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Abstract: Sigma-1 (σ-1) receptor agonists are considered as potential treatment for stroke. TS-157 is
an alkoxyisoxazole-based σ-1 receptor agonist previously discovered in our group. The present study
describes TS-157 profile in a battery of tests for cerebral ischemia. Initial evaluation demonstrated the
compound’s safety profile and blood–brain barrier permeability, as well as its ability to induce neurite
outgrowth in vitro. The neurite outgrowth was shown to be mediated via σ-1 receptor agonism
and involves upregulation of ERK phosphorylation (pERK). In particular, TS-157 also significantly
accelerated the recovery of motor function in rats with transient middle cerebral artery occlusion
(tMCAO). Overall, the results herein support the notion that σ-1 receptor agonists are potential
therapeutics for stroke and further animal efficacy studies are warranted.

Keywords: sigma-1 receptor; TS-157; focal cerebral ischemia; neurite outgrowth; pERK

1. Introduction

Sigma-1 (σ-1) receptor is one of the two σ receptors’ subtypes that were discovered
by Martin in 1976 [1]. The σ-1 receptor is a chaperone protein that regulates ion channel
and signaling molecule activity primarily through its translocation and protein–protein
interactions when activated after binding to ligands [2]. As an integral membrane protein,
σ-1 receptors are mainly distributed in the central nervous system and notably located in
the mitochondria-associated endoplasmic reticulum (ER) and plasma membranes [3–5].
In the ER membranes, several cellular responses occur following physiological activation
of σ-1 receptor, either by cellular stress or agonist stimulation. These responses include
the dissociation from binding immunoglobulin protein (BiP) or inositol-requiring enzyme
1 (IRE1), activation of ER stress responses, dissociation from IP3 and Ca2+ entry into the
mitochondria, and transcriptional regulation of nuclear factor κB (NFκB) [3,6–8]. While in
the vicinity of plasma membrane, σ-1 receptor translocation impacts different membrane
proteins, such as kinases, ion channels, G-protein coupled receptors (GPCR), and trophic
factor receptors [9–13]. Consequently, σ-1 receptor is known to be involved in a range of
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signal transduction pathways, including Ca2+ signal pathway at ER, various ion channels,
transcription factors’ expression, phospholipase and protein kinase activities, and the
Rac1-GTP pathway [13–16].

The σ-1 receptor-mediated neuromodulation has been shown to hold an important
role in brain plasticity, learning and memory processes, mood regulation, and brain preser-
vations. As a consequence, there are numerous literature reports on specific σ-1 agonists
and antagonists and how these molecules behave in various cellular models of neuromod-
ulatory systems. Of interest, σ-1 agonists are used in the treatment of epilepsy, depression,
ischemia, and neurodegeneration, while σ-1 antagonists are directed toward addiction and
pain [5,7,17]. Ischemic diseases such as stroke are among the most common disorders of
the central nervous system with unclear underlying mechanisms, although some proposed
mechanisms include excitotoxicity, apoptosis, neuro-inflammation, and impaired axon
regeneration [18–23]. For instance, σ-1 receptor agonist RC-33 was reported to promote
the NGF-induced neurite outgrowth of PC12 and that activation of σ-1 receptor could en-
hance neurite elongation of cerebellar granule neuron cells through TrkB signaling [24,25].
In addition, another σ-1 ligand PRE-084 was found to reduce infarct volume after em-
bolic stroke in rats, improve neurobehavioral function, inhibit pro-inflammatory cytokines,
and enhance the expression of anti-inflammatory cytokines [26].

