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ABSTRACT

Mitochondrial gene expression is largely regulated
by post-transcriptional mechanisms that control the
amount and translation of each mitochondrial mMRNA.
Despite its importance for mitochondrial function,
the mechanisms and proteins involved in mRNA
turnover are still not fully characterized. Studies in
yeast and human cell lines have indicated that the mi-
tochondrial helicase SUV3, together with the polynu-
cleotide phosphorylase, PNPase, composes the mi-
tochondrial degradosome. To further investigate the
in vivo function of SUV3 we disrupted the homolog of
SUV3 in Drosophila melanogaster (Dm). Loss of dm-
suv3 led to the accumulation of mitochondrial mR-
NAs, without increasing rRNA levels, de novo tran-
scription or decay intermediates. Furthermore, we
observed a severe decrease in mitochondrial tRNAs
accompanied by an accumulation of unprocessed
precursor transcripts. These processing defects lead
to reduced mitochondrial translation and a severe
respiratory chain complex deficiency, resulting in a
pupal lethal phenotype. In summary, our results pro-
pose that SUV3 is predominantly required for the pro-
cessing of mitochondrial polycistronic transcripts in
metazoan and that this function is independent of
PNPase.

INTRODUCTION

All cellular systems require a variety of regulatory mecha-
nisms to remove redundant or incorrect RNAs. Although
clearly defined for cytosolic RNAs into different decay
pathways, mitochondrial RNA degradation is more elusive
with several protein complexes proposed to function as mi-
tochondrial degradosomes (1). Mammalian mitochondrial

DNA (mtDNA) is a small circular multi-copy genome, en-
coding for 22 tRNAs, 11 mRNAs and 2 rRNAs. All genes
are transcribed as long precursor RNAs from two main
promoters within the mitochondrial matrix (2). The mito-
chondrial tRNAs are interspersed throughout the genome
and the tRNA punctuation model (3,4) predicts that these
primary transcripts undergo endonucleolytic cleavage be-
tween gene boundaries in a coordinated fashion. Thus, a
range of different RNAs species, including mRNAs, rRNAs
and tRNAs, as well as a variety of non-coding RNAs and
antisense RNAs, are generated and a putative degradation
machinery has to distinguish between them, to ensure con-
trolled gene expression. tRNAs are modified after excision
from the polycistronic transcripts, by a 3’ CCA addition
as well as base modifications for correct folding and stabil-
ity (5,6), while messenger RNAs are post-transcriptionally
polyadenylated, with the exception of ND6 in human cells
(7) and mouse (8). In bacteria, chloroplasts and some eu-
karyota polyadenylation is proposed to promote degrada-
tion, while in most eukaryotic cytosolic mRNAs polyadeny-
lation promotes export to the cytosol, stability and transla-
tion (9). In contrast, the role of polyadenylation of mito-
chondrial transcripts is less clear, and despite its require-
ment for the formation of functional stop codons, its role
in RNA stability and translation is unknown (10). For in-
stance, although polyadenylation has been proposed to be
required for correct translation of the majority of tran-
scripts (11), not all mitochondrial mRNAs are polyadeny-
lated and polyadenylation-like signals have even been ob-
served as part of the degradation pathway (12). Thus, char-
acterization of the mitochondrial degradosomes might shed
light on mechanisms regulating mitochondrial RNA stabil-
ity.

In a variety of different biological systems the minimal
degradosome for RNA degradation comprises an exonu-
clease and a helicase (13). Recently, several components of
the mitochondrial RNA processing machinery as well as
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factors involved in translation and degradation pathways
have been localized to specific foci, termed mitochondrial
RNA granules (14-17). For instance, the ATP-dependent
3’-5 RNA/DNA helicase, suppressor of varl (SUV3) was
first discovered in yeast as suppressor of the varl deletion
phenotype, a component of the mitochondrial small ribo-
somal subunit (18). Deletion of varl results in a transla-
tional defect, and the rescue by SUV3 was proposed to be
due to increased mitochondrial transcript availability (19).
SUV3 belongs to a highly conserved Ski2 family of DExH-
box RNA helicases, with orthologs found in eukaryotes to
Rhodobacter (20). Yeast SUV3 was later shown to interact
with the ribonuclease Dssl to form the mitochondrial de-
gradosome (21,22). Dss1 is absent in higher eukaryotes, at-
tributable to the lack of polyadenylation of yeast mitochon-
drial RNA, suggesting that SUV3 either adopted a new
function, or interacts with a different ribonuclease.

Silencing of the human SUV3 gene product (SUPV3L1)
or the expression of a dominant-negative variant in human
cells results in increased mRNA steady-state levels, as well
as the accumulation of mRNA decay intermediates, pro-
cessing byproducts and antisense RNAs (23). In agreement
with its role in degradation, SUV3 was later shown to inter-
act with the mitochondrial polynucleotide phosphorylase,
PNPase, to form the mammalian mitochondrial degrado-
some (24). In contrast, SUV3 and PNPase do not function-
ally co-localize in an RNAI screen for mitochondrial RNA
processing genes (25). Silencing of PNPase itself resulted in
conflicting results (26), and PNPase has been proposed to
both degrade and extend 3’ tails in vitro, as well as local-
ize to the intermembrane space (27), where it is involved in
the import of RNAs (28). Additionally, although SUV3 has
been shown to unwind DNA and RNA duplexes as well as
RNA/DNA heteroduplexes it seems to have an increased
affinity to DNA (29,30).

The mitochondrial genome of Drosophila melanogaster
(Dm) and mammals is conserved, encoding the same genes,
differing in gene order and gene expression patterns (31,32).
Additionally, Dm mtDNA contains a large AT-rich non-
coding region of unknown function, instead of a displace-
ment loop, and multiple transcription sites have been pro-
posed in the fly. Nevertheless, many regulators of mitochon-
drial gene expression have been shown to be conserved (33—
39), and we therefore decided to use Dm as a model sys-
tem to investigate the role of SUV3 in mitochondrial gene
expression. Knockdown of DmSUV3 by RNAI, resulted
in a severe mitochondrial dysfunction and pupal lethal-
ity. As predicted by its role in RNA maintenance, mito-
chondrial mRNA and anti-sense RNA steady-state levels
were increased, while rRNA steady-state levels were not af-
fected. In contrast, several tRNAs were severely reduced,
and we observed the accumulation of processing interme-
diates, suggesting that SUV3 activity is important for the
processing and maturation of mitochondrial transcripts in
vivo.

MATERIALS AND METHODS
Drosophila stocks and maintenance

For in vivo knockdown of dmsuv3 a w;UAS-dmsuv3-
RNAI; line was obtained from the National Institute
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of Genetics (NIG-Fly, Japan) (#9791R-2). For in vivo
knockdown of dmpnpase a w;UAS-dmpnpase-RNAI; line
was obtained from Vienna Drosophila Resource Center
(VDRC) (#108198). Ubiquitous knockdown of dmsuv3
or dmpnpase was achieved by crossing the UAS-RNAIi
lines to the driver line daughterlessGAL4 (w;;daGAL4).
The stock carrying the P-element insertion in dmsuv3,
w;;P{EPgy2}CG9791EY12505 ),TM6B-GFP, was obtained
from Bloomington Drosophila Stock Center (#20354).
All fly stocks were backcrossed for at least 6 generations
into the white Dahomey background (wP2"). All fly lines
were maintained at 25°C and 60% humidity on a 12h:12h
light:dark cycle on a standard yeast-sugar—agar medium.

Constructs

Full-length dmsuv3 cDNA was obtained from the
Drosophila Genomics Resource Center (LD23445). A
single G deletion in the cDNA in position 849 was cor-
rected by site-directed mutagenesis, using Phusion High
Fidelity DNA Polymerase (Finnzymes). The cDNA was
PCR amplified and cloned in the pEGFP-N3 plasmid
(Clontech) to generate a dmsuv3-GFP fusion construct.
The dmsuv3-GFP fusion construct was subsequently
cloned in pAc5.1/V5-His A plasmid (Life Technologies)
for expression in Schneider 2R+ cells. Primers used for the
cloning of DmSUV3 are listed in Supplementary Table S1.

Cell culture and transfection

HeLa cells were cultured in high-glucose DMEM (Life
Technologies) supplemented with 10% fetal bovine serum
at 37°C in a 5% CO; atmosphere. Schneider 2R+ cells were
cultured in Schneider’s Drosophila Medium (Life Technolo-
gies) supplemented with 10% fetal bovine serum at 25°C.
For co-localization studies, HeLa cells or Schneider 2R+
cells were transfected using Lipofectamine 3000 (Life Tech-
nologies) or a calcium phosphate transfection kit (Sigma-
Aldrich), following the manufacturer’s instructions. 48h af-
ter transfection cells were stained with 50 nM Mitotracker
Red CMXRos (Life Technologies) and fixed (only HeLa
cells) with 4% PFA. Images were obtained on a Nikon Con-
focal Microscope.

Hatching rates

For adult hatching rate measurements, eggs were collected
during a 4h time window and transferred to vials (100
eggs/vial) to ensure standard larval density. Hatching of
adult flies was monitored in regular intervals.

Biochemical evaluation of respiratory chain function

Isolation of mitochondria from third-instar larvae was
performed as previously described (33) with some modi-
fications in buffer composition. Third-instar larvae were
washed and homogenized in 250 mM sucrose, 2 mM EGTA
and 5 mM Tris pH 7.4 with 1% BSA. Protein concentration
of the mitochondrial preparations was determined using a
Qubit fluorometer and mitochondria were resuspended in
250 mM sucrose, 15 mM K,HPO,4, 2 mM MgAc,, 0.5 mM
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EDTA and 0.5 g/1 BSA, pH 7.2 for determination of the
activities of the respiratory chain complexes. Biochemical
activities of respiratory chain complexes were determined
as previously described (40).

Blue Native polyacrylamide gel electrophoresis (BN-PAGE)
and in-gel activity assays

BN-PAGE and in-gel staining for complex I and IV activ-
ities was performed as previously described (33). In brief,
mitochondria were pelleted and lysed in 1% digitonin, 0.1
mM EDTA, 50 mM NacCl, 10% glycerol, | mM PMSF and
20 mM Tris pH 7.4 for 15 min on ice. After removing insolu-
bilized material by centrifugation, samples were loaded on
4-10% polyacrylamide gradient gels. In-gel complex I ac-
tivity was determined by incubating the BN-PAGE gels in 2
mM Tris-HCI pH 7.4, 0.1 mg/ml NADH and 2.5 mg/ml
iodonitrotetrazolium chloride. In-gel complex IV activity
was determined by incubating the BN-PAGE gels in 50 mM
phosphate buffer pH 7.4, 0.5 mg/ml 3.3’-diamidobenzidine
tetrahydrochloride (DAB), 1 mg/ml cytochrome ¢, 0.2 M
sucrose and 20 pg/ml catalase. Staining was performed at
room temperature.

DNA isolation, qPCR and Southern blot analysis

Genomic DNA from third instar larvae was isolated with
the DNeasy Blood and Tissue Kit (Qiagen), following man-
ufacturer’s instructions. For Southern Blot experiments, 1
wg of each DNA sample was digested with Xhol to lin-
earize mtDNA molecules and precipitated, followed by sep-
aration on a 0.8% agarose gel and blotted to Hybond-N+
membranes (GE Healthcare). Membranes were hybridized
with [*?P]-labeled double stranded DNA probes and ex-
posed to PhosphorImager screens. dsSDNA probes were la-
beled with [**P] dCTP (PerkinElmer), following the Primelt
IT kit (Stratagene). qPCR quantification of mtDNA levels
was performed in triplicates using 5 ng of DNA and Plat-
inum SYBR Green qPCR supermix-UDG (Life Technolo-
gies). Primers used in qPCR experiments are listed in Sup-
plementary Table S1.

RNA isolation and quantitative RT-PCR (qRT-PCR)

Total RNA was isolated, using the TOTALLY RNA kit
(Ambion, Life Technologies) and quantified with a Qubit
fluorometer (Life Technologies) unless stated otherwise. Re-
verse transcription was performed using High Capacity
cDNA Reverse Transcription Kit (Applied Biosystems, Life
Technologies). qRT-PCR was performed on a ViiA 7 sys-
tem (Life Technologies), using the TagMan Universal Mas-
ter Mix II, with UNG and TagMan assays (Life Tech-
nologies) to quantify mitochondrial mRNAs or Platinum
SYBR Green qPCR supermix-UDG (Life Technologies)
to quantify the transcripts containing tRNA-mRNA junc-
tions. TagMan assays and primers used for PCR are listed
in Supplementary Table S1.

Northern blot analysis of mitochondrial RNAs

Steady-state levels of mitochondrial transcripts were de-
termined by northern blot analysis, using 3 pg of total

RNA, essentially as previously described (33,34). Mito-
chondrial tRNAs and processing intermediates were sep-
arated by neutral 10% PAGE or 1% MOPS-formaldehyde
agarose gels. The aminoacylation status of tRNAs was de-
termined on TRIZOL-isolated (Invitrogen) RNA, sepa-
rated by acidic-UREA 6.5% PAGE. Separated RNAs were
transferred to Hybond-N+ membranes (GE Healthcare)
and hybridized with either randomly [**>P]-labeled dsDNA
probes, [**P]-labeled strand-specific RNA probes or with
strand-specific [**P]-end labeled oligonucleotide probes.
Primers used to generate dsDNA probes have been pre-
viously described (33,34). Primers used as oligonucleotide
probes are listed in Supplementary Table S1.

In organello transcription and translation assays

Mitochondria were isolated from third instar larvae and in
organello transcription assays were performed as previously
described (34). In brief, 200 wg of fresh mitochondria were
incubated for 45 min in transcription buffer (30 wCi [**P]-
UTP, 25 mM sucrose, 75 mM sorbitol, 100 mM KClI, 10
mM K,HPOy, 50 pM EDTA, 5 mM MgCl,, 1| mM ADP,
10 mM glutamate, 2.5 mM malate, 10 mM Tris- HCl pH 7.4
and 5% (w/v) BSA), followed by RNA extraction, separa-
tion on a 1% formaldehyde agarose gel and transferring to
Hybond-N+ membranes (GE Healthcare). Mitochondrial
de novo translation in isolated mitochondria was assayed as
previously described (34), using EXPRESS protein labeling
mix easy-tag (Perkin Elmer). Equal amounts of total mito-
chondrial protein were separated on 15% SDS-PAGE gels,
followed by staining with 1 g/l Coomassie Brilliant Blue
in a 20% ethanol, 10% acetic acid solution. Gels were then
destained, dried and exposed to a Phosphorlmager screen
to visualize the mitochondrial translation products.

RNA circularization and RT-PCR

RNA circularization and RT-PCR was performed as previ-
ously described (41). In brief, mitochondrial RNA extracts
were treated with TURBO DNase (Ambion, Life Technolo-
gies) to remove contaminant DNA. 10 ng of mitochondrial
RNA were circularized with T4 RNA ligase (New England
Biolabs), precipitated and cDNA synthesis was performed,
using gene-specific primers with the GeneAmp RNA PCR
kit (Applied Biosystems, Life Technologies). PCR products
were cloned into pCRII-TOPO (Life Technologies) follow-
ing manufacturer’s instructions and direct sequencing of the
plasmid from single colonies was performed as previously
described (42). Primer sequences for RT-PCR and subse-
quent PCR to amplify the region containing the poly(A)
tails are listed in Supplementary Table S1.

Statistical analysis

All data are presented as mean =+ standard error of the mean
(SEM). Unpaired z-test was used to analyze the statistical
significance of the results.



RESULTS
DmSUV3 is a mitochondrial protein

Dm has been proven as an excellent model system to study
post-transcriptional regulation mechanisms in vivo, with
many factors involved in mitochondrial gene expression
conserved between Dm and humans. Although SUPV3LI
was proposed to have a homolog in Dm (20), functional
validation has not yet been performed. A standard BLAST
search for the SUPV3L1 ortholog in Dm identified a sin-
gle candidate, encoded by the gene CG9791, sharing a 55%
identity on the protein level (Supplementary Figure S1). Mi-
tochondrial targeting prediction suggests that DmSUV3 is
a mitochondrial protein using either Mitoprot II (0.969) or
Target P (0.946) software. Additionally, transient expres-
sion of a GFP-tagged DmSUV3 construct in HeLa and
Drosophila Schneider 2R+ cells confirmed a mitochondrial
co-localization of the DmSUV3-GFP fusion protein (Fig-
ure 1A). Surprisingly, we observed no nuclear localization.

Dmisuy3 silencing is lethal in Drosophila melanogaster

In order to analyze the in vivo function of DmSUV3
we disrupted dmsuv3 expression in two different ap-
proaches. First, we ubiquitously silenced dmsuv3 expres-
sion by RNAi knockdown (KD), exploiting the UAS-
GAL4 system (see materials and methods). Our second
independent fly model carries a P-element transposon
(w;;P{EPgy2}CG9791EY12505 )TM6B-GFP) insertion in the
5" untranslated region (UTR) of dmsuv3 (Figure 1B).
Induction of dmsuv3 silencing in the KD line resulted in a
delay in larvae development and lethality during the pupal
stage (Figure 1C). Silencing of dmsuv3 expression levels was
confirmed by qRT-PCR, with a severe reduction in dmsuv3
steady-state levels to 30% in KD larvae compared to control
lines (Figure 1D). Flies heterozygous for the P-element in-
sertion are viable and fertile, with an ~20% reduction in dm-
suv3 mRNA levels (Figure 1E and F). In contrast, the ho-
mozygous disruption of DmSUV3 by P-element insertion
resulted in larval lethality by four days after egg laying (ael)
(Figure 1E), with expression levels of dnmsuv3 corresponding
to only 10% of control samples (Figure 1F). Thus, the dis-
ruption of DmSUV3 resulted in a dose-dependent lethality,
suggesting that DmSUV3 is essential for fly development.

DmSUV3 deficiency leads to a severe respiratory chain dys-
function

To investigate the biochemical consequences of dmsuv3
knockdown in mitochondria, we measured the activity of
the respiratory chain complexes in isolated mitochondria
from KD larvae at 5 days ael. As shown in Figure 2A, si-
lenced larvae present with a severe decrease of complexes
I, I+II1, II+III and IV activities to ~20-30% of control
samples. In contrast, the exclusively nuclear encoded com-
plex II was only mildly affected (~80% of control sam-
ples) in the dmsuv3 deficient larvae (Figure 2A), suggest-
ing that the respiratory chain defect is of mitochondrial ori-
gin. Similar OXPHOS defects have previously been shown
in two independent fly models with mitochondrial dysfunc-
tion (33,34), resulting in reduced cellular ATP/ADP ra-
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tios (33). A mitochondrial-derived defect was further con-
firmed by Blue Native polyacrylamide gel electrophoresis
(BN-PAGE) followed by in-gel staining for complexes I and
IV activities (Figure 2B). In agreement with the biochemi-
cal measurements, silenced larvae presented with decreased
activities of fully assembled complex I and complex IV at
5 days ael (Figure 2B). Furthermore, western blot analysis
revealed a decrease of the mitochondrial-encoded subunit
COX3 and the nuclear-encoded subunit NDUFS3 (Fig-
ure 2C), supporting that KD larva present with reduced lev-
els of respiratory chain complexes. Together these results in-
dicate that DmSUV3 is required for mitochondrial function
in Drosophila.

DmSUV3 deficiency leads to increased mitochondrial nRNA
but not rRNA stability

To further investigate the effects of dmsuv3 silencing on mi-
tochondrial function, we assessed mtDNA levels by gPCR
or Southern blot analysis. Although P-element insertion
had no effect on mtDNA steady-state levels in larvae 3 days
ael (Supplementary Figure S2A), reduced dmsuv3 expres-
sion in 5-day-old larvae lead to increased mtDNA steady-
state levels (Figure 3A and B). We therefore conclude that
this might be a compensatory response in mitochondrial
biogenesis as previously described both in fly (33,34) and
mouse (43,44) models with defects in mitochondrial gene
expression.

SUV3 has been proposed to be involved in RNA degra