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InTRoducTIon

Despite the fact that Escherichia coli as a 
commensal bacteria can be found in intestinal 
microflora of a variety of animals including man, 
not all the strains are harmless, and some can cause 
debilitating and sometimes fatal diseases in humans 
as well as mammals and birds (1). Pathogenic 
strains are divided into intestinal pathogens causing 
diarrhea and extraintestinal E. coli (ExPEC) causing 
a variety of infections in both humans and animals 
including urinary tract infections (UTI), meningitis 
and septicemia (2). 

Cystitis and pylonephritis that can lead to urosepsis 
is caused by Uropathogenic E. coli (UPEC) which 
are the cause of approximately 80% of the estimated 
130-175 million human UTIs (3). Furthermore, 
ExPEC are the primary gram-negative bacterial 
pathogens associated with neonatal meningitis and 
are the second overall cause of the disease after group 
B Streptococci (4, 5). Severe neurological lesions 
resulting from infection with meningitis-associated 
E. coli (MNEC) leads to death in 20-40% of infected 
infants (5). Nosocomial bloodstream infections in 
hospitals and nursing homes may be caused by ExPEC 
strains which may also be the cause of respiratory, 
UTI or bacterimia in long-term hospitalized patients 
(6). Resistance to antimicrobials has made combating 
these infections a major problem worldwide (7).

The main focus of this review however is 
diarrheagenic E. coli and therefore ExPEC will not 
be further discussed.

An altered movement of ions and water following 
an osmotic gradient is at the heart of diarrheal 
diseases. Under normal conditions, the capacity of 
gastrointestinal tract to absorb fluid and electrolytes 
is tremendous and from 8-9 liters of fluid presented 
to intestine daily, only 100-200 ml are excreted in 
the stool. Enteric pathogens, however, can alter this 
balance towards net secretion leading to diarrheal 
disease (8).  Diarrheagenic E. coli (DEC) strains are 
among the most common etiologic agents of diarrhea 

and based on their specific virulence factors and 
phenotypic traits are divided into enteropathogenic 
E. coli (EPEC), enterotoxigenic E. coli (ETEC), 
Vero toxin-producing/Shiga toxin-producing E. coli 
(VTEC/STEC) which include its well-known subgroup 
enterohaemorrhagic E. coli (EHEC), enteroinvasive 
E. coli (EIEC), enteroaggregative E. coli (EAEC), 
and diffusely adherent E. coli (DAEC). In this review, 
we have attempted to summarize recent findings 
concerning different pathotypes of diarrheagenic 
E. coli including data published from Iran as they 
continue to be important causes of disease in both 
the developed and developing world. Furthermore 
presentation of the information from Iran along with 
the main body of results gathered elsewhere may help 
to identify the gaps in our knowledge related to these 
pathogens. Articles cited from Iran in this review are 
limited to those that were in English and accessible 
through PubMed or ISI sites and no other exclusion 
criteria were implemented.

Enteropathogenic Escherichia coli (EPEc)
History. Until the 1970s serotyping was the only 

means of distinguishing EPEC strains from those of 
normal flora, since no biochemical, microbiological 
or animal tests were available for their differentiation 
(9). The 12 serogroups originally recognized by the 
World Health Organization as EPEC or the classical 
EPEC were; O26, O55¸ O86, O111, O114, O119, O125, 
O126, O127, O128, O142 and O158 (10). Current 
classification of EPEC however, is based on the 
presence of specific virulence genes, which the use 
of molecular techniques has shown to be present in 
serogroup/serotypes other than classical ones as well (11). 

Pathogenesis. The distinctive histopathology induc-
ed by this group of E. coli is termed attaching and 
effacing (A/E) lesions and is caused by the intimate 
attachment of bacteria to the intestinal epithelial 
cells and effacement of enterocyte microvilli (12). 
Formation of the micro ulcers and exfoliation of the 
cells at the site of EPEC attachment was first described 
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in experimentally infected pigs (13) and subsequently 
in biopsies from infected infants (12). A protein called 
intimin mediates the bacterial attachment to outer 
cell membranes and is encoded by eae gene which 
along with all other genetic elements required for this 
phenomenon are located on the locus of enterocyte 
effacement (LEE), a large genomic pathogenicity 
island which was discovered in 1995 (14). The eae 
is one of the genes currently used for the molecular 
diagnosis of EPEC. 

Pathogenesis of these bacteria however is many 
faceted which has not been fully unraveled as yet 
and may involve factors other than those directly 
responsible for A/E lesions as well as more specialized 
intestinal cells (15, 16).

  
detection. Originally, HEp-2 cell-adherence assay 

performed with serologically defined EPEC strains 
showed that 80% of these strains adhere to HEp-2 
cells in vitro (15). The HEp-2 assay has been modified 
often since its first description, including such 
variations as extending the incubation time to 6 h or 
changing the growth medium during the incubation. 
However, collaborative studies have shown that the 
assay performed essentially as first described provides 
the best ability to differentiate among EPEC, EAEC, 
and DAEC isolates (16). 

