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Abstract

The superior performance of machine-learning scoring functions for docking has caused a series of debates on whether it is
due to learning knowledge from training data that are similar in some sense to the test data. With a systematically revised
methodology and a blind benchmark realistically mimicking the process of prospective prediction of binding affinity, we
have evaluated three broadly used classical scoring functions and five machine-learning counterparts calibrated with both
random forest and extreme gradient boosting using both solo and hybrid features, showing for the first time that
machine-learning scoring functions trained exclusively on a proportion of as low as 8% complexes dissimilar to the test
set already outperform classical scoring functions, a percentage that is far lower than what has been recently reported on all
the three CASF benchmarks. The performance of machine-learning scoring functions is underestimated due to the absence
of similar samples in some artificially created training sets that discard the full spectrum of complexes to be found in a
prospective environment. Given the inevitability of any degree of similarity contained in a large dataset, the criteria for
scoring function selection depend on which one can make the best use of all available materials. Software code and data are
provided at https://github.com/cusdulab/MLSF for interested readers to rapidly rebuild the scoring functions and reproduce
our results, even to make extended analyses on their own benchmarks.
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Introduction
In structural bioinformatics, the prediction of binding affinity
of a small-molecule ligand to its intended protein is typically
accomplished by a scoring function (SF). Before machine
learning (ML)-based SFs were invented, classical SFs relied on
linear regression of an expert-curated set of physiochemical
descriptors to the experimentally measured binding affinities.
ML-based SFs, however, bypass such prearranged functional
forms and deduce a, often immensely, nonlinear model from
the data. Two comprehensive reviews have discussed the
outstanding performance of ML-based SFs over classical SFs
in both scenarios of drug lead optimization [1] and virtual
screening [2]. Here we focus on the former scenario, particularly
the problem of binding affinity prediction. To illustrate to what
extent the two types of SFs differ in predictive performance, we
have compiled the results of 70 SFs and plotted Figure 1. It is now
obvious that ML-based SFs are taking an apparent lead ahead of
classical counterparts by a large margin.

One natural question to ask is whether the superiority of ML-
based SFs originates from training on complexes similar to the
test set. Exploring the influence of data similarity between the
training and test sets on the scoring power of SFs has resulted
in a chain of studies recently (Supplementary Table S4). In 2017,
Li and Yang measured the training-test set similarity in terms of
protein structures and sequences, and defined similarity cutoffs
to construct nested training sets, with which they showed that
random forest (RF)-based RF-Score lost to X-Score upon removal
of training complexes whose proteins are highly similar to the
CASF-2007 test proteins identified by structure alignment and
sequence alignment [3]. However, in 2018 Li et al. found instead
that RF-Score-v3 outperformed X-Score when 68% of the most
similar proteins were deleted from the training set, suggesting
that ML-based SFs owe a substantial portion of their perfor-
mance to learning from complexes with dissimilar proteins to
those in the test set. Unlike X-Score, RF-Score-v3 was able to
keep learning with an increasing training set size, eventually
becoming significantly more predictive (Rp = 0.800) than X-Score
(Rp = 0.643) when the largest training set was used [4]. In addition
to quantifying training-test set similarity by comparing pro-
tein structures or sequences, in 2019 these authors presented
a new type of similarity metric based on ligand fingerprints.
They observed that, regardless of which similarity metric was
employed, training with a larger number of similar complexes
did not boost the performance of classical SFs such as X-Score,
Vina or Cyscore. On the other hand, XGB-Score, a SF utilizing
extreme gradient boosting (XGBoost), was also shown to improve
performance with more training data like RF-Score-v3 [5]. In 2020
Shen et al. further assessed 25 SFs, of which 21 are classical and
four are ML-based. Six ML methods, namely RF, extra trees (ET),
gradient boosting decision tree (GBDT), XGBoost, support vector
regression (SVR) and k-nearest neighbor (kNN), were employed
to build ML models using the features from the 25 SFs as well
as their combinations. The results suggested that most ML-
based SFs can learn not only from highly similar samples but
also from dissimilar samples with varying magnitude [6]. The
above studies all used CASF-2007 as the sole benchmark. Su
et al. utilized CASF-2016 instead and calculated three similarity
metrics considering protein sequence, ligand shape and binding
pocket. Six ML algorithms were evaluated, including Bayesian
ridge regression (BRR), decision tree (DT), kNN, multilayer per-
ceptron (MLP), Linear SVR and RF. The RF model was found
to possess the best learning capability and thus benefit most
from the similarity between the training set and the test set,
to which the three counterpart classical SFs, ChemScore, ASP

and X-Score, were basically insensitive [7]. Sze et al. proposed
a revised definition of structural similarity between a pair of
training and test set proteins, introduced a different measure
of binding pocket similarity, and benchmarked three classical
SFs and four RF-based SFs on CASF-2013. They found that even
if the training set was split into two halves and the half with
proteins dissimilar to the test set was used for training, RF-
based SFs still produced a smaller prediction error than the best
classical SF, thus confirming that dissimilar training complexes
may be valuable when allied with appropriate ML approaches
and informative descriptors [8].

Here we have expanded the above six studies from the fol-
lowing perspectives. Firstly, we will demonstrate three exam-
ples to show that the method employed by four early works
[3–6] for calculating structural similarity could be error prone,
hence a revised method proposed lately [8] should be advo-
cated. Secondly, in addition to CASF-2016, a blind evaluation
was conducted too, where only data available until 2017 were
used to construct the SFs that predict the binding affinities
of complexes released by 2018 as if these had not been mea-
sured hitherto [1]. This blind benchmark offers a complementary
interpretation of the results. Thirdly, while building ML-based
counterparts of classical SFs, exactly the same descriptors were
preserved. In this way, any performance difference must neces-
sarily arise from the algorithmic substitution. The capability of
feature hybridization was assessed too. Finally, we discussed the
limitations of CASF and the inevitability of similarity contained
in a large dataset, giving advice on the criteria of SF selection in
a prospective setting.

Materials and methods
Figure 2 presents the overall workflow of this study, which will
be detailed in the following subsections.

Performance benchmarks

The CASF benchmarks have been broadly employed to assess
the scoring power of SFs. CASF-2016, the latest release, was
utilized as the test set, which offers the crystal structures and
binding affinities of 285 complexes sampled from 57 clusters.
After removing the test complexes from the PDBbind v2016
refined set, the rest 3772 complexes were used as the training
set. This was the same configuration as used in [7].

A recently proposed blind benchmark [1] mimicking the real-
istic process of structure-based lead optimization was adopted
too, where the test set was constituted by 318 complexes from
the PDBbind v2018 refined set not already included in the v2017
refined set. This test set is denoted Blind-2018 for short, on
which 2 classical SFs and 3 ML-based SFs had been evaluated
(Supplementary Table S5). It is totally different than CASF-2016
since they do not overlap, i.e. not a single complex coexists
in both test sets. The 4154 complexes in v2017 served as the
training set.

The scoring power of the considered SFs was measured by
three commonly used quantitative indicators, namely Pearson
correlation coefficient (Rp), Spearman correlation coefficient (Rs)
and root mean square error (RMSE). A better performance is
signified by higher values in Rp and Rs and lower values in RMSE.