In previous work, our group designed and synthesized σ-1 receptor ligand 2 contain-
ing an alkoxyisoxazole skeleton from the nicotinic receptor ligand 1 by comparing the
pharmacophore models [27]. (Figure 1) The tested alkoxyisoxazole showed high selectivity
toward σ-1 receptor over σ-2 receptor and a variety of neurotransmitter transporters [27–30].
Furthermore, σ-1 receptor antagonist 3 and agonist 4 (TS-157) were obtained. The antago-
nist 3 had a significant analgesic effect in formalin-induced mouse inflammatory model
without side effects on motor function [29], while TS-157 induced synaptic elongation in
mouse N1E-115 neuronal cells, indicative of its potential to regulate nerve regeneration [30].
In order to further discover the effects of TS-157 in the treatment of cerebral ischemia,
we tested the behavioral and biochemical effects upon administration in the rat model with
transient middle cerebral artery occlusion (tMCAO) and explored its possible mechanisms.
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2. Results
2.1. In Vitro Non-Cytotoxicity and Membrane Permeability of TS-157

Before commencing the animal trials, preliminary toxicity profiling and membrane
permeation potential of TS-157 were first evaluated in vitro. It can be seen from the
results of the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) ex-
periment that TS-157 at a concentration gradient from 0.1 µM to 100 µM had no effect
on the viability of the N1E-115 neuronal cells (Figure 2). Next, membrane permeabil-
ity was evaluated by parallel artificial membrane permeability assay (PAMPA), which
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tests the passive diffusion of the compound from the donor plate through the lipid
membrane into the receptor plate. By measuring the concentration of the compound
in the receptor plate, the ability of the compound to penetrate the blood–brain barrier
in the body was simulated with good reproducibility, and the results were expressed as
Pe (10−6 cm/s) [31,32]. In the case of Pe > 4, the compound was considered to have a
significant lipid membrane permeability while Pe < 2 indicated poor lipid membrane per-
meability and Pe = 2–4 reflected a potential lipid membrane permeability. TS-157 exhibited
moderate lipid membrane permeability (Pe = (3.15 ± 0.35) × 10−6 cm/s) compared to the
positive control Atenolol (Pe = (11.3 ± 0.81) × 10−6 cm/s) and the negative control Vera-
pamil (Pe = (0.81 ± 0.22) × 10−6 cm/s). Furthermore, two calculation models, LogBB [33]
and CNS MPO [34], were performed. The latter contains six structural properties, including
Clog P, Clog D, MW, TPSA, HBDs, and pKa. Each of these properties was valued between
0 to 1 and, accordingly, the final collective score ranged from 0 to 6, whereby the higher
scores were correlated with desirable brain permeability (Table 1).
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Figure 2. Cell viability of N1E-115 treated with TS-157 at concentrations from 0.1 µM to 100 µM by
MTT assay. Data expressed as mean ± SEM.

Table 1. Evaluation of membrane permeability of TS-157.

Compound Tested Pe 10−6 cm/s a Theoretical Pe 10−6 cm/s LogBB b CNS MPO c

Verapamil 12.3 ± 0.41 16.0 / /
Atenolol 0.81 ± 0.22 0.8 / /
TS-157 3.15 ± 0.35 −0.005 5.4

a See Experimental Section. Pe values were determined by PAMPA assay treated compound with
25 µg/mL. Data are expressed as mean ± SEM. b Log BB values were calculated from the Clark’s equation:
Log BB = −0.0148 × PSA + 0.152 × CLogP + 0.139 [33]. c Last CNS MPO scores were calculated by the tools
reported by T.T. Wager et al. [34].

2.2. TS-157 Induces Neurite Outgrowth of N1E-115 Neuronal Cell

A known σ-1 agonist SA-4503 was previously demonstrated to regulate nerve cell
plasticity in ischemic stroke animals and contributed to improving the exercise capacity of
patients with ischemic stroke [35].