After the introduction of the term “attaching and 
effacing” actin accumulation under the attached 
bacteria was demonstrated using ex vivo culturing of 
human intestinal biopsies (17). Staining this electron 
dense material produced the actin fluorescent assay 
(FAS) which enabled researchers to detect the ability 
of a strain to produce A/E lesions in vitro (18). It 
should however be noted that a negative FAS result 
may depend on the cell type used and the bacteria 
should be confirmed as nonpathogenic by alternative 
methods (10).

The localized adherence pattern of EPEC strains 
was shown to be associated with the presence of a 
60 MDa plasmid called pMAR2 from which a DNA 
fragment of 1 kb was isolated which has been used 
extensively in epidemiological studies (19-21). 

The presence of the E. coli adherence factor (EAF) 
plasmid carrying bfp operon, encoding the type IV 
bundle-forming pilus (BFP), and per operons, a 
transcriptional activator called plasmid encoded 
regulator (Per) is the basis of typical and atypical 
classification of EPEC strains (22). All EPEC strains 
lack genes encoding Shiga toxin (stx) although they 

share A/E phenotype with some other strains of E. 
coli, therefore, strains that are eae+ bfpA+ stx- are 
classified as typical EPEC (tEPEC). Production of 
BFP protein induces the localized adherence pattern 
(LA) and most of tEPEC strains belong to classic 
O:H serotypes (22). Atypical EPEC (aEPEC), on the 
other hand, are of eae+ bfpA- stx- genetic background 
and display localized-like (LLA), diffuse (DA), or 
aggregative adherence patterns which is associated 
with the E. coli common pilus and other known 
adhesins (23). Most of the over 200 O-serogroups 
that have been identified among aEPEC strains, do 
not belong to classical EPEC serogroups and many 
have been designated nontypeable (24). Recently 
in a study done in Iran, multiplex PCR was used to 
differentiate between tEPEC, and aEPEC and PCR-
RFLP for H typing of conventionally serogrouped 
isolates (25) showing the ease and applicability of 
this method for rapid screening of large number of 
isolates. 

Epidemiology. Although EPEC are among the 
most important pathogens infecting children less 
than 2 years of age in the developing world, but 
the prevalence may vary depending on differences 
in study population, age group, diagnostic criteria 
and diagnostic tools used (11). Over the last several 
decades, the significance of EPEC infection has 
declined in published literature. The decline might 
be due to interventions, particularly breast-feeding 
promotion, or to the overestimation of these organisms 
in earlier studies that used O- or O:H typing compared 
to the recent ones, in which molecular methods and/
or adherence assays was used for EPEC diagnosis 
(26-27). A study conducted in the south of Iran (28) 
using serological test alone for identification of EPEC 
reported an isolation rate of 30.7% for this pathotypes 
in children of less than 3 years old with diarrhea. The 
isolates belonged to 12 different serogroups, of which 
O128 and O126 were the most prevalent. A similar 
study published 2 years later reported EPEC as the 
most common pathogen among patients admitted to 
4 children’s hospital in Tehran and those attending 
an outpatient clinic in Sanandaj with an isolation rate 
of 26.7 and 20.1% respectively (29). Recent studies 
dealing with diarrhea in children under 5 years of age 
have reported varying rates of isolation for EPEC 
ranging from 12.6-44.9% showing a significant associa-
tion between EPEC isolation and diarrhea (30-33).  
A noticeable reduction in isolation rate of EPEC was 
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reported in 2005 in which 200 children suffering 
from acute diarrhea with age-matched controls were 
studied in Tehran and EPEC was isolated from 6% of 
patients and 5% of controls (34). The reason for the low 
prevalence of EPEC in this study was not discussed. 

Various studies carried out in Iran and abroad have 
shown a significant association between EPEC and 
infant diarrhea compared to controls (30-33, 35-36), 
but similar isolation rates from diarrheal cases and 
controls have also been documented (34). However, 
in none of these studies the typical and atypical 
EPEC have been separately addressed, except for 
the work by Alikhani et al. (30). The data obtained 
showed a significant association between both typical 
and atypical EPEC and diarrhea. In both developed 
and developing countries an increasing isolation 
rate for aEPEC has recently been reported, but the 
epidemiological association of this group with 
childhood diarrhea is controversial and requires 
further studies (27).

In developing countries healthy carriage of enteric 
pathogen is shown to be common and has been 
attributed to the interplay of many factors including 
host susceptibility (related to the child’s age, 
breastfeeding, nutritional and immunological status), 
bacterial virulence factors (different virulence genes), 
and environmental factors (poor hygiene, and high 
fecal contamination). However, data from a recently 
developed quantitative real-time PCR (qRT-PCR) has 
shown a significantly higher bacterial load in EPEC-
associated diarrheal samples compared to controls (27).

Prolonged and persistent episodes of diarrheal 
disease (diarrhea > 14 days) constitute a significant 
portion of the global burden of diseases in children 
(27). A recent systematic review of the illness in 
developing countries has shown that EPEC, ETEC 
and EAEC are the main pathogens associated with 
this complication, and are responsible for 30-40% 
of all persistent diarrheal episodes in children (37). 
In developed countries, aEPEC is the most common 
pathogen isolated from children with persistent 
diarrhea accounting for more than half of the episodes 
(38). The role of aEPEC in persistent diarrhea in Iran 
has not been dealt with systematically.

