is 0) and then
traverse to generate all geometric feature digital codes. The
main MATLAB R2019a code is shown in Table S1.
There are 64 features in the point cloud data set (including

00000, which indicates that there are no geometric feature and
only noise points). If the results are represented by numbers in
each square in the confusion matrix, it will be too confusing in
the sense. To make the confusion matrix more clear and
intuitive, we have used different colors to represent each square
in the confusion matrix. The closer the color is to dark red, the
higher the accuracy is, and the closer the color is to dark blue,
the lower the accuracy is. In addition, we have added the main
core MATLAB R2019a code that randomly generated different
numbers of noise points within a certain coordinate range, as
shown in Table S2.
Only after the deep neural network model learns the feature

of geometric point cloud more deeply and fully, it can find

Figure 7. Point cloud of the whole coal mine working face.
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geometric point cloud more accurately in the point cloud of
coal mine working face. We have replaced the test set with the
coal mine working face point cloud, further analyzed the
robustness of multiscale edge convolution, MA-pooling, and
MS-DGCNN, and have provided a new method for geometric
feature perception in the coal mine working face point cloud.
The real ball center position in the coal mine working face

has been obtained in MATLAB R2019a. We use the error of
the ball center position to evaluate the effect of the deep neural
network model on finding the ball point cloud. The error of
the ball center position (EBCP) expression is shown in eq 18.

x x y y z zEBCP ( ) ( ) ( )1 2
2

1 2
2

1 2
2= − + − + − (18)

where x1, y1, and z1 represent the real ball center position and
x2, y2, and z2 represent the ball center position found by the
deep neural network. We finally select the minimum EBCP
display obtained by each network model.

3. RESULTS

3.1. Comparison of Results of Single-Scale and
Multiscale Edge Convolutions. The point cloud has an
unstructured characteristic. The original DGCNN uses single-
scale edge convolution (single K value) to extract the local
feature of the point cloud (according to our previous research
results, it is known that the performance of DGCNN is better
when K = 20). We have analyzed the loss and accuracy of
DGCNN under multiscale edge convolution and single-scale
edge convolution (K = 10, K = 15, K = 20, K = 25, K = 30), as
shown in Figures 8 and 9, respectively.
We can see that when the accuracy and loss tend to be

stable, the accuracy obtained by DGCNN under multiscale
edge convolution is greater than that obtained by DGCNN
under different single-scale edge convolutions. At the same
time, the loss obtained by DGCNN under multiscale edge
convolution is less than that obtained by DGCNN under
different single-scale edge convolutions. Therefore, DGCNN
under multiscale edge convolution achieves the best effect.

Figure 8. Loss of DGCNN under multiscale and single-scale edge convolutions.

Figure 9. Accuracy of DGCNN under multiscale and single-scale edge convolutions.
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Figure 10. Confusion matrix of DGCNN under multiscale and single-scale edge convolutions: (a) K = 10, (b) K = 15, (c) K = 20, (d) K = 25, (e)
K = 30, and (f) various K values.

Figure 11. Effects of different single-scale edge convolutions and multiscale edge convolution: (a) K = 10, (b) K = 15, (c) K = 20, (d) K = 25, (e)
K = 30, and (f) various K values.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c05473
ACS Omega 2022, 7, 4892−4907

4900

https://pubs.acs.org/doi/10.1021/acsomega.1c05473?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05473?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05473?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05473?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05473?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05473?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05473?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05473?fig=fig11&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c05473?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


We have obtained the confusion matrix of DGCNN under
multiscale edge convolution and different single-scale edge
convolutions, as shown in Figure 10.
In Figure 10, the closer the color in each square is to dark

red, the higher the accuracy is, and the closer the color in each
square is to dark blue, the lower the accuracy is. We can see
that DGCNN under multiscale edge convolution has the best
effect in the case of a single geometric feature, as well as in the
case of multiple geometric features at the same time. It fully
shows that DGCNN of multiscale edge convolution can learn
the geometric feature of point cloud more deeply.
Finally, we have obtained the effect of DGCNN identifying

the ball in the point cloud of coal mine working face under
multiscale edge convolution and different single-scale edge
convolutions, as shown in Figure 11.
As can be seen from Figure 11, DGCNN in different cases

has highlighted the point cloud of the ball they found with a
red box, and the number on the side of the box is the EBCP
between the ball found by the deep neural network and the real

ball. When K = 10, K = 15, K = 20, K = 20, K = 30 and various
K values, EBCP is 0.268, 0.260, 0.144, 0.179, 0.208, and 0.126
respectively. DGCNN under multiscale edge convolution
shows the best performance, which is consistent with the
results obtained by comparing the performance of DGCNN
under accuracy, loss, and confusion matrix.