Neurite length data on the second day after administration showed that SA-4503
(1 µM) significantly induced the neurite outgrowth of N1E-115 cells similarly to the experi-
mental group treated with 1 µM of TS-157 (Figure 3A,D). As the concentration of TS-157
increased, its effect on inducing N1E-115 neurite growth was also more significant on
the second day in a concentration-dependent manner (0.1–10 µM) (Figure 3B,E). In ad-
dition, compared to the control group, TS-157 clearly increased the neurite length in the
1–4 days after administration, in which a time-dependent growth of neurites was observed
(Figure 3C,F).
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2.3. TS-157 Induces Neurite Outgrowth through σ-1 Receptor

To investigate the relationship between σ-1 receptor modulation and induction of
neurite elongation, the σ-1 receptor antagonist NE-100 (1 µM) was used to determine if it
could block the neurite elongation induced by TS-157 (1 µM) (Figure 4A). The expression
of σ-1 gene was downregulated by σ-1 receptor siRNA, which also significantly reversed
the effect of TS-157 on extending the neurite length (Figure 4B–D).

2.4. Motor Function Recovery of Long-Term tMCAO Rats by TS-157 Administration

The rats in sham group, control group, low-dose group (TS-157, 1 mg/kg), and high-
dose group (TS-157, 10 mg/kg) were subjected to a Rotarod test on the first day before
surgery and on the third, seventh, 14th, and 28th day after surgery, respectively. The per-
centage of time that the animal stayed on the rotating rod one day before the operation
was used as a basic value for the subsequent corresponding calculations. The percentage
of time that the sham group rats stayed on the rotating rod on the third day decreased
slightly and then quickly returned to the baseline level. Animals in all the other groups
showed a significant decrease in the percentage of time spent on the rotating rod on the
third day, followed by a surge thereof in the subsequent 7, 14, and 28 days. Among these
three groups, the rats in the high-dose group stayed on the rotating rod for a longer time
than the low-dose group, whereby the percentage of time corresponding to both groups
was longer than the control group on the 7th, 14th, and 28th day (Figure 5A).
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Figure 5. TS-157 significantly improves the exercise ability and movement perception of tMCAO
rats. (A) Rotarod test for tMCAO rats in sham groups, control group, low-dose group (TS-157,
1 mg/kg), and high-dose group (TS-157, 10 mg/kg); (B) corner test for tMCAO rats in above
groups. Data obtained from the 8–10 mice per group are expressed as mean ± SEM. Statistically
significant differences: * p < 0.05, ** p < 0.01, *** p < 0.001 vs. vehicle (two-way ANOVA followed by
Bonferroni test).
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Corner tests were performed on each group of rats on the first day before surgery and
on the third, seventh, 14th, and 28th day after surgery. Each rat was tested 10 times and
the following formula was used to calculate the probability of turning right: probability
of right turn = number of right turns × 100%/total number of turns. The animals in each
group had the same probability of turning to the left or right when the operation was not
performed. However, the rats in the tMCAO model tended to turn to the right and the
probability gradually decreased over time. The probability of turning right in the low-dose
group was slightly lower than that of the control group on the 14th and 28th day, while the
probability of the high-dose group was significantly lower than the control group on the
14th (p < 0.05) and 28th (p < 0.001) day (Figure 5B).

2.5. No Amelioration for Cerebral Infarct Volume of tMCAO Rats by TS-157

The tMCAO rats were injected with 10 mg/kg of TS-157 after 24 h of ischemia.
Their brains were then removed to be analyzed histologically on the seventh day after the
ischemic stroke. The size of the white part in Figure 6 represents the cerebral ischemic
volume of rats on the seventh day after the surgery. The volume of the white part of
the experimental group was similar to the control group. This, in turn, indicated that
TS-157 cannot ameliorate the cerebral ischemic volume of tMCAO rats and it may have no
neuroprotective effects on brain injury.
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Figure 6. TS-157 has no amelioration effect for cerebral infarct volume. (A) Brain tissue of rats in
sham group, control group, TS-157 group (10 mg/kg) by TTC staining, and white area represents
ischemic volume; (B) infarct volume of brain of tMCAO rats.