Enterotoxigenic E. coli (ETEc)
History. ETEC is the most important but under-

recognized bacterial cause of diarrhea or cholera-
like disease in all age groups in areas with poor 
sanitation and inadequate clean water. Furthermore, 

of the estimated one billion yearly international 
travelers, 20-60% of those traveling to low-income 
countries will suffer from travelers’ diarrhea (39). In 
approximately 30-70% of traveler’s diarrhea bacteria 
are the causative agent, of which ETEC are the most 
commonly detected (40). Development of rabbit ileal 
loop assay which led to the discovery of cholera toxin 
was also used for pure cultures of E. coli isolated 
from stools and small bowels of children and adults 
showing similar symptoms to cholera. Live cultures 
and culture filtrates of these strains when injected into 
isolated rabbit ileal loops produced strong cholera-
like secretary response leading to the discovery of the 
heat-labile enterotoxin of  E. coli and recognition of 
ETEC pathotype in 1968 (41-42). 

Pathogenesis. ETEC strains adhere to intestinal 
epithelial cells via a heterogenous group of 
proteinacious surface structures termed colonization 
factors (CFs) which can be fimbrial, non-fimbrial or 
fibrillar (43). The more recent nomenclature refer to 
these structures as coli surface (CS) antigen, but some 
of the old names still persist such as colonization 
factor antigen I (CFA/I). Despite the fact that more 
than 25 CFs have so far been identified, on many 
strains no CF is detected which might be attributed to 
the technique (s) used for detection, true lack of CFs 
or as yet unidentified ones (44).

Following the initial adhesion and colonization, 
ETEC strains cause diarrhea by producing heat-labile 
(LT) and/or heat-stable (ST) enterotoxins, which are 
plasmid-encoded (45). ETEC bacteria produces the 
small STs as a 72-amino acids preprotoxin which 
is processed into an 18-19 amino acid active toxin 
called STa and a 42 amino acid toxin referred to as 
STb. STa is produced by both human and animal 
strains, whereas STb is mainly detected in strains of 
veterinary origins (46). LT like the closely related 
cholera toxin is a member of AB5 family of toxins 
which are heterohexameric molecules consisting of 
five B subunits and a single A subunit (47). The A1 
domain constitutes the active toxin and is linked to 
the A2 domain via a disulfide bond (48).  The A2 
fragment is the helical portion of the molecule and 
anchors the A subunit to the B pentamer which binds 
irreversibly to GM1 ganglioside as receptors on cell 
surface (46). The toxin is then internalized and the 
A subunit ADP-ribosylates the stimulatory guanine-
nucleotide-binding protein, increasing the levels of 
intracellular cyclic AMP resulting in diarrhea.



106 JAfARI  ET Al .                                                                                                                                IRAN. J. MICROBIOL. 4 (3) : 102-117 

detection. Diagnosis of ETEC is based on the 
production of LT and/or ST and the rabbit ileal loop 
and infant mouse physiological assays were initially 
used as gold standards for the identification of these 
enterotoxins respectively. These tests are difficult to 
perform and time consuming and for a while efforts 
were made to use serotyping for this purpose, but soon 
it became clear that a large number of serotypes could 
be enterotoxigenic and therefore not applicable (49). 
In 1974 it was found that LT produces morphological 
changes on Y1 adrenal and Chinese hamster ovarian 
cell lines that were neutralizable by antitoxin (50-
51). Although these tissue culture tests were used 
in preference to the animal models, but these assays 
were only useful for LT detection and not available in 
all laboratories making ETEC detection problematic. 
Enzyme-linked immunosorbant assay, passive latex 
agglutination, immunoprecipitation in agar and Biken 
test were developed subsequently and were found to 
be specific (52-54). PCR has revolutionized clinical 
diagnosis of pathogenic microorganisms and was 
used in 1994 for detection of ETEC strains (55) but 
prior to the advent of PCR methods radioactively 
and nonradioactively labeled probes were used for 
detection of enterotoxin genes and the method was 
shown to be both sensitive and specific (49, 56-57).

Different methods have been used for CF detection, 
including mannose-resistant agglutination of certain 
species of erythrocytes, serological tests initially using 
polyclonal sera (58-60) which were subsequently 
replaced by monoclonal antibodies and eventually 
molecular methods (61). These methods were used 
in a study conducted in Iran to characterize ETEC 
strains with ten years difference in isolation date and 
a high degree of agreement was observed between 
the results obtained using different detection methods 
(62). In 1992 however, both mannose-resistant 
hemagglutination and polyclonal antisera for CFA/I 
and CFA/II were used for detection of these antigens 
among Iranian ETEC isolates and it was concluded 
that hemagglutination was not specific enough for 
characterization of these fimbriae (63). 

Besides determination of the toxins and CFs, 
serotyping, i.e. determination of O serogroups 
associated with the cell wall lipopolysaccharides 
and H serogroups of the flagella, has been applied 
for identification and characterization of ETEC (64). 
However, as shown in studies conducted in different 
countries, clinical ETEC isolates may belong to a large 
number of serotypes making this method unsuitable 

for identification of these bacteria. Furthermore, 
ETEC serotype profiles may change over time (49).