3.2. Comparison of Results between MA-Pooling and
Max-Pooling. Point cloud has the characteristics of not only
nonuniformity but also disorder. The deep neural networks
that directly process point clouds use max-pooling as a
symmetric function to meet the displacement invariance of
point clouds and use max-pooling to obtain the global feature
of point clouds. We have proposed to upgrade max-pooling to
MA-pooling and the accuracy and loss of MS-DGCNN under
MA-pooling and max-pooling, as shown in Figure 12.
As can be seen from Figure 12, MS-DGCNN under MA-

pooling is higher than MS-DGCNN under max-pooling in
terms of accuracy, and MS-DGCNN under MA-pooling is
lower than MS-DGCNN under max-pooling in terms of loss.

Figure 12. Accuracy and loss of MS-DGCNN under MA-pooling and max-pooling.

Figure 13. Confusion matrix of MS-DGCNN under max-pooling and MA-pooling: (a) max-pooling and (b) MA-pooling.
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MS-DGCNN under MA-pooling has achieved the best results
in both accuracy and loss.
The confusion matrix of MS-DGCNN under max-pooling

and MA-pooling is shown in Figure 13.
From Figure 13, we can see that MS-DGCNN under MA-

pooling has the best point cloud classification effect for a single
feature, and the point cloud classification effect for multiple
features is also the best. It is remarkable that when some
geometric features appear at the same time and the features are
not obvious, the effect of MS-DGCNN under MA-pooling is
still the best, which fully shows that MS-DGCNN under MA-
pooling shows better performance than MS-DGCNN under
max-pooling.
The effect of MS-DGCNN under max-pooling and MS-

DGCNN under MA-pooling on identifying the ball in the
point cloud of coal mine working face is shown in Figure 14.

It can be seen that the EBCP of MS-DGCNN under MA-
pooling to identify the ball in the point cloud of coal mine
working face is lower than that of MS-DGCNN under max-
pooling, which shows that MS-DGCNN under MA-pooling
can better extract the geometric feature of the ball point cloud.
In addition, it also shows that MS-DGCNN using MA-pooling
has strong generalization, and its ability to identify the ball in
the point cloud of coal mine working face is still better than
MS-DGCNN using max-pooling.

4. DISCUSSION
The main reasons why DGCNN under multiscale edge
convolution is better than that under single-scale (K = 10, K
= 15, K = 20, K = 25, K = 30) edge convolution are as follows:
point cloud is a kind of data obtained by randomly collecting
discrete points on a three-dimensional physical surface. The

Figure 14. Effects of (a) max-pooling and (b) MA-pooling.

Figure 15. Accuracy and loss of MS-DGCNN, DGCNN, PointNet, and PointNet++.
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irregular distribution of point cloud data makes the density of
points in different regions different. When DGCNN selects a
fixed single K value, some of the local feature regions of the
point cloud extracted by edge convolution will be missing and
some will be redundant. Multiple K values can not only
overcome the above shortcomings to a certain extent, but more
importantly, the multiple K values proposed in this study can
obtain feature representation with higher dimensions and
richer local details, and the local feature of point cloud can be
extracted more fully and at more levels by edge convolution so
that DGCNN under multiscale edge convolution can obtain a
more powerful feature expression ability.
The main reason why MS-DGCNN under MA-pooling

achieves better results than MS-DGCNN under max-pooling is
that only the max-pooling layer is used to deal with the
disorder of point cloud and extract global feature. However,
such an operation will lose the information of all points except
the point with the maximum eigenvalue in each dimension.
MA-pooling combines max-pooling and average-pooling as
symmetric functions. With the advantage that average-pooling

retains the global feature, average-pooling is obtained by
considering the feature of each point in the point cloud. This
improvement makes up for the information loss caused by the
use of max-pooling alone. Therefore, MA-pooling can get more
abundant global feature information of point cloud, which
makes MS-DGCNN have stronger robustness and classifica-
tion performance.
We have compared MS-DGCNN with MA-pooling and

DGCNN (K value is 20, and max-pooling is used to extract
global feature). Furthermore, we have added another deep
neural network (PointNet), which directly processes point
clouds and PointNet++ (an improved version of PointNet), to
the comparative experiment. The accuracy and loss results of
MS-DGCNN, DGCNN, PointNet, and PointNet++ are shown
in Figure 15.
As can be seen from Figure 15, in terms of loss, the

performance of different deep neural networks from good to
bad is ranked as MS-DGCNN, DGCNN, PointNet, and
PointNet++. In terms of accuracy, the performance of different

Figure 16. Confusion matrix of DGCNN, PointNet, PointNet++, and MS-DGCNN: (a) DGCNN, (b) PointNet, (c) PointNet++, and (d) MS-
DGCNN.
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deep neural networks from good to bad is also ranked as MS-
DGCNN, DGCNN, PointNet, and PointNet++.
We analyze the confusion matrix of MS-DGCNN, DGCNN,