2.6. The σ-1 Antagonist Reverses the Recovery of Motor Function in tMCAO Rats

In order to determine the mechanism by which TS-157 restores the locomotor function
in tMCAO rats and to investigate whether it performs the corresponding function in vivo
through the σ-1 receptor, NE-100 as an antagonist was intraperitoneally injected into the
rats one hour before TS-157. Both the residence time on the rotating rod and the probability
of turning right of rats injected with both NE-100 and TS-157 turned out to be significantly
worse compared to TS-157-only group, and the motor function of rats were similar to those
of the control group (Figure 7A,B).
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‘NE-100 + TS-157’ vs. ‘TS-157’ (two-way ANOVA followed by Bonferroni test).

2.7. ERK Pathway Participates in the Protection of Exercise Capacity of TS-157

The ERK pathway is implicated in many diseases and it mainly regulates the de-
velopment of the neurons in the central nervous system. ERK is a downstream pro-
tein of a variety of growth factors including EGF, NGF, and PDGF, which mediates and
amplifies signals in the process of neural signal transmission [36]. For N1E-115 cells
cultured with TS-157 (1 µM), the expression level of the phosphorylated ERK (pERK)
protein was significantly increased, while SA-4503 showed no significant improvement.
Additionally, the effect of TS-157 on upregulating pERK was more pronounced than
that of SA-4503 and this effect was inhibited by the antagonist NE-100 (Figure 8A,B).
On the 28th day after tMCAO surgery, tissue protein was extracted for Western blot
detection from the rat brain in the sham group, control group, TS-157 low-dose group
(1 mg/kg), TS-157 high-dose group (10 mg/kg), and TS-157 high-dose plus antagonist
group (TS-157, 10 mg/kg + NE-100, 10 mg/kg). Downregulation of pERK protein was
seen in the rat brain tissue in the vehicle group compared with that of the sham group
(p < 0.001). Following administration of TS-157, the expression of pERK protein was in-
creased in a concentration-dependent manner with statistical differences (p < 0.01) between
the high-dose group (10 mg/kg) and the vehicle group. As expected, these effects were
inhibited by the σ-1 antagonist NE-100 (Figure 8C,D).
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3. Discussion

Stroke is the most common neurological disease that has attracted wide attention
because of severe sequelae and younger age of onset. Despite extensive research, there is
still no effective treatment for this disease. Stroke has been proven to cause irreversible
damage to brain tissue and, although the blood supply gradually recovers later, the dam-
aged neurite is difficult to regrow [37]. Several σ-1 receptor agonists have shown beneficial
effects in stroke models, conferring neuroprotection and neurite outgrowth along with
other identified mechanistic pathways [24–26]. An alkoxyisoxazole-based TS-157 has been
demonstrated by our group to be a σ-1 receptor agonist, and this current study explored its
potential therapeutic utilities in a stroke model.

At first, the preliminary safety profile, blood–brain barrier permeability, and ability to
induce neurite outgrowth in vitro were evaluated. It can be seen from the results of the
MTT experiment that TS-157 had no effect on the viability of the N1E-115 neuronal cells,
indicating absence of general cytotoxicity. TS-157 exhibited moderate lipid membrane
permeability (Pe = (3.15 ± 0.35) × 10−6 cm/s) in PAMPA set, which indicated that TS-157
may have the potential to penetrate the blood–brain barrier in vivo. The obtained LogBB
value of –0.005 (ideally between 0 and 1) and CNS MPO value of 5.4 (ideally > 4.5) further
support the likelihood that TS-157 is able to cross the BBB. TS-157 was shown to increase the
neurite length in a time- and concentration-dependent manner. If σ-1 receptor antagonist
NE-100 was simultaneously used or the expression of σ-1 gene was downregulated by
σ-1 receptor siRNA, the effect of TS-157 on extending the neurite length was significantly
reversed, which indicated that TS-157 promoted the neuronal neurite outgrowth through
σ-1 receptor.