Epidemiology. The first report of ETEC in a case 
series of infantile diarrhea in Iran was made in 1982 
when Mohadjer et al. (65) detected LT and ST in 
the isolates using rabbit ileal loop, Y1 adrenal cell 
culture and infant mouse assay. The isolation rate for 
this pathogen was 7% and subsequently using rabbit 
ileal loop and infant mouse assay in a case series 
study ETEC was detected in 21.9% of diarrheal 
cases attending 12 outpatient clinics in Bandar 
Abbas (28). Detection of various toxin genes among 
200 E. coli isolates from diarrheal cases in Tehran 
using Dig-labeled probes showed that LT and ST 
carrying isolates were the least frequent pathotypes 
(66). Recently, however, PCR has been the detection 
technique of choice and the rate of ETEC in diarrheal 
cases in studies using this method varied from nearly 
33% (67) and 15.5% (34) to less than 10% (32, 33, 68).

Unfortunately, despite the availability of various 
techniques, there are still no simple, readily available 
methods for identification of these organisms 
in minimally equipped laboratories or the field. 
Therefore, ETEC is not included in routine diagnosis 
of diarrhea in many laboratories.

Shiga toxin-producing/ Enterohaemorrhagic 
E. coli (STEc/EHEc)

History. The main virulence factor and the 
defining feature of this group is a phage-encoded 
potent cytotoxin the effect of which was shown 
to be neutralizable by anti-Shiga toxin of Shigella 
dysenteriae 1. The cell toxicity effect was also 
demonstrated on Vero cells resulting in a parallel 
nomenclature system of Shiga/Vero toxin-producing 
E.coli (STEC) and (VTEC) respectively (16, 69). 

In 1983, an E. coli strain serotype O157:H7, was 
identified in association with outbreaks of a bloody 
diarrhea called hemorrhagic colitis (HC) leading to 
the recognition of EHEC as a new and increasingly 
important class of enteric pathogens causing intestinal 
and renal disease (16). The term enterohaemorrhagic 
E. coli (EHEC) is applied to those STEC serotypes 
that have the same clinical, epidemiological and 
pathogenetic features associated with the prototype 
strain E. coli O157:H7. 

The high virulence of STEC strains such as O157:H7 
is not only dependent on the virulence factors but 
partially also on the pathogen’s ability to survive 
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environmental stress conditions, such as resistance 
to low pH levels found in the gastrointestinal tract 
contributing to its very low infectious dose of 50-100 
bacteria or lower (70). 

Among STEC serotypes, O157:H7 is associated 
with both outbreaks and sporadic cases of severe 
disease, but it has been shown that other serotypes 
may also cause human infections albeit variably (71). 
This quantitative and qualitative difference in disease 
association among STEC has given rise to various 
classification schemes the simplest of which divides 
STEC into E. coli O157 and non-O157. However, in 
view of the fact that the virulence potential of non-
O157 might be genetically determined a seropathotype 
(SPT) classification has been proposed in which prior 
association with human epidemics, HUS, and diarrhea 
is considered (71). In this scheme, SPT-A includes 
O157:H7 and O157:NM, the most commonly isolated 
serotypes from outbreaks and HUS. SPT-B strains 
differ from group A in the frequency of isolation 
from outbreaks and HUS cases, SPT-C strains are 
only associated with sporadic cases of HUS, SPT-D 
are isolated from diarrheal cases and have not been 
encountered in outbreaks or HUS and SPT-E that 
have never been associated with human disease (72). 
Furthermore, data collected using different methods 
of comparative genomic have suggested that several 
discreet genotypes differing in virulence exist within 
E. coli O157:H7 population and based on these data 
this serotype has been subdivided into nine clades 
(73-74). 

Recently a new Shiga toxin producing E. coli 
strain was identified in Germany causing one of 
the largest outbreaks of HUS worldwide. The 
perpetrator belonged to serotype 104:H4 which 
contained the virulence factors of typical EAEC and 
a Stx-2 producing prophage, but lacked the LEE 
pathogenicity island. This discovery has led to the 
emergence of a new pathotype for which the name 
Entero-Aggregative-Haemorrhagic Escherichia coli 
(EAHEC) has been suggested (75-76). This event 
exemplifying the genome plasticity of E. coli has 
highlighted the need for public health surveillance 
of STEC infections and its important role in devising 
and implementing control measures. 

Pathogenesis. Shiga toxin family with related 
structure and similar biological activity is composed 
of Stx1 which is essentially identical to the toxin of 
Shigella dysenteriae differing in a single amino acid 

and Stx2 with less than 60% amino acid homology 
to Stx1 (47, 77). Little sequence variation has been 
reported for Stx1 (78), but Stx2 has several subtypes 
which differ in biological activity and immunological 
reactivity (79). Shiga toxins similar to the heat-labile 
enterotoxin of ETEC belong to the AB5 family of 
the toxins and consist of a pentameric ring-shaped B 
subunit that is non-covalently attached to the A subunit. 
The B subunit interacts with globotriaosylceramides 
(Gb3s) on the surface of human intestinal mucosa and 
kidney epithelial cells resulting in the internalization 
of the toxin where the A subunit is activated causing 
cell death (43). Among the Stx2 variants, Stx2c has 
been isolated more frequently from HUS patients but 
Stx2e and Stx2f have been mainly isolated from pigs 
and birds and rarely from humans (77). Moreover, a 
different AB5 toxin has been discovered in this group 
which differs significantly from other toxins in this 
group. This subtilase-like toxin (SubAB) was isolated 
from an HUS outbreak strain in Australia and shows 
greater cytotoxicity than Stx2 for a range of cell types 
including Vero cells (47). 