Similarity metrics

Obviously, the similarity of a training complex and a test
complex can be measured in multiple ways, for example by
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Figure 1. Performance of classical SFs (red dots) and ML-based SFs (green dots) on three CASF benchmarks. Each dot represents a SF. For instance, on CASF-2016 the

best classical SF (i.e. X-Score) and the best ML-based SF (i.e. TopBP) obtained an Rp of 0.631 and 0.861, respectively. The raw values of this figure can be found in

Supplementary Tables S1–S3.

their proteins, their ligands or their binding pockets. The
approach by Sze et al. [8] was employed to calculate the
similarity in terms of protein structure, ligand fingerprint and
pocket topology.

In four early studies [3–6] the structural similarity between
a pair of training and test set proteins was defined as the
TM-score [9] calculated from the structure alignment program
TM-align [10], which generates an optimized residue-to-residue
alignment for comparing two protein chains whose sequences
can be different. Nonetheless, TM-align is restricted to aligning
single-chain monomer protein structures. Given that nearly half
proteins of the PDBbind refined set contain multiple chains,
each chain was extracted and compared, and the lowest pair-
wise TM-score was reported. This all-chains-against-all-chains
approach could possibly step into the danger of misaligning a
chain of a protein to an irrelevant chain in another protein. Three
examples of misalignment are showcased in the Results section.
To circumvent such risk, we switched to MM-align [11], which
is specifically developed for aligning multiple-chain protein–
protein complexes. It joins the multiple chains in a complex
in every possible order and aligns them using a heuristic iter-
ation of a modified Needleman–Wunsch dynamic programming
algorithm with cross-chain alignments prohibited. Having been
normalized by the test protein, the TM-score reported by MM-
align was used to define the protein structure similarity. It falls
in the range of (0,1]. A TM-score close to 0 indicates the two
comparing proteins are substantially dissimilar, and a TM-score
of 1 implies identity.

Although the protein structure similarity considers the entire
protein structure in a global nature, the binding of a small-
molecule ligand to its intended macromolecular protein is
instead predominantly determined by the local environment
of the binding pocket. Locally similar ligand-binding domains
may be found in globally dissimilar proteins. For this sake,
it is rational to supplement extra measures to reflect ligand
similarity and pocket similarity. In terms of implementation,
the similarity of the bound ligands of a pair of training and
test complexes was defined as the Tanimoto coefficient of
their ECFP4 fingerprints [12], whereas that of the binding

pockets was described by the city block distance between their
TopMap feature vectors encoding geometrical shape and atomic
partial charges [13]. Note that the ligand fingerprint similarity
also ranges from 0 to 1, but the Manhattan distance between
TopMap vectors ranges from 0 to +∞. Therefore, the latter
actually depicts the dissimilarity, rather than similarity, of the
two comparing pockets. A value of 0 suggests identity, and a
larger value implies larger difference. Taken together, the three
similarity metrics provide distinct but complementary ways to
quantify the degree of resemblance of the training set to the
test set.

The pairwise similarity matrices can be found at the github
repository. On CASF-2016 there are 285 complexes in the test set
and 3772 complexes in the training set, hence 285×3772 pairwise
similarity values in the matrix. On Blind-2018 there are 318×4154
similarity values.

Training sets

The original training set (OT) was split to a series of nested sets
of training complexes with increasing degree of similarity to the
test set in the following way. At a specific cutoff, a complex is
excluded from the original full training set if its similarity to
any of the test complexes is higher than the cutoff. In other
words, a complex is included in the training set if its similarity
to every test complex is always no greater than the cutoff [8].
Mathematically, for both protein structure and ligand fingerprint
similarities whose values are normalized to [0, 1], a series of
new training sets (NTs) were created by gradually removing
complexes from the OT according to varying cut-off values given
a fixed test set (TS):

NTs
ds(c) = {

pi | pi ∈ OT and ∀qj ∈ TS, s
(
pi, qj

) ≤ c
}

(1)

where c is the cutoff; pi and qj represent the ith and jth com-
plexes from OT and TS, respectively; and s(pi, qj) is the sim-
ilarity between pi and qj. By definition, NTs

ds(1) = OT. When
the cutoff varies from 0 to 1, nested sets of training complexes

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab225#supplementary-data
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Figure 2. Workflow of training and test set similarity analysis.

with increasing degree of similarity to the test set were con-
structed. For instance, with Blind-2018 as the test set, the protein
structure similarity cutoff starts at 0.40 and ends at 1.00 with
a step size of 0.01, thereby generating 61 nested training sets.
Figure 3 shows a Venn diagram characterizing the relationship
between the test set and the nested training sets. The test
set does not overlap any of the constructed training sets, but
the latter overlap each other, e.g. setting the cutoff to 0.40,
0.41 and 0.42 results in three training sets NTs

ds(0.40), NTs
ds(0.41)

and NTs
ds(0.42) with 334, 408 and 475 complexes, respectively,

and the latter is a superset of the former, i.e. NTs
ds(0.40) ⊆

NTs
ds(0.41) ⊆ NTs

ds(0.42). When the cutoff reaches 1.00, all the
4154 training complexes will be included in NTs

ds(1.00). Like-
wise, the ligand fingerprint similarity starts at 0.50 and ends
at 1.00 with a step size of 0.01, thereby creating 51 nested
training sets.

In the case of pocket topology, since the values indicate
dissimilarity instead of similarity and they fall in the range of
[0, +∞], a slightly different definition is required:

NTd
ds(c) = {

pi | pi ∈ OT and ∀qj ∈ TS, d
(
pi, qj

) ≥ c
}

(2)

where d(pi, qj) is the dissimilarity between pi and qj. Likewise,
NTd

ds(0) = OT and NTd
ds(+∞) = ∅. When the cutoff steadily

decreases from +∞ to 0, nested training sets with increasing
degree of similarity to the test set were generated. The pocket
topology dissimilarity cutoff starts at 10.0 and ends at 0.0 with a
step size of 0.2, thus generating 51 nested training sets.

Analogously, the opposite direction was also considered,
where nested sets of training complexes with increasing degree
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Figure 3. Venn diagram depicting the relationship between the test set and the nested training sets on Blind-2018. The numbers of training complexes 4154, 3526, 3267,

. . . , 475, 408 and 334 correspond to the protein structure similarity cutoff values 1.00, 0.99, 0.98, . . . , 0.42, 0.41 and 0.40, respectively.

of dissimilarity to the test set were built as follows:

NTs
sd(c) = {

pi | pi ∈ OT and ∃qj ∈ TS, s
(
pi, qj

)
> c

}
(3)

NTd
sd(c) = {

pi | pi ∈ OT and ∃qj ∈ TS, d
(
pi, qj

)
< c

}
(4)

The former applies to protein structure and ligand fingerprint
similarities, and the latter applies to pocket topology dissimilar-
ity. By definition, ∀c, NTd

ds(c) ∪ NTd
sd(c) = OT, NTd

ds(c)∩NTd
sd(c) = ∅.

The corresponding number of training complexes given a cutoff
can be found at the github repository.

Scoring functions

Classical SFs undertaking multiple linear regression (MLR) were
compared to their ML-based variants. X-Score [14] v1.3 was
chosen to be a representative of classical SFs because on CASF-
2016 it resulted in the highest Rp performance among a panel
of 33 linear SFs (Figure 1), many of which are implemented in
commercial software [15]. It also performed the best on CASF-
2013 and the second best on CASF-2007 among classical SFs. It is
a consensus of three parallel scores considering four intermolec-
ular descriptors: van der Waals interaction, hydrogen bonding,
hydrophobic effect and deformation penalty. These constituent
SFs simply differ in the calculation of hydrophobic effect. To
create MLR::Xscore, the three parallel SFs were independently
trained with coefficients calibrated on the nested training sets,
and then averaged to produce a consensus score. To make an ML-
based counterpart, the same six features were reused but MLR
was replaced by RF, thus creating RF::Xscore.