Next, the corner test and rotarod test were used for locomotion evaluation. The rats
with the high-dose TS-157 stayed on the rotating rod for a longer time than the low-dose
group and the control group on the different time nodes. The probability of rats turning
right in the high-dose group was significantly lower than other groups. These results



Molecules 2021, 26, 1212 9 of 14

suggested that TS-157 could restore the exercise ability of the tMCAO rats and accelerate
the recovery of their movement perception. In order to further investigate whether TS-
157 performs the corresponding function in vivo through the σ-1 receptor, NE-100 as an
antagonist was used for evaluation. The results showed that the motor function of rats
injected with NE-100 and TS-157 were similar to those of the control group and proved that
the effect of TS-157 on restoring the motor function of tMCAO rats was antagonized by NE-
100 and that TS-157 acts through the σ-1 receptor. However, the cerebral ischemic volume of
rats with TS-157 on the seventh day after the surgery was similar to the control group, which
indicated that TS-157 cannot ameliorate the cerebral ischemic volume of tMCAO rats and
it may have no neuroprotective effects on brain injury. In some similar studies, different
σ-1 agonists showed opposite influence on volume of cerebral ischemia. For example,
N, N-dimethyltryptamine was proven reduce infarct size and improve functional recovery
following transient focal brain ischemia in rats [38], while another research reported that the
treatment of rats subjected to permanent or transient middle cerebral artery occlusion with
agonist of the σ-1 receptor enhanced the recovery of lost sensorimotor function without
decreasing infarct size [39]. Combining the outcome of that, TS-157 promoted the neurite
outgrowth of N1E-115 neuronal cells but could not alleviate brain damage in rats with
ischemia. It is proposed that the effective recovery of rat motor function is mainly mediated
through neurite growth rather than neuroprotection.

Finally, at the molecular level, we found that ERK was involved in σ-1 agonist induc-
ing neuronal regeneration. ERK is a downstream protein of a variety of growth factors
including EGF, NGF, and PDGF, which mediates and amplifies signals in the process of neu-
ral signal transmission. In amyotrophic lateral sclerosis mouse models, the downregulation
of phosphorylated Akt and ERK1/2 was observed; σ-1 agonist SA4503 could upregulate
the levels of phosphorylated Akt and ERK1/2 in a time-dependent manner [40]. In our
study, the expression level of the phosphorylated ERK (pERK) protein for N1E-115 cells
cultured with TS-157 was significantly increased, which was more pronounced than that of
SA-4503 and could be inhibited by NE-100. In tMCAO model, the rats injected with TS-157
reversed the reduction of pERK compared with the vehicle group, and the expression of
pERK protein was increased in a concentration-dependent manner. These effects were
inhibited by the σ-1 antagonist NE-100, which further proves that the effect of TS-157 on
improving tMCAO rat motor function may be related to the σ-1 receptor and involves the
ERK pathway.

4. Materials and Methods
4.1. Preparation of TS-157

The synthesis of TS-157 was accomplished, as reported previously [30]. The purity
98.8% was detected by analytical HPLC, which was carried out on an Agilent 1200 HPLC
(Agilent Technologies Inc., Santa Clara, CA, USA) system with a ZORBAX Eclipse XDB-C18
column (Agilent Technologies Inc., Santa Clara, CA, USA), with detection at 220 and 270 nm
on a variable wavelength detector G1365D, flow rate = 1.4 mL/min, gradient of 0−100%
methanol in water (both containing 0.05 vol% of TFA) in 25 min.

4.2. MTT Assay

Cell viability was determined by MTT assay, as reported previously [41]. N1E-115
cells, the mouse neuroblastoma cell lines, were obtained from the American Type Culture
Collection (ATCC, Manassas, VA, USA). Briefly, N1E-115 cells cultured in 96-well plates
were treated with DMSO or various concentrations of TS-157 (0.1, 0.3, 1, 3, 10, 25, 50,
100 µM) for 48 h in DMEM. Then cells were incubated with MTT (5 mg/mL) for 4 h at 37 ◦C
in humidified atmosphere of 5% CO2 and 95% air at 37 ◦C. The medium with MTT was
then removed, DMSO was added to each well, and absorbance was measured at 490 nm in
a TECAN (Tecan, Shanghai, China) plate reader.
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4.3. PAMPA Test