The EHEC genome contains the same locus of 
enterocyte effacement (LEE) as the EPECs and the 
intimate attachment of EHEC to host cells occur 
through interaction between an adhesin called intimin 
(eaeA), and Tir (translocated intimin receptor). 
This intimate attachment induces the characteristic 
attaching and effacing lesions (A/E), but the initial 
adherence of EHEC to colonocytes is not well 
defined (43, 45, 70, 77). Sixteen potential fimbria-
like operons, which have not been extensively 
studied have been recognized in STEC strains (43, 
80), and recently a pilus involved in adherence and 
biofilm formation called hemorrhagic coli pilus, 
a type IV pilus, has also been identified in STECs 
(81). However, the intimate adherence as in EPECs is 
through the interactions between Tir and intimin. At 
least 29 distinct intimin types with heterogeneity in 
the C-terminal part of the molecule that is involved in 
binding to Tir in both STEC and EPEC have so far been 
identified (82-83). The ability of STEC to produce 
A/E lesions is sufficient to cause non-bloody diarrhea 
but Shiga toxin is essential for the development of 
bloody diarrhea, HC, and HUC (16, 84). Another 
toxin found in many STEC/EHEC isolates is the 
enteroaggregative heat-stable enterotoxin1 (EAST1) 
and usually two copies of the astA gene is present 
in the chromosome (16, 70). The significance of this 
carriage in the pathogenesis of EHEC is unclear, but 
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it has been suggested that some of the non-bloody 
diarrhea in person infected with these strains might 
be due to the production of this toxin (16, 83). The 
primary virulence determinants of EHEC strains are 
chromosomally encoded, but plasmids might play an 
important role in the pathogenesis of EHEC strains. 
Plasmid pO157 is found in 99-100% of O157:H7 
serotype isolated from human clinical isolates, most not 
all Stx-producing isolates. Presence of this plasmid has 
been correlated with hemolytic activity and adherence 
to intestinal epithelial cells, but the overall understand-
ing of the role of plasmids in pathogenesis of STEC/EHEC 
strains is hindered due to the absence of a reliable model 
of human infection (45, 85-86).

 
detection. Laboratory confirmation of STEC 

infection can be achieved by isolation and confirmatory 
tests using culture media, immunoassays, cell toxicity 
assays and PCR (87-88). Screening of O157 relies on 
the strain’s inability to utilize sorbitol rapidly, leading 
to the use of sorbitol-MacConkey agar (SMAC) as a 
differential medium with added cefixime and tellurite 
(CT-SMAC) although in our setting addition of 
cefixime has not led to the prevention of other fecal-
associated microorganisms. More specific media 
have also been developed such as Rainbow agar, 
CHROMagar®, and O157:H ID agar that are able to 
recover O157 along with sorbitol-fermenting O157 
and non-O157 strains (70, 88). Tests conducted in our 
laboratory, however, has shown that to prevent the 
growth of some bacterial strains such as Salmonella which 
could produce similar colonies on CHROMagar® plates 
the use of tellurite is necessary (unpublished data).

The identity of potential STEC isolates should be 
assessed by serotyping and Shiga toxins detection 
methods. Cell toxicity assay using Vero and 
HeLa cell lines for Shiga toxin in stool samples 
or broth enrichment is a very sensitive method 
since these cell lines have high concentrations of 
globotriaosylceramides Gb3 and Gb4 which are the 
receptors for Shiga toxin. Neutralization tests using 
antibodies against Stx-1 and Stx-2 confirms the results 
obtained, but this test despite high sensitivity is not 
routinely used due to its high cost, labor intensity and 
the expertise required. PCR however offers a fast and 
reliable method for detection of STEC which similar 
to immunoassay tests can be used directly with stool 
samples as well as isolated colonies and depending 
on the primers used can distinguish between stx1 and 
stx2 and detect eae and enterohemolysin (hly) genes. 

Use of PCR on DNA extracted from whole stool 
however, is not recommended because of the low 
sensitivity (88). 

STECs are the only zoonotic E. coli pathotype and 
more than 380 different OH serotypes have now been 
isolated from humans with gastrointestinal disease and 
many of these as well as others have been recovered 
from animals. However, majority of human disease 
appear to be caused by a limited number of serotypes 
with frequency varying depending on the location and 
the year (69, 71-72, 88). Serogroups O26, O45, O91, 
O103, O111, O113, O121, O145 are listed as the most 
commonly encountered non-O157 STEC-associated 
O antigens (69, 88). 