PointNet, and PointNet++, as shown in Figure 16.
As can be seen from Figure 16, MS-DGCNN not only shows

the best performance when there are only individual geometric
features in the point cloud. When there are many geometric
features in the point cloud, MS-DGCNN also shows the best
performance. The results are the same as that obtained using
accuracy and loss as evaluation indexes.
This is because PointNet can only learn the global feature of

the point cloud without considering the local feature of the
point cloud. PointNet++ uses multiple PointNets to consider
the local structure of point cloud, but PointNet++ does not
break away from the bondage of PointNet in essence. Although
DGCNN uses edge convolution to extract the local feature of
point cloud, it uses single-scale edge convolution to result in
the number of points in each local region. DGCNN, PointNet,
and PointNet++ use max-pooling to extract the global feature

of point cloud, resulting in the loss of point cloud information
to a certain extent. On the one hand, MS-DGCNN uses
multiscale edge convolution to splice and combine the local
feature of point cloud extracted at each scale to obtain local
features with higher dimensions and richer local details. On the
other hand, MA-pooling makes up for the loss of global
information caused by max-pooling alone and can better
extract the global feature of point cloud.
We have used PointNet, PointNet++, DGCNN, and MS-

DGCNN proposed in this research to identify the ball in the
actually collected point cloud of coal mine working face. The
results are shown in Figure 17.
As can be seen from Figure 17, the EBCPs corresponding to

DGCNN, PointNet, PointNet++, and MS-DGCNN are 0.144,
0.629, 0.581, and 0.098 respectively, and MS-DGCNN obtains
the minimum EBCP. This is because, on the one hand, MS-
DGCNN solves the problem that some local features of point
cloud extracted by edge convolution under a single K value will
be missing and some will be redundant. On the other hand,

Figure 17. DGCNN, PointNet, PointNet, and MS-DGCNN identify the ball point cloud: (a) DGCNN, (b) PointNet, (c) PointNet++, and (d)
MS-DGCNN.
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edge convolution can extract local feature of point cloud at a
deeper and more level under a variety of K values. In addition,
MS-DGCNN solves the problem of information loss when
DGCNN, PointNet, and PointNet++ extract the global feature
of point cloud in the coal mine working face. Therefore, the
MS-DGCNN we have proposed and constructed can better
extract the global and local features in point cloud data and
achieve better performance. More importantly, this research
reflects the practical application value of the MS-DGCNN we
have constructed. The MS-DGCNN we proposed can more
accurately identify the point cloud of the ball in the point cloud
of the coal mine working face, which provides a solid
foundation for the geometric feature identification in the
environmental perception of the coal mine working face.
Finally, it is remarkable that the inspection robot installed

with LiDAR has vibration and shaking, as well as collecting the
point cloud of coal mine working face, coupled with the
influence of adverse factors, such as coal dust and water mist
on coal mine working face and so on. The geometry point
cloud training set in this study is generated for the ball point
cloud of coal mine working face. At the same time, our
proposed method is also aiming at the point cloud of coal mine
working face. Therefore, although the method we proposed in
this study can identify the target geometry (ball) in the point
cloud of coal mine working face, we need to consider how this
method can identify the target geometry in other point cloud
scenes.

5. CONCLUSIONS

Based on our previous work, MS-DGCNN (integrating
multiscale edge convolution and MA-pooling) is proposed
for the first time to identify the geometric feature of point
cloud in coal mine working face. The main conclusions of this
study are as follows: (1) We use multiscale edge convolution,
which not only overcomes the defect that the local feature of
point cloud extracted by single-scale edge convolution will be
missing or be redundant but also extracts the local feature
representation of point cloud deeper and richer from multiple
angles so that MS-DGCNN can obtain more powerful feature
expression ability. (2) Average-pooling is a pooling operation
that takes into account each feature in the point cloud. We
proposed a method combining max-pooling and average-
pooling (MA-pooling) to extract the global feature of point
cloud, and we took MA-pooling as the symmetry function of
MS-DGCNN. This achievement not only meets the displace-
ment invariance of point cloud but also makes up for the loss
of certain global feature information of point cloud caused by
using max-pooling alone. (3) We have used MS-DGCNN,
DGCNN, PointNet, and PointNet++ to extract the feature of
various geometric point clouds and identify the target
geometry in the large-scale point cloud of coal mine working
face (in this study, we take the ball as an example). MS-
DGCNN has obtained the best effect, which fully explains the
powerful feature expression ability and generalization perform-
ance of MS-DGCNN. The lack of accurate environmental
perception ability of coal mine working face has always been
one of the important factors hindering the development of
transparency of working face. This study provides a solid
foundation for geometric feature identification in the environ-
mental perception of coal mine working face and makes a
beneficial exploration on promoting the development of
transparency of working face. Most importantly, this study

innovates the research method of environmental perception of
coal mine working face.
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