The ability of compounds to cross the cell membrane was predicted and evaluated
using PAMPA (Pion Inc., Billerica, MA, USA), as reported previously. A 300 µL filtered
secondary stock solution (25 mg/mL) of tested compounds was added to the donor well.
The filter membrane was coated with 4 µL of porcine polar brain lipid solution in dodecane
(20 mg/mL) and the acceptor well was filled with 150 µL of PBS. The acceptor plate was
carefully put on the donor plate to form a sandwich, which was composed of the donor
with tested compounds on the bottom, artificial lipid membrane in the middle, and the
acceptor on the top. The sandwich was incubated at room temperature for 18 h, and then
the donor plate was removed. The concentrations of tested compounds in the acceptor
and reference solutions were determined by Safire 2 UV (Tecan, Shanghai, China) plate
reader. Every sample was analyzed under three wavelengths in three wells and in three
independent runs. Pe was calculated by the following formula:

Pe = − VdnVac

st(Vdn + Vac)
ln

{
1 −

[drug]ac
[drug]re f

}
(1)

Vdn (µL) is the volume of solution in each well of the donor plate, Vac (µL) is the volume
of solution in each well of the acceptor plate, [drug]ac is the OD value of the solution in
the well of the acceptor plate, [drug]ref is reference OD value of the solution, s(cm2) is filter
membrane area, t(s) is incubation time.

4.4. Neurite Outgrowth in N1E-115 Cells

Undifferentiated N1E-115 cells were cultured in DMEM with 100 U mL−1 of peni-
cillin, 10% fetal bovine serum, and 100 mg mL-1 of streptomycin and maintained at
37 ◦C in a humidified incubator supplemented with 5% CO2. N1E-115 cells were seeded
1 × 104 cells/mL on poly-L-lysine-coated 96-well plates and grown with DMSO or tested
compounds in different concentration (0.1, 0.3, 1 µM) for four days. Every day after in-
cubation, morphometric analysis was performed on digitized images of live cells taken,
and images of five fields were taken per well, with about 100 cells per field. The length of
neurites was calculated by Image-pro plus (Ipp). All experiments were performed at least
five times.

4.5. RNA Isolation and Quantitative Real-Time PCR

Total RNA was extracted from the brain cortex by using Trizol reagent (Invitrogen)
(Thermo Fisher Scientific, Waltham, MA, USA). Isolated RNA was reverse-transcribed
into cDNA by using cDNA synthesis kit (Invitrogen) according to standard protocols.
Quantitative PCR (qPCR) was performed at 95 ◦C for 10 min, 40 cycles of 95 ◦C for 15 s,
and 60 ◦C for 60 s by using synthetic primers and SYBR Green (Invitrogen) with an IQ5
Detection System (Bio-Rad, Hercules, CA, USA).

4.6. Western Blotting

At 24 h after tMCAO, rat brain cortex samples were collected and homogenized with
RIPA buffer (Vazyme, Jiangsu, China). The extracted protein was quantified by BCA
kit (Thermo Fisher Scientific, Illinois, USA). Western blot was performed, as previously
described [42]. Briefly, proteins were separated by SDS-PAGE gels and then transferred
onto polyvinylidene difluoride (PVDF) membranes. The membranes were blocked for 2 h
with 3% bovine serum albumin (BSA) and then incubated overnight at 4 ◦C with primary
antibodies including σ1 receptor, p-ERk, and β-actin. After washing for five times (6 min
per wash) with TBST, the membranes were incubated with the secondary antibodies for
1 h at room temperature. The membranes were then washed again and the transferred
proteins were visualized with a Bio-Rad ChemiDoc XRS.
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4.7. The tMCAO in SD Rats