Epidemiology. Enterohaemorrhagic E. coli have 
been associated with several large outbreaks in US, 
Canada, Europe and Japan (70, 77), but apart from 
some sporadic reports on isolating this organism that 
have not been confirmed by any reference laboratory, 
no outbreaks or epidemics has been reported from 
Iran. Detection of this pathotype has been reported 
in various studies using different screening methods. 
Neutralization of Stx-1 and Stx-2 was used for 
identification of STEC strains in various provinces of 
Iran and showed a varying rate of detection for this 
pathotype in different locations but O157:H7 serotype 
was not isolated in any of these provinces (31, 89-90). 
PCR-detection of STEC isolates have been reported 
in various studies dealing with diarrhea in Iran with 
varying rates in different years and study groups (31-
34, 67-68, 91-92). Isolation of serologically confirmed 
O157:H7 was published in 2008, in a study conducted 
in Zahedan using sorbitol fermentation as primary 
isolation criteria and serotyping for confirmation. Of 
the 4 strains that gave positive reaction with antisera 
against O157, two were identified as O157:H7 (93). 
However, detection of this bacteria requires an 
array of different tests and cultures, a combination 
of molecular and classic methods. Therefore any 
identification relying on a single method should be 
considered with caution. Moreover, serotyping for O 
and H determination especially interpretation of H 
serology results requires expertise and trained personnel 
and in view of the fact that so far no epidemics or large 
outbreaks for this organism have occurred, isolation 
reports should be assessed more critically.

  Enteroinvasive E. coli (EIEc)
History. Bacillary dysentery as opposed to dysentery 
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caused by amoeba was described in 1887 and Bacillus 
dysenteriae as the causal agent was described in 1898 
by Shiga during an epidemic of 89,400 cases (94). 
The medical importance of Shigella strains led to 
their separation from E. coli and the newly formed 
genus with its 4 species could be differentiated from 
E. coli on the basis of physiological and biochemical 
characteristics. However, the discovery of strains 
which could cause dysentery and were intermediate 
between Shigella and E. coli in biochemical 
characteristic in 1944 caused the separation of the 
two genera to be questioned (95). The ability of these 
strains which by now were called enteroinvasive E. 
coli (EIEC) to cause diarrhea was demonstrated in 
volunteer studies in 1971 (16). It has been shown that 
EIEC strains and Shigella species are biochemically, 
genetically, and pathogenetically very closely related 
so much so that it has been proposed that they should 
be classified as one species in genus Escherichia (96-97).

Pathogenesis. Acquisition of the invasive plasmid 
(pINV) encoding the ability to invade host tissues 
(98-100) is probably the single most important event 
that has probably given rise to the evolution of both 
Shigella and EIEC from non-pathogenic E. coli. 
Nearly one third of this large single copy plasmid 
encodes IS elements and contains a 30 kb region 
enabling the bacteria to invade intestinal epithelial 
cells (101). Many components of type three secretion 
system (T3SS) such as translocators, transcriptional 
activators, some effectors and chaperones are 
coded by this region with the expression of the Inv-
encoded genes being regulated globally by VirB and 
MxiE (45). In addition to the genes of pINV many 
chromosomal genes which are not specific to Shigella 
spp. and are carried on the chromosome are required 
for pathogenesis (101).

Colonic mucosa is the infection site of Shigella and 
EIEC where invasion of M cells, macrophages and 
epithelial cells occur resulting in a watery diarrhea, 
which in severe cases may be followed by the onset 
of scanty dysenteric stools containing blood and 
mucus (102). EIEC strains may also produce a 63 
kDa toxin designated Sen which contributes to the 
enterotoxic activity detected in the strains carrying 
the gene (103).  

detection. There are very few biochemical 
characteristics that differentiate Shigella and EIEC 
from each other and the two most convenient are 

mucate and acetate tests. EIEC may be positive 
for either or both, whereas with rare exceptions 
Shigella strains are negative for both (97). Salicin 
fermentation and esculin hydrolysis have also been 
used to differentiate the two groups (95).

The serotypes associated with EIEC include O28ac, 
O29, O112ac, O121, O124, O135, O136, O143, 
O144, O152, O159, O164, O167, and O173 of which 
O112ac, O124, and O152 are identical to O antigens 
present in Shigella species making identification on 
the basis of serotyping alone inadequate (97). 

The ability to cause keratoconjunctivitis in guinea 
pig eyes and to form plaques in HeLa cell monolayers 
were the standard methods of identification for EIEC 
isolates. However, molecular methods have replaced 
these phenotypic assays (18) including amplification 
of a multicopy gene (4-10 copies) called ipaH with 
copies located on both plasmid and chromosome 
(104-106). This assay distinguishes EIEC and Shigella 
from other diarrheal pathogens but efforts have been 
made to develop molecular methods to discriminate 
between the two microorganisms resulting in 
development of conventional, multiplex as well as 
real-time PCR methods for this purpose (107-109).

Epidemiology. No epidemics and no recent reports 
of outbreaks caused by EIEC is found in the literature, 
although some references to older works dealing with 
outbreaks can be found and due to close similarity 
between the two organism misidentification is very 
probable especially in sporadic cases (16).

A mPCR assay targeting ipaH was used recently to 
differentiate EIEC strains from other E.coli categories 
in cases of childhood diarrhea in Tehran (91) showing 
a 13% isolation rate for E.coli of which 19.4% gave 
positive results with ipaH primers.