Given that X-Score dated back in 2002, two recent SFs,
AutoDock Vina [16] v1.1.2 and Cyscore [17] v2.0.3, were also
selected to represent classical SFs. Vina was selected because it
is highly cited and widely used. Cyscore was selected because
it yielded the highest Rp among 19 linear SFs on CASF-2007
(Figure 1). Cyscore is a strict MLR model composed of four
intermolecular features: hydrophobic free energy, van der Waals
interaction energy, hydrogen-bond energy and the ligand’s

entropy. Vina is a quasi-MLR model where the weighted sum
of five empirical terms is normalized by a conformation-
independent ligand-only feature codenamed Nrot, which
implies the degree of conformational freedom of the ligand. To
imitate this specialty, the original weight for Nrot was adopted
without recalibration while building MLR::Vina. A side effect
is that its RMSE performance will become unreliable, from
which we will avoid drawing conclusions. The RF counterparts
RF::Vina [18] and RF::Cyscore [19] were generated with the same
set of six descriptors from Vina and four descriptors from
Cyscore, respectively. Supplementary Table S6 summarizes the
molecular features. The full feature set for all the complexes can
be found at the github repository.

Additionally, the features from X-Score, Vina and Cyscore
were combined and fed to RF and XGBoost, thereby producing
RF::XVC and XGB::XVC (taking the first letter of each SF). The
purpose was twofold: to explore by how much the mixed descrip-
tors would contribute to the predictive accuracy, and to compare
between RF and XGB which are both tree-based ML algorithms.

Results and discussion
Misalignment caused by the
all-chains-against-all-chains approach

We first show that the all-chains-against-all-chains method
employed in four early works [3–6] could lead to misalignment.
For example, the 3E5A entry in the CASF-2016 test set describes
a crystal structure of aurora kinase A (chain: A; sequence
length: 264) in complex with a small-molecule inhibitor and
the targeting protein for Xklp2 (chain: B; sequence length: 33);
the 3UOD in the training set describes another crystal structure
of aurora kinase A (chain: A; sequence length: 266) in complex
with another small-molecule inhibitor. A reasonable alignment
should be aligning 3UOD chain A to 3E5A chain A because they
both describe the main target protein. Were the all-chains-
against-all-chains approach employed, every chain would be
extracted and aligned, and the lowest pairwise TM-score would

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab225#supplementary-data
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Figure 4. Comparison between TM-align and MM-align when structurally aligning the 3UOD entry in the training set and the 3E5A entry in the test set of CASF-2016.

be used. In this case (Figure 4), aligning 3UOD chain A to 3E5A
chain A would produce a TM-score of 0.95392 (Supplementary
Material S1) whereas aligning 3UOD chain A to 3E5A chain B
would produce a TM-score of 0.36819 (Supplementary Material
S2), and therefore the latter would be reported as the similarity
score between 3UOD and 3E5A, which apparently does not
make sense. In contrast, with MM-align, aligning 3UOD to
3E5A resulted in a TM-score of 0.84974, which seems rational.
Looking at the output of MM-align (Supplementary Material
S3), one may find that 3UOD chain A was in fact aligned to
3E5A chain A as expected, without enforcing an alignment on
3UOD chain B to 3E5A chain A. Hence, the all-chains-against-
all-chains approach underestimates the similarity by 0.48155
in this example. Although one can still use TM-align to align
proteins after manually joining the chains, this would lead to
suboptimal outcome with unphysical cross-chain alignments,
which are prohibited in MM-align.

Another example is about aligning the 1YPE entry in the
training set to the 1BCU entry in the test set of CASF-2016
(Figure 5). Both entries comprise two chains of thrombin, but
of different lengths. The L chain contains 27 and 26 residues
for 1YPE and 1BCU, respectively, whereas the H chain contains
250 and 249 residues. Were the all-chains-against-all-chains
approach employed, four TM-score values would be generated
by TM-align and the lowest of them, 0.06667, would be reported
as the similarity score between 1YPE and 1BCU. This score,
however, measures the degree of structural agreement between
a thrombin light chain of 27 residues and a thrombin heavy chain
of 249 residues. As a result, it turns out to be understandably
low. In contrast, MM-align reported a TM-score of 0.99877, which
seems reasonable because all the four chains describe the crystal
structure of thrombin with the same UniProt ID. Hence, the
approach by TM-align underestimates the similarity by 0.9321
in this case. An analogous example is aligning the training set

entry 1GJ8 to the test set entry 1C5Z, where MM-align reported
0.99419 but the all-chains-against-all-chains approach reported
0.03351, equivalent to an underestimation of as much as 0.96068.
Remind that structures with a TM-score higher than 0.5 assume
generally the same fold [10]. Hence, such underestimation could
regard structures supposed to be of the same fold wrongly to be
of distinct folds.

Overall, such bias is not a frequent phenomenon. Among all
the 1 075 020 (=285×3772) pairwise similarities of CASF-2016,
the portion where the difference in TM-score computed by the
two approaches lies within 0.1 is 83%. This percentage is 85% on
Blind-2018 over its 318×4154 similarities. When the difference
threshold is relaxed to 0.2, the percentage increases to 95% for
CASF-2016 and 98% for Blind-2018, indicating a high degree of
agreement by the two approaches in most cases, and thus the
conclusions in the four early studies employing TM-align are
unlikely to deviate much. Despite the consistency, we advocate
the more robust approach by MM-align, first introduced by Sze
et al. [8].

Skewed distribution of training complexes over
(dis)similarity cutoffs

We plotted the number of training complexes against the cut-
off values of the three similarity metrics where the test set
was CASF-2016 (Figure 6) or Blind-2018 (Figure 7), in order to
show that training complexes are far from being evenly dis-
tributed. In reality, the distribution of training complexes under
the protein structure similarity metric is skewed, e.g. 628 training
complexes have a test set similarity greater than 0.99 (Figure 7,
top left subfigure). The rightmost bar alone already accounts for
15% of the OT of 4154 complexes. Incrementing the cutoff by
only 0.01 from 0.99 to 1.00 will include 15% additional training
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Figure 5. Comparison between TM-align and MM-align when structurally aligning the 1YPE entry in the training set and the 1BCU entry in the test set of CASF-2016.

complexes. On the contrary, just 1.6% additional training com-
plexes will be included when the cutoff is incremented by the
same step size from 0.95 to 0.96. Hence, it is not surprising to
observe a substantial performance boost from raising the cutoff
by merely 0.01 if it is already at 0.99. This is more apparent in
the CASF-2016 benchmark (Figure 6, left column), where for as
many as 1033 training complexes (accounting for 27% of the
full 3772 complexes) their test set similarities fall in the range
of (0.99, 1]. Thus one would reasonably anticipate a sharp leap
in Rp performance of ML-based SFs in this particular range,
as seen in previous studies [3, 8] and this study (see the next
subsection).

Such skewness can also be spotted, though less apparent,
in the distribution under ligand fingerprint similarity (Figures 6
and 7, center column), where 6.5% and 6.4% training complexes
have a test set similarity greater than 0.99 under the CASF-
2016 and Blind-2018 benchmarks, respectively. The distribution
against pocket topology dissimilarity (Figure 7, right column),
nevertheless, seems relatively uniform, with just 0.1% com-
plexes falling in the range of [0, 0.2) and just 6% in the range
of [10, +∞). This pocket topology dissimilarity metric therefore
constitutes a useful tool to explore the impact of data similarity
on the scoring power of SFs with training set size not so skewed
toward both ends of cutoff.

Bearing in mind the non-even distributions described above,
we retrained the three classical SFs (MLR::Xscore, MLR::Vina and
MLR::Cyscore) and the five ML-based SFs (RF::Xscore, RF::Vina,
RF::Cyscore, RF::XVC and XGB::XVC) on the nested training sets
generated with protein structure similarity, ligand fingerprint
similarity and pocket topology dissimilarity, and plotted their
scoring performance on CASF-2016 (Figures 8, 10 and 12) and
Blind-2018 (Figures 9, 11 and 13) in a consistent scale against
either cutoff or number of training complexes in two similarity
directions, i.e. the ds direction specified by NTs

ds in Equation 1 or

by NTd
ds in Equation 2, and the sd direction specified by NTs

sd in
Equation 3 or by NTd

sd in Equation 4.

Sharp leap in scoring power of ML-based SFs benefiting
from sufficient number of similar complexes for
training

Looking at the top left subfigure of Figure 9, which plots Rp
performance on Blind-2018 versus protein structure similarity
cutoff, not unexpectedly sharp leaps are observed within the
rightmost range of (0.99, 1] for all the five ML-based SFs. For
instance, the Rp notably increased by 0.067 (i.e. from 0.579 to
0.646) for RF::Xscore, by 0.065 for RF::Vina, by 0.051 for RF::XVC,
as well as by 0.056 for XGB::XVC. This is also true on CASF-
2016 (Figure 8, top left subfigure; Figure 14, bottom two rows).
Likewise, sharp leaps in Rs (Figures 10 and 11) and sharp drops
in RMSE (Figures 12 and 13) are observed for ML-based SFs too
(e.g. the RMSE of RF::Xscore decreased by 0.11 from 1.45 to 1.34
on Blind-2018, versus a reduction of 0.05 in RMSE of the same SF
within the second rightmost range of (0.98, 0.99] and a reduction
of just 0.01 within the fourth rightmost range of (0.96, 0.97])
because, as explained in the subsection above, this particular
range comprises as many as 27% and 15% training complexes
of the CASF-2016 and Blind-2018 benchmarks, respectively, sug-
gesting that ML-based SFs are effective at learning from training
complexes highly similar to the test set.

Under the ligand fingerprint similarity metric (Figures 8–13,
top center subfigure), such Rp and Rs performance leaps and
RMSE drops for ML-based SFs within the rightmost range can
be spotted too (e.g. the Rp of RF::XVC increased by 0.011 from
0.657 to 0.668 and its RMSE decreased by 0.02 from 1.34 to 1.32
on Blind-2018), though not as sharp because the distribution of
training complexes is not as skewed (Figures 6 and 7, center
column). Under the pocket topology dissimilarity metric
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Figure 6. Number of training complexes (the red curve) against protein structure similarity cutoff (left column), ligand fingerprint similarity cutoff (center column)

and pocket topology dissimilarity cutoff (right column) to the CASF-2016 test set in two directions, either starting from a small training set comprising complexes most

dissimilar to the test set (top row; the ds direction defined by NTs
ds or NTd

ds) or starting from a small training set comprising complexes most similar to the test set

(bottom row; the sd direction defined by NTs
sd or NTd

sd). At the top row, the histograms plot the number of additional complexes that will be added to a larger set when

the protein structure similarity cutoff is incremented by a step size of 0.01 (left), when the ligand fingerprint similarity cutoff is incremented by 0.01 (center), or when

the pocket topology dissimilarity cutoff is decremented by 0.2 (right). At the bottom row, the histograms plot the number of additional complexes that will be added

to a larger set when the protein structure similarity cutoff is decremented by a step size of 0.01 (left), when the ligand fingerprint similarity cutoff is decremented by

0.01 (center), or when the pocket topology dissimilarity cutoff is incremented by 0.2 (right). Hence the number of training complexes referenced by an arbitrary point

of the red curve is equal to the cumulative summation over the heights of all the bars of and before the corresponding cutoff. By definition, the histograms of the

three subfigures at the bottom row are identical to the histograms at the top row after being mirrored along the median cutoff, but the cumulative curves are certainly

different. The raw values of this figure are available at https://github.com/cusdulab/MLSF.

(Figures 8–13, top right subfigure) where the distribution is
relatively uniform (Figures 6 and 7, right column), no leaps
in Rp and Rs or drops in RMSE are visually detectable (e.g.
the difference in Rp of RF::XVC is less than 0.001 and the
difference in RMSE is less than 0.01 on Blind-2018, thus
not perceivably observable). These findings confirm that the
remarkable performance gain obtained by ML-based SFs within
this range of cutoff is not exclusively due to the high similarity,
but also attributed to the considerable increase of training
set size.

Learning capability of ML-based SFs as an advantage
over classical SFs

All the five ML-based SFs exhibited learning capability to
some extent, proliferating performance with larger sets of
increasingly similar training samples. RF::XVC, empowered by its
combination of features from three SFs, performed better than
their individual RF-based SFs on Blind-2018 (Figure 9), CASF-
2016 (Figure 8) and CASF-2013 [8]. The runner up was RF::Vina,
followed by RF::Xscore and lastly by RF::Cyscore, which somehow
underperformed on Blind-2018, CASF-2013 [8] and CASF-2007
[6]. Despite being the least predictive among the group of four
RF-based SFs, RF::Cyscore still preserved the inherent learning

capability and kept lifting performance persistently with more
training data (Figures 9, 11 and 13, top row), which was not
seen in classical SFs. Although RF::Cyscore performed far worse
than MLR::Cyscore initially (e.g. Rp = 0.402 versus 0.444 and
RMSE = 1.61 versus 1.57 at a cutoff of 0.4 under protein structure
similarity), through learning it kept improving and surpassed
MLR::Cyscore in Rp at a cutoff of 0.79 and in RMSE at a cutoff of
0.88. Their performance gap was widened when the full training
set was exploited, on which RF::Cyscore managed to yield a
sharp leap, leading to much better performance (Rp = 0.513
versus 0.448, Rs = 0.515 versus 0.479, RMSE = 1.53 versus 1.59).
Thanks to the learning capability, even this least predictive
ML-based SF could improve Rp by 0.111 and reduce RMSE by
0.08. Moreover, low-quality structural and interaction data,
referring to those samples in the PDBbind general set but not
in the refined set, were previously found to improve the scoring
power of RF-based SFs [20]. Compounded with this beneficial
effect contributed by low-quality samples, the performance gap
between RF-based and classical SFs is likely to be amplified.

In contrast, classical SFs lack such learning capability and
thus their performance curves nearly stay flat (Figure 9, top
row), as also seen recently [3–8]. For example, at the two ends
of protein structure similarity cutoff (i.e. 0.4 and 1.0), the Rp
varied slightly from 0.486 to 0.492 for MLR::Xscore, from 0.513

https://github.com/cusdulab/MLSF
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Figure 7. Same as Figure 2 but substituting the Blind-2018 test set.

to 0.519 for MLR::Vina, and from 0.444 to 0.448 for MLR::Cyscore.
Surprisingly, unlike minor improvements were observed in Rp,
their RMSE even worsened a little bit, from 1.53 to 1.56 for
MLR::Xscore and from 1.57 to 1.59 for MLR::Cyscore (Figure 13,
top row). In Shen et al.’s study, the performance of Cyscore,
ASP@GOLD, Alpha-HB@MOE and GBVIWSA-dG@MOE did not
change much with increasing similarity either [6]. In Su et al.’s
study, ChemScore, ASP and X-Score were found to be basically
insensitive to the similarity between the training set and the test
set or the sample size of the training set [7]. This category of SFs,
owing to insufficient model complexity with few parameters
and imposition of a fixed functional form, could not benefit
from more training data, even those that are most relevant
to the test set, confirming again that classical SFs are unable
to exploit large volumes of structural and interaction data [5,
7]. This is, in our opinion, a critical disadvantage given the
continuous growth of structural and interaction data in the
future, which will further magnify the performance gap between
ML-based and classical SFs (Figure 1). To our surprise, such
a disadvantage was mistakenly regarded as an advantage by
others who claimed that the performance of X-Score is relatively
stable no matter what training data are used to fit the weights
of its energy terms [3], and a classical SF may be more suitable
when the target is completely novel [6]. Indeed, the performance
of classical SFs is insensitive to training set composition (or in
other terms, stable), but it does not imply a better performance
than ML-based SFs (we will soon see that the opposite is true in
most cases in the next subsection), and it is arduous to define
‘completely novel’ given that a large training set may inevitably
contain any degree of similarity to the test set [4]. We will revisit
this argument after we discuss the limitations of the CASF
benchmarks later.

Low proportion of dissimilar training complexes
required by ML-based SFs to outperform classical SFs

Evaluated in Rp on CASF-2016 (Figure 8, top left subfigure),
RF::Xscore was not able to surpass MLR::Xscore, the best
performing classical SF among the three, until the protein
structure similarity cutoff reached 0.99. The same is true on
CASF-2013 [8] as well as on CASF-2007 where RF-Score was
unable to outperform X-Score until the cutoff reached 0.98
[3]. Hence it is not surprising for Li and Yang to assert that
ML-based SFs did not outperform classical SFs after removal
of training complexes highly similar to the test set. However,
this assertion does not hold when considering the RMSE metric
where RF::Xscore produced lower values than MLR::Xscore
from a cutoff of 0.89 onwards (Figure 14, top row). Nor does it
hold upon substituting ligand fingerprint similarity (or pocket
topology dissimilarity) where RF::Xscore started to overtake
MLR::Xscore when the cutoff reached just 0.80 on CASF-2016
(Figure 8, top center subfigure) and 0.86 on CASF-2013 [8].
Nor does this assertion hold on Blind-2018 (Figure 9, top left
subfigure) either where the best performing classical SF turned
out to be MLR::Vina instead, which was surpassed by its RF
variant RF::Vina at a cutoff of just 0.48. Now it is clear that this
assertion is restrictive on three conditions: the Rp or Rs metric,
protein similarity and CASF benchmarks have to be employed.
Violating any condition voids the assertation.

As proposed previously [4], an alternative approach is to
investigate the performance of SFs against the corresponding
number of training complexes rather than the underlying cut-
off value. This approach had been adopted in subsequent stud-
ies [5, 6, 8]. We therefore plotted the second row of Figure 9,
making explicit the number of complexes in each training set,
to evidence that ML-based SFs only required a small part of
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Figure 8. Rp performance of three classical SFs (MLR::Xscore, MLR::Vina and MLR::Cyscore) and five ML-based SFs (RF::Xscore, RF::Vina, RF::Cyscore, RF::XVC and

XGB::XVC) on the CASF-2016 benchmark when they were calibrated on nested training sets generated with protein structure similarity (left column), ligand fingerprint

similarity (center column) and pocket topology dissimilarity (right column). The first row plots the performance against cutoff, whereas the second row plots essentially

the same result but against the associated number of training complexes instead. Both rows present the result where the nested training sets were initially formed by

complexes most dissimilar to those in the test set and then gradually expanded to incorporate similar complexes as well (i.e. the ds direction). The bottom two rows

depict the performance in a reverse similarity direction where training complexes similar to those in the test set were exploited initially and then dissimilar complexes

were progressively included as well (i.e. the sd direction). The raw values of this figure are available at https://github.com/cusdulab/MLSF.

the full training set to outperform the classical SFs. MLR::Vina
obtained the highest Rp among the three classical SFs con-
sidered, yet it was outperformed by RF::Vina trained on 1159
(28% of the full training set), 271 (7%) and 617 (15%) complexes

dissimilar to the test set under the protein structure similarity,
ligand fingerprint similarity and pocket topology dissimilarity
metrics, respectively. Likewise, the second best performing clas-
sical SF, MLR::Xscore, was outperformed by RF::Xscore trained

https://github.com/cusdulab/MLSF
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Figure 9. Same as Figure 4 but substituting the Blind-2018 benchmark.

on 976 (23%), 271 (7%) and 504 (12%) complexes. These results
are remarkable in the sense that the two comparing SFs utilize
the same set of features and differentiate each other by their
employed regression algorithm only. This trend is more obvious
for RF::XVC. By integrating the features from X-Score, Vina and
Cyscore, it required just 703 (17%), 271 (7%) and 558 (13%) dis-
similar training complexes to surpass MLR::Vina, and 334 (8%),
271 (7%) and 529 (13%) to surpass MLR::Xscore. In terms of RMSE
(Figure 13), MLR::Xscore obtained the lowest RMSE among the

three classical SFs, but it was overtaken by RF::Xscore trained
on 1813 (44%), 292 (7%), 656 (16%) dissimilar complexes, and
by RF::XVC trained on 570 (14%), 271 (7%), 529 (13%) dissimilar
complexes (Figure 15). Taken together, these results reveal for
the first time that the proportion (i.e. 8%) of training complexes
dissimilar to the test set required by ML-based SFs to outperform
X-Score in Rp turns out to be far lower than what have been
reported recently, i.e. 32% on CASF-2007 [5], 45% on CASF-2013
[8], and 63% on CASF-2016 (Figure 8).
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Figure 10. Same as Figure 4 but substituting Rs performance.

Recall that the TM-score magnitude relative to random struc-
tures is not dependent on the protein’s size. Structures with
a score higher than 0.5 assume generally the same fold [10].
Coincidently, RF::Vina obtained higher Rp values than MLR::Vina
starting at a cutoff of 0.48. All the three classical SFs were
overtaken by RF::XVC starting at a cutoff of 0.44 in terms of Rp
and 0.43 in terms of RMSE. Thus, the proteins of these training
samples do not assume the same fold, yet they contributed to
the superior performance of ML-based SFs.

Greater contributions of similar training complexes
than dissimilar ones

We now explore a different scenario, represented by the bot-
tom two rows of Figure 9, where the training set was originally
composed of complexes highly similar to those in the test set
only and then regularly enlarged to include dissimilar com-
plexes as well (i.e. the sd direction). The Rp curves of RF::Xscore,
RF::Vina and RF::Cyscore are always above that of their respective
classical SF, not even to mention their hybrid variants RF::XVC
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Figure 11. Same as Figure 6 but substituting the Blind-2018 benchmark.

and XGB::XVC. Likewise, these ML-based SFs always generated
lower RMSE values than their corresponding classical counter-
part (Figure 13) regardless of either the cutoff or the similarity
metric. This is also true on CASF-2016 (Figure 12). These findings
constitute a strong conclusion that under no circumstances did
any of the classical SFs outperform their ML variant. This was
one of the major conclusions by Li et al. on CASF-2007 [5] and
by Sze et al. on CASF-2013 [8], and now it is deemed generaliz-
able to the larger CASF-2016 and Blind-2018 benchmarks being

investigated here. Consistently, most of the 28 ML-based SFs
benchmarked on CASF-2007 also showed a remarkably better
performance than their corresponding classical ones [6].

Consistent with common belief and hereby validated again,
training complexes similar to those in the test set contribute
appreciably more to the scoring power of ML-based SFs than
dissimilar complexes. For example, RF::XVC yielded Rp = 0.654,
Rs = 0.623, RMSE = 1.40 when trained on 628 complexes (cut-
off = 0.99 in the sd direction) comprising proteins similar to
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Figure 12. Same as Figure 4 but substituting RMSE performance.

the test set (Figure 9, bottom left subfigure), versus Rp = 0.515,
Rs = 0.511, RMSE = 1.50 when the same SF was trained on 703
complexes (cutoff = 0.84 in the ds direction) comprising dissimi-
lar proteins (Figure 9, second row left subfigure). This result also
rationalizes the sharp leap phenomenon observed in ML-based
SFs only.

Unlike in the ds direction where the peak performance
for ML-based SFs was reached by exploiting the full training
set of 4154 complexes, here in the sd direction the peak Rp

performance was achieved at a cutoff of 0.43 (corresponding
to 3584 complexes) for RF::XVC, 0.53 (2629 complexes) for
RF::Vina, and 0.88 (1651 complexes) for RF::Xscore. Such peaks
were observed under all the three similarity metrics as well
as on all the three CASF benchmarks [5, 8] (Figures 8, 10 and
12) and Blind-2018 (Figures 9, 11 and 13). Their occurrence is
likely owing to a compromise between the size of the training
set and its relevance to the test data: encompassing additional
complexes dissimilar to the test set beyond a certain threshold
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Figure 13. Same as Figure 8 but substituting the Blind-2018 benchmark.

of similarity cutoff would probably introduce noise. That said,
the performance variation between ML-based SFs trained on a
subset spawn from an optimal cutoff and those trained on the
full set is marginal. For instance, the Rp obtained by RF::XVC
trained on the full set was 0.668, just marginally lower than
its peak performance of 0.675 (for RMSE it was 1.32 with the
full set of 4154 complexes, also only marginally worse than
the best performance of 1.30 obtained at a cutoff of 0.43 with
3584 complexes), consistent with the recent conclusion that

the addition of more dissimilar proteins into the training set
does not clearly influence the final performance too much
when there are enough training samples [6]. On the other hand,
training ML-based SFs on the full set of complexes, despite being
slightly less predictive than training on a prudently selected
subset, has the hidden advantage of a broader applicability
domain, hinting that such models should predict better on more
diverse test sets containing protein families absent in the Blind-
2018 benchmark. Besides, this simple approach of employing
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Figure 14. Scatter plots of predicted and measured binding affinities on CASF-2016 (N = 285 test complexes). Three SFs are compared: MLR::Xscore (left column),

RF::Xscore (center column) and RF::XVC (right column), trained at three different cutoffs: 0.89 (1st row), 0.99 (2nd row) and 1.00 (3rd row), corresponding to 2179, 2739

and 3772 training complexes, respectively. The cutoff 0.89 represents the crossing point where RF::Xscore started to produce lower RMSE values than MLR::Xscore,

indicating that although ML-based SFs did not outperform classical SFs in terms of Rp after removal of training complexes highly similar to the test set, it is not true

when RMSE is considered. The cutoff 0.99 represents a training set without complexes highly similar to the test set (recall the skewed distribution in Figure 6), for

comparison to the cutoff 1.00 in order to demonstrate the sharp leap effect in Rp and Rs and the sharp drop effect in RMSE.

the full set for training does not bother to search for the optimal
cut-off value, which does not seem an easy task. Failing that
would probably incur a suboptimal performance than simply
utilizing the full set.

Feature hybridizing capability of ML-based SFs as
another advantage over classical SFs

Thanks to the nonlinear nature of ML models, it is not difficult
to hybridize features from multiple existing SFs, even those

having distinct physiochemical semantics (such as geometric
features, physical force field energy terms and pharmacophore
features [21]), thus offering an opportunity to explore various
combinations and construct an optimal SF. RF::XVC was built
by combining features of X-Score, Vina and Cyscore, exhibiting
better performance than their individual RF-based SF. It obtained
an Rp of 0.668 on Blind-2018 (Figure 9), higher than that of
RF::Xscore (0.646), RF::Vina (0.649), and RF::Cyscore (0.513). Like-
wise, RF::XVC achieved an RMSE of 1.32 (Figure 13), lower than
that of RF::Xscore (1.34), RF::Vina (1.35) and RF::Cyscore (1.53). It
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Figure 15. Scatter plots of predicted and measured binding affinities on Blind-2018 (N = 318 test complexes). Three SFs are compared: MLR::Xscore (left column),

RF::Xscore (center column) and RF::XVC (right column), trained at three different cutoffs: 0.40 (1st row), 0.43 (2nd row) and 0.60 (3rd row), corresponding to 334, 570

and 1813 training complexes, respectively. The cutoff 0.40 represents the initial low end where MLR::Xscore resulted in a lower RMSE than RF::Xscore and RF::XVC. The

cutoff 0.43 is the crossing point where RF::XVC started to generate lower RMSE values than MLR::Xscore. The cutoff 0.60 is another crossing point where RF::Xscore

started to outperform MLR::Xscore in terms of RMSE.

also performed the best on CASF-2016 (Figures 8, 10 and 12) and
CASF-2013 [8]. Likewise, RF-Score-v3 [18] was built by hybridizing
the original pairwise descriptors of RF-Score (i.e. occurrence
count of intermolecular contacts between elemental atom type
pairs) with Vina empirical energy terms, which are two very
different types of features. It was shown to perform better than
RF-Score and RF::Vina on CASF-2007 [5]. RF-Score-v2 needed
approximately 800 training samples to outperform classical SFs
in the ds direction, but after hybridizing with GalaxyDock-BP2-
Score, Smina or X-Score, only around 550, 600 or 700 training
samples were needed [6]. More examples include NNscore 1.0

and NNscore 2.0, which required 40% fewer training samples to
outperform classical SFs after hybridization. In the sd direction,
in order to reach Rp ≥ 0.65, around 250, 300 and 250 training
samples were compulsory for NNscore1.0, NNscore2.0 and RF-
Score-v2, respectively, whereas only 200 training samples were
mandatory for hybrid SFs [6]. In a comparative assessment of 12
ML-based SFs on CASF-2013, 108 terms from RF-Score, BALL, X-
Score and SLIDE were used initially, which were subsequently
reduced to just 17 terms with principal component analysis.
Three resultant SFs, RF@ML, BRT@ML and kNN@ML, obtained
a Rp of 0.704, 0.694 and 0.672, respectively, higher than 0.614
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Figure 16. RMSE performance (left) and training time (right) of RF::XVC and XGB::XVC on the CASF-2016 benchmark when they were calibrated on different protein

structure similarity cutoffs.

achieved by the best of 20 classical SFs [22]. Although hybrid
SFs do not necessarily outperform single ones, this available
capability provides a chance to search for the best mixture of
descriptors that would lead to peak performance. For instance,
hybridizing the pairwise descriptors of RF-Score into RF::XVC
could further reduce the required percentage (currently 8%)
of dissimilar training complexes for ML-based SFs to surpass
classical SFs.

In contrast, feature hybridization is tough for classical SFs
which rely on linear regression. The energy term accounting
for hydrogen bonding is present in X-Score, Vina and Cyscore,
but is implemented differently. How would one devise MLR::XVC
remains to be explored. Even more challenging is to merge
two streams of features in distinct scales or units, such as
merging the atom type pair occurrence count (without unit)
used by RF-Score and the energy terms (in kcal/mol units) used
by Vina.

Comparison between different ML regression methods

Both RF and XGBoost are tree-based ML algorithms. Both RF::XVC
and XGB::XVC were demonstrated to possess learning capabil-
ity and keep improving performance with training set size on
Blind-2018 (Figure 9) and CASF-2016 (Figure 8) in the ds direc-
tion, finally yielding a sharp leap. Here RF::XVC outperformed
XGB::XVC under most settings, probably due to suboptimal tun-
ing of the hyperparameters of XGB. As a reference, an XGB-
based SF utilizing the same set of descriptors as by RF-Score-v3
was found to marginally outperform the latter on CASF-2007 [5].
Regarding algorithmic efficiency, the training time required by
XGB::XVC was 19–50 times as much as that required by RF::XVC
(Figure 16).

The excellent performance of RF over other ML algorithms
was also observed in two recent studies investigating the influ-
ence of data similarity. A comparative assessment of 25 com-
monly used SFs showed that GBDT and RF produced the best
Rp values for most of the SFs on CASF-2007, performing bet-
ter than ET, XGBoost, SVR and kNN [6]. Removing structurally
redundant samples from the training set at a threshold of 95%
on CASF-2016 effectively inhibited the learning capability of BRR,
DT, kNN, MLP and SVR except RF [7]. More examples include
RF@ML, which outperformed all other 11 ML algorithms on
CASF-2013 [22].

Given that extensive efforts are usually compulsory for fine-
tuning the hyperparameters of deep learning (DL) algorithms, it
is computationally prohibitive for us to conduct the systematic
trials presented here. There are evidences showing that DL-
based SFs were not always more predictive than those based on
more established ML methods [1]. That said, it is worthwhile to
inspect deeper into this aspect in the future, since there are also
evidences showing that DL is competing RF in computational
docking [23].

Limitations of the CASF benchmarks

Six related studies [3–8] all employed the CASF benchmarks
to investigate the impact of data similarity. These benchmarks
were formed by clustering a selected subset of complexes in
the PDBbind refined set according to 90% similarity in protein
sequences, and only the clusters containing more than five
members (for CASF-2016) or three members (for CASF-2013 and
CASF-2007) were considered. By construction, the CASF bench-
marks are affected by protein homology bias in that only pop-
ular proteins having sufficient number of high-quality crystal
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structures are included for benchmarking purpose, leaving out
a large amount of unpopular proteins (e.g. only 285 test set
complexes picked from 57 clusters of CASF-2016 versus 3772
training set complexes left in the refined set). By comparing
the results on CASF-2013, CASF-2016 and Blind-2018, it is clear
that the CASF benchmarks overestimate the performance of
SFs, whether these are ML-based or not. For example, RF::XVC
achieved Rp = 0.714, 0.754 and 0.668 on the three benchmarks,
respectively. A decline of 0.086 in Rp ensued when transiting the
benchmark from CASF-2016 to Blind-2018. Likewise, MLR::Xscore
obtained Rp = 0.622, 0.647 and 0.492, respectively, equivalent to
a decline of 0.155, almost twice as much. Albeit the Rp perfor-
mance of both categories of SFs being overestimated by CASF,
some authors only saw the need of employing new benchmarks
for ML-based SFs [7].

Although both categories of SFs suffered from performance
degradation on the more realistic Blind-2018 benchmark, the
degree is different (Rp dropped by 0.155 for MLR::Xscore ver-
sus just 0.086 for RF::XVC). This point can be revalidated from
another perspective. The percentage of dissimilar training com-
plexes required by RF::XVC to outperform X-Score was 45% on
CASF-2013 and 63% on CASF-2016, far higher than just 8% on
Blind-2018. This means X-Score performed unusually well on
CASF, making it tough for ML-based SFs to excel. In fact, X-
Score was the best performing classical SF on CASF-2016 and
CASF-2013 and the second best on CASF-2007 (Figure 1). Hence
the CASF benchmarks tend to overestimate the performance of
classical SFs much more than that of ML-based SFs.

We think of two ways to circumvent the effect of overes-
timation brought by CASF. The first is to employ the Blind-
2018 benchmark [1], which is by construction a blind test in
that only structural and interaction data available until 2017
are used to build the SF that predicts the binding affinities of
complexes released in 2018 as if these had not been measured
yet. Thus this benchmark realistically imitates a prospective
scenario without introducing artificial factors that specifically
harden the challenge for either category of SFs. Another way is to
embrace the concept of soft overlap [7], with which training sets
were compiled from the PDBbind refined set by removing redun-
dant samples under four different similarity thresholds of 80%,
85%, 90% and 95%. However, we think that these nonredundant
training sets are of little use because five of the six tested ML-
based SFs all outperformed the three comparing classical SFs.
The authors should instead provide a training set where ML-
based SFs fail to outperform classical ones, but such a training
set is understandably difficult to provide because when the sim-
ilarity threshold decreases, the sample size decreases too, down
below a so-called ‘healthy’ size of around 2100 complexes, which
corresponds to the number of complexes of the nonredundant
set compiled from the smallest refined set (i.e. v2016) under the
lowest threshold (i.e. 80%). This issue can be addressed either by
discarding CASF-2016 as the test set, which these authors had
not attempted, or by shrinking the sample size (or the similarity
threshold) to a point where the niche of classical SFs could
be appreciated [4]. Regarding the latter, remind that RF::XVC
required merely 334, 271 and 529 dissimilar complexes to sur-
pass MLR::Xscore under the three similarity metrics. Should
these nonredundant sets be useful for comparing ML-based and
classical SFs, their sample size probably has to be reduced to
below 271, which is about a half quarter of the healthy sample
size they wanted to preserve. These sets, nevertheless, can be
useful for examining the learning capability of ML-based SFs
with increasingly similar samples.

Inevitability of similarity contained in a large dataset

It was claimed that ML-based SFs are unlikely to give reliable pre-
dictions for completely novel targets [6], or may be less effective
when dealing with structurally novel targets or ligand molecules
[7], but no formal definition for ‘novel’ was given. Here we come
up with two possible definitions. The first is to set up a fixed
similarity threshold, below which complexes are considered to
be novel. Recall that at a protein structure cutoff of 0.40 (a
TM-score below 0.5 assumes generally distinct folds), which
corresponds to 334 (8%) training complexes, RF::XVC already
generated a higher Rp than MLR::Xscore (Rp = 0.492 versus 0.486
on Blind-2018). Hence the similarity threshold used to define
novel has to be set to a rather low value in order for the two
claims to hold true. The second is to follow the old-fashioned
approach of leave-cluster-out cross-validation, where the whole
dataset is first clustered by 90% sequence identity and then the
clusters are split to form nonoverlapping training and test sets
[24]. The test complexes whose proteins do not fall in any of
the training clusters are considered as novel. By leaving one
cluster out, an early study showed that the Rp averaged across
26 clusters was 0.493 for MLR::Cyscore, 0.515 for RF::CyscoreVina
and 0.545 for RF::CyscoreVinaElem [19], indicating that ML-based
SFs hybridizing Cyscore features with those of Vina and RF-
Score still outperformed Cyscore itself, rendering the two claims
wrong. To make them right, one may further harden the chal-
lenge by leaving two or three clusters out. No matter which defi-
nition, overoptimizing the training set composition to artificially
toughen the benchmark without considering the full spectrum
of complexes to be found in a prospective environment can
lead to false confidence. Adding training complexes that are
similar to the test set to some extent actually helps mimic a
real scenario, as they represent the overall characteristics of the
existing available samples.

Recently we asserted that a large dataset may inevitably
contain proteins with any degree of similarity to those in the
test set [4]. Here we provide concrete statistics to support this
assertion. A TM-score below 0.17 corresponds to randomly cho-
sen unrelated proteins [9], but neither any of the 3772 training
complexes nor any of the 4154 training complexes has a test
set protein structure similarity below 0.17 on CASF-2016 and
Blind-2018, respectively, suggesting that the training and test
proteins are unavoidably related. When relaxing the TM-score
filter to no higher than 0.5, only 1562 (out of 3772) and 1343 (out
of 4154) training complexes can be assumed having different
folds [10], still less than half of the full set. Even though one
can find a training complex that is sufficiently dissimilar to the
test set under all the three similarity metrics investigated in this
study (or the 3-in-1 combined metric [7]), there may exist an
extra metric under which this particular training sample shows
a high similarity. Therefore, it is inevitable for a large dataset
to exhibit a certain degree of similarity to the test set. In this
context, it is meaningless to argue whether or not the training
set contains samples similar to the test set, or whether overes-
timation occurs. What is really meaningful is whether the SFs
can make the best use of such similarity inherently contained
in the training set. Nothing is wrong if one can make a reason-
able prediction based on the available information on similar
samples [7]. The statement that the performance of ML-based
SFs is overestimated due to the presence of training complexes
similar to the test set [6] can be alternatively interpreted as that
the performance of ML-based SFs is underestimated due to the
absence of similar samples in those artificially created training
sets that specifically harden the challenge for ML-based SFs.
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So now the question becomes, which category of SFs can
make the best use of the similarity or the dissimilarity contained
in the dataset and thus should be preferred? The answer is
obvious. Although ML-based SFs did not stand out significantly
when calibrated on a training set with 80% similarity to the test
set (i.e. the low end) [7], they still performed better than classical
counterparts. The RF, kNN, MLP, BRR and L-SVR models obtained
an Rp of about 0.703, 0.683, 0.678, 0.665 and 0.645, respectively,
consistently (though not significantly) higher than 0.625, 0.620
and 0.480 obtained by X-ScoreHM, ChemScore and ASP. Should
this represent a prospective scenario where only a training set
with 80% similarity to the target set of interest is available, ML-
based SFs would still be preferred. On the other hand, classical
SFs have been consistently found to suffer from early stagnation
of performance when given similar complexes for regression [3–
8]. Again, being stable is hardly equivalent to being superior. Per-
formance stability does not guarantee performance superiority.

Conclusions
For the first time we have revealed that ML-based SFs trained
on just 8% training complexes dissimilar to the test set already
outperformed the representative classical SF X-Score on a blind
benchmark that emulates the real process of prospective pre-
diction of binding affinity. This proportion is substantially lower
than what was previously reported on the CASF benchmarks [5,
8], suggesting that the scoring power of classical SFs is overes-
timated on CASF. When the benchmark was transited to Blind-
2018, the Rp performances of both categories of SFs were down-
graded, but more severely for classical SFs. The performance of
ML-based SFs was claimed to be overestimated in the existence
of similarity, but the same statement should be reinterpreted as
that these are underestimated in the absence of similar samples
on those artificially created training sets that abandon the full
spectrum of complexes to be found in a prospective campaign.
Adding training complexes that are similar to the test set to
some extent effectively facilitates the imitation of a real sce-
nario, as they represent the general characteristics of the exist-
ing materials accessible at hand. Given the unavoidability of any
degree of similarity incorporated in a large dataset, the criteria
for SF selection are not performance stability but superiority, i.e.
whether the SF can make the best use of all available information
in order to make a reasonable prediction of the binding affinity
of the target complexes of interest in a prospective situation.
Considering the continuous growth of structural and interaction
data in the future, the development of ML-based SFs is becoming
appealing, as the performance gap to classical SFs will be further
broadened.

The contributions of this study are manifold. We compiled
the Rp performances of 70 unique SFs benchmarked on three
versions of CASF (Supplementary Tables S1–S3) and plotted
Figure 1 to vividly show that ML-based SFs surpass classical
counterparts by a large margin. We reviewed a list of six related
studies (Supplementary Table S4), drew a workflow chart for
investigating the impact of training-test set similarity (Figure 2),
and showcased three examples of misalignment caused by
the all-chains-against-all-chains approach (Figures 4 and 5,
Supplementary Materials S1 and S2) employed in four of the
six studies. We illustrated the distribution of training complexes
over the protein structure similarity cutoff is skewed toward
the range of (0.99, 1] (Figures 6 and 7), where sharp leaps in
scoring power of ML-based SFs are reasonably anticipated
(Figures 8 and 9). The unique capabilities of learning and feature
hybridization were demonstrated to be advantages of ML-based

SFs, which classical SFs lack, ending up with early stagnation
of performance. Lastly, we have released free software code
and necessary data at https://github.com/cusdulab/MLSF for
interested readers to rapidly reproduce the results presented
in this study and to make an extended analysis on their own
benchmark, e.g. Blind-2020, to be constructed in a similar way
as Blind-2018.

Key Points
• The influence of data similarity on the scoring power

of three widely used classical SFs and five ML-based
variants was assessed on two benchmarks, including
a blind test mimicking a real scenario of prospective
prediction of binding affinities.

• ML-based SFs trained on just 8% complexes dissim-
ilar to the test set already outperform classical SFs
on a blind benchmark. This percentage is far lower
than what was required on any of the three CASF
benchmarks.

• The capabilities of learning and feature hybridiza-
tion are two advantages of ML-based SFs over clas-
sical ones. Their performance gap will be amplified
given the continuous growth of structural and inter-
action data.

• The CASF benchmarks tend to overestimate the per-
formance of SFs, whether these are ML-based or not.
But the degree of overestimation is higher for classical
SFs because a more significant performance degrada-
tion was observed when transiting to a blind bench-
mark.

• A large dataset may inevitably contain proteins with
any degree of similarity to those in the test set. The
criteria for SF selection are not performance stability
but superiority. Nothing is wrong if one can make a
reasonable prediction by exploiting data similarity.

Supplementary data

Supplementary data are available online at Briefings in Bioin-
formatics.
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