All animals were housed under standard environment and had free access to water
and food. All procedures were conducted according to the NIH Guide for the Care and
Use of Laboratory Animals. All animal tests and experimental procedures were approved
by the Administration Committee of Experimental Animals in Jiangsu Province and the
Ethics Committee of China Pharmaceutical University. The healthy male Sprague–Dawley
(SD) rats (260–280 g) were randomly selected for transient middle cerebral artery occlusion.
Firstly, the rats were treated with anesthesia in 3.5% isoflurane, and then the animals were
placed on a heating device to ensure normal body temperature. After the right common
carotid artery (CCA), internal carotid artery (ICA), and external carotid artery (ECA) of
individual rats were surgically exposed, a monofilament nylon suture with a rounded
tip was inserted through the ECA into the ICA and gently pushed about 18 mm to the
MCA. After 2 h of cerebral ischemia, the filament was removed to restore blood flow
(reperfusion). Sham-operated control rats received the same surgical procedure without
insertion of a filament. All rats had free access to food and water. At 24 h after the
ischemia, the experimental groups of rats were intraperitoneally injected with 1 mg/kg or
10 mg/kg of TS-157 (dissolved in saline), respectively, while the sham and vehicle groups
received saline alone. NE-100 10 mg/kg was given by intraperitoneal injection at 1 h before
TS-157 administration.

4.8. Rotarod Test

Motor behavior recovery was assessed by the ability to stay on the rod of rats after
tMCAO with or without treatment of TS-157. In this experiment, rats were tested seven
days before injury, and at 1–28 days post-injury. Animals were placed in an accelerating
rotating rod from 4 rpm to 40 rpm during the training period, and finally each rat was kept
for 5 min without dropping the rod. The latency to fall off the rotating rod was recorded
three times daily until 28 days after brain ischemia. The final data were expressed as the
mean value from three trails.

4.9. Corner Test

The sensorimotor asymmetry of rats after tMCAO was evaluated by the Corner test.
The experimental device consists of two cardboards forming an angle of 30◦. When the rats
enter it, if both sides of their vibrissae touched corner, rats turned back to face the open
side. Normal rats have the same tendency of going left side or right one, while the rats
after tMCAO usually turn to the side of the brain injury. The numbers of left and right over
10 trials were recorded.

4.10. Measurement of Infarct Size

Rats were euthanized at seven days after tMCAO, and then the brains were collected,
dissected on ice, and cut into 2-mm coronal sections. Sections were soaked in 2% TTC
(Sigma-Aldrich, Darmstadt, Germany) phosphate buffer for 20 min and placed in a dark
area. After the brain was stained, infarct tissues became white, whereas the normal
brain tissues stayed red. The ratio percentages of the infarct areas to the total brain areas
were calculated by morphometric analysis using Image-pro plus (MEDIA CYBERNETICS,
Rockville, MD, USA).

5. Conclusions

In the present study, the non-cytotoxicity of TS-157 was first confirmed in vitro, and its
lipid membrane permeability was tested through PAMPA to demonstrate its blood–brain
barrier penetration potential. TS-157 effectively induced the neurite elongation of N1E-115
neuronal cells in a concentration- and time-dependent manner, reflecting its ability to
induce nerve regeneration. In addition, this effect was proven to be facilitated via σ-1
receptor, as demonstrated by the use of σ-1 receptor siRNA and antagonist NE-100. Si-
multaneously, in the tMCAO rat experiment, TS-157 significantly improved the exercise
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ability and movement perception of rats with cerebral ischemia reperfusion. However,
it did not relieve the symptoms of cerebral ischemia in rats for infarction, suggesting that
TS-157 administration only elicits nerve regeneration rather than a total neuroprotection.
Finally, antagonist NE-100 antagonized the effect of TS-157 on improving the motor func-
tion in rats with ischemia, suggesting that the in vivo efficacy of the latter is mediated
through the σ-1 receptor. We also found that TS-157 could restore the downregulation
of pERK caused by cerebral ischemia in rats, indicating that ERK is one of the potential
pathways involved in this effect. Considering the favorable drug-like properties, pharma-
cokinetic properties, and blood–brain barrier permeability [28,29] of the alkoxyisoxazole
series of σ-1 ligands, TS-157 is worthy of further investigation in stroke or possibly other
neurodegenerative diseases.
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