Enteroaggregative E. coli (EAEc)
History. This pathotypes is the most recently 

identified diarrheagenic E coli and is the second most 
common cause of travelers’ diarrhea after ETEC in 
both developed and developing countries. EAEC are 
commonly being recognized as a cause of endemic 
and epidemic diarrhea worldwide and recently, 
has been shown to cause acute diarrheal illness in 
newborns and children in industrialized countries. 
This organism has also been associated with persistent 
diarrhea. Diarrhea caused by EAEC is often watery, 
but it can be accompanied by mucus or blood (43, 
110-112). 
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The discovery of EAEC as well as diffusely 
adherent E. coli (DAEC) stemmed from the studies 
showing that EPEC adhere to HEp-2 cells in a 
distinctive pattern (15). Examination of a collection 
of diarrheal E. coli strains that were not of EPEC 
serogroups showed that many of these strains also 
adhered to HEp-2 cells and the phenotype was 
different from that of EPEC (19, 113). This pattern 
of adherence, which had been called “diffuse” was 
subsequently subdivided into aggregative and true 
diffuse adherence (114). E. coli showing aggregative 
adherence (AA) are autoagglutinating, but their 
hallmark is aggregative adhesion, which involves the 
formation of a stacked-brick pattern on HEp-2 cells.

In a study in Iran Bouzari et al. (115) reported that 
32% of diarrheagenic E. coli isolated from infants 
and children which did not belong to any known 
E.coli pathotypes formed AA pattern on HeLa cells 
and showed a significant prevalence in children with 
diarrhea compared to controls. 

Pathogenesis. Lack of suitable animal models 
and the heterogeneity of virulence factors caused the 
paucity of details regarding the EAEC transmission, 
pathogenicity and epidemiology. However, 
colonization of intestinal mucosa, mucoid biofilm 
formation and elaboration of various enterotoxins, 
cytotoxins and mucosal inflammation are considered 
the major features of EAEC pathogenesis (43, 110-
112, 115-116).

Colonization of intestinal mucosa by the EAEC 
occurs via aggregative adherence fimbriae (AAF) 
encoded by a 55-65 MDa plasmid named pAA. The 
first one of which, aggregative adherence fimbriae I 
(AAF/I), was cloned and characterized from EAEC 
prototype strain 17-2 (112, 118). A probe derived 
from this adhesin did not recognize O42, the second 
EAEC prototype and subsequently a new fimbria 
was characterized in this strain called AAF/II (119). 
Although two other adherence factors (AAF/III and 
AAF/IV) as well as a non-fimbrial adhesin have 
been described but some strains are encountered that 
do not contain any of these known fimbriae despite 
showing AA phenotype which is indicative of the as 
yet uncharacterized adhesins. (120-122), Similar to 
ETEC strains adhesion of EAEC to intestinal tissue 
is mediated by antigenically heterogenous adhesins 
and multiple carriage of AAFs by an EAEC strain 
has been rare (123-124). A transcriptional activator 
known as “AggR,” encoded by pAAs, regulates the 

biogenesis of AAFs (125) and is the major EAEC 
virulence regulator controlling diverse virulence 
genes encoded by pAAs as well as by chromosomes 
(110, 112). Adherence of EAEC to the mucosa is 
characterized by the formation of a thick, aggregating 
mucus layer inside which they survive and this biofilm 
production has been attributed to the activity of fis and 
yafK genes (117, 126). However, a secreted 10 kDa 
protein encoded by pAA and called antiaggregation 
protein (Aap) or dispersin, facilitates the movement of 
bacteria across the surface of the cells for subsequent 
aggregation and adherence (45, 127). Dispersin is 
highly immunogenic and is translocated via an ATP 
binding cassette (ABC) transporter complex (the Aat 
apparatus) (128). Both these genes have been used 
for identification and classification of EAEC isolates, 
but it has been noted that dispersin gene (aap) can be 
detected in DAEC as well as nonpathogenic E.coli 
(129).

detection. The ability of EAEC to form biofilm has 
been utilized in an assay which has been suggested as 
a screening test in both clinical and epidemiological 
studies (16, 110, 130). Formation of biofilm however, 
was shown to be method dependent and strongly 
influenced by culture media, leading to the conclusion 
that considering the experimental variables the results 
need to be interpreted cautiously (131) 

The aggregating nature of this pathovar has made 
serotyping in many cases impractical and the fraction 
that can be serotyped belong to a wide range of 
O:H types, making serotyping of little use in EAEC 
diagnosis (111).

Bacterial adhesion is followed by the secretion 
of various toxins of which the plasmid-encoded 
toxin (Pet), a serine protease causing cytoskeletal 
rearrangements and EAST1, an activator of guanylate 
cyclase, are regulated by AggR. 

Within EAEC group, different pathogenicity islands 
have been identified including she pathogenicity island 
of Shigella, containing enterotoxin and mucinase 
genes, and Yersinia high-pathogenicity island, 
containing the yersinibactin siderophore gene (111, 
132-133).  None of these genes however is present in 
all the EAEC strains and many of them are not specific 
for this E. coli category which makes developing an 
alternative method to HEp-2 cell adherence assay 
difficult. In 1990 a diagnostic probe obtained from 
the aggregative plasmid of strain 17-2 was reported 
by Baudry et al. (134). The cryptic 1-kb probe known 
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as “CVD432” or aggreagative probe (AA) which was 
later shown to correspond to the site of Aat transporter 
complex (112) performed variably in different 
locations (16).  This probe was used by Bouzari et al. 
(135) on a collection of 98 HeLa cell assay-confirmed 
EAEC isolates of which only 46 (46.9%) reacted with 
the probe. A PCR method using primers based on the 
probe sequence was developed by Schmidt et al. 
(136) and its sensitivity and specificity was reported 
as similar to the AA probe (16). This method has been 
used by several authors in Iran for detection of EAEC 
in patients with diarrhea (33-34, 67-68, 137) but only 
one report used PCR in combination with HeLa cell 
adherence (123). This group used CVD432 PCR for 
the preliminary screening of the isolates which were 
further analyzed for adherence to HeLa cells and 
found that the PCR method showed 100% sensitivity 
and 98.4% specificity. 

Heterogeneity among EAEC strains in their 
carriage of putative virulence factors have been well 
established (16, 43, 45, 110-112, 123-124), but in 
view of the pivotal role played by aggR in regulating 
a large number of virulence factors and its location on 
pAA, strains positive for this gene are called “typical 
EAEC” and strains lacking pAA, but showing the 
characteristic stacked-bricks phenotype in HEp-2 
cell adherence assay are considered “atypical EAEC” 
(112, 124). Typical EAEC has been associated with 
diarrhea, but in an extensive genomic analysis of 
EAEC strains isolated from a case-control study 
conducted in Mali with children under the age of 5 
suffering from moderate to severe diarrhea presence 
of aggR regulon genes was not correlated with 
diarrhea (138). 

The importance of EAEC in diarrheal diseases in 
various epidemiological and clinical settings and 
the unusual degree of heterogeneity among EAEC 
isolates in carrying various putative virulence factors 
has been well documented. However, data pertaining 
to the role of individual factors and their contribution 
in conferring distinct clinical outcomes are required 
for a true assessment of EAEC as a human pathogen. 

diffusely adherent E. coli (dAEc). DAEC is a 
heterogenous group that generates a diffuse adherence 
pattern on HeLa and HEp-2 cells and has been 
associated with the watery diarrhea that can become 
persistent in young children in both developing and 
developed countries as well as recurring urinary 
tract infections (43, 139).  It has been shown that 

the relative risk of diarrhea associated with DAEC 
increases with age of children from 18 months to 
5 years. The intestinal carriage of these strains has 
also been reported to be widespread in older children 
and adults. The consequences of this persistence are 
unknown, but several observations have suggested 
a potential role in the development of chronic 
inflammatory intestinal disease (139).

Two types of adhesins mediating the DA pattern 
have so far been described dividing the DAEC 
strains into AIDA-I-dependent group and those 
that their adhesins is encoded by a family of 
related operons, which include both fimbrial and 
afimbrial adhesins. These groups of proteins are 
collectively designated Afa-Dr adhesins (43, 140). 
The first afimbrial adhesin (afa) operon belonging 
to this group was characterized and sequenced in 
1984 (141), and subsequently another operon in this 
family as well as the adhesins receptor were described 
(142-143). AIDA-I is a 100 kDa outer membrane 
protein which is associated with DA phenotype and 
was described by Benz et al. (144) who also showed 
that this adhesin was not commonly encountered 
among DEAC isolates (16, 145). The afa/dr/daa 
operons are genes that arise and are expressed in 
a variety of genetic backgrounds (139) and the 
pathogenesis of DAEC seems to be predominantly 
mediated through Afa/Dr adhesin interactions with 
host cells. In addition a secreted autotransporter 
toxin (Sat) has also been implicated in pathogenesis, 
but nevertheless, the implication of Afa/Dr DAEC 
strains in diarrhea remains controversial. Phenotypic 
detection of DEAC is based on the mannose-resistant 
diffuse adhesion of these strains to cultured epithelial 
HEp-2 or HeLa cells (16, 113-114). The adhesion 
assay however, is not specific for Afa/Dr DAEC 
detection, since other pathogenic E. coli including 
EPEC strains may show this pattern of adhesion 
(21, 140). Other phenotypic assays have also been 
developed, but none has proved convenient and 
universal to be used for identification of all Afa/Dr 
DAEC isolates (140). Colony hybridization using 
various probes have also been developed and used in 
epidemiological studies (146-148), but this technique 
is laborious and time consuming and not suitable for 
use on individual strains. Design of PCR methods that 
allow identification of all known Afa/Dr adhesins has 
been achieved (149-150), but even with this simpler 
and faster method no report of Afa/Dr DAEC isolation 
in Iran has been published.
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concluding remarks. A wealth of data concerning 
the virulence mechanisms of diarrheagenic E. coli 
has been accumulated over the years even though 
these complicated phenomena are not yet fully 
understood. This versatile organism affects a wide 
range of eukaryotic cell processes via an array of 
diverse genetic elements enabling each pathotype to 
colonize, multiply, and disseminate and understanding 
each pathogenic step at molecular level may help 
in devising effective measures for intervention in 
infection. However, the contribution from Iran to 
the global knowledge regarding these pathotypes 
seems very limited which could be due either to the 
insignificant role these pathogens play in the public 
health in this country or the paucity of well designed 
systematic epidemiological studies and absence 
of a surveillance system for diarrheagenic E.coli. 
Therefore, to obtain a clear picture of the importance 
of different diarrheagenic E. coli pathotypes in this 
country and also in order to be able to detect outbreaks 
quickly and intervene appropriately presence of a 
network of public health laboratories with trained 
personnel and validated materials and standardized 
techniques seems necessary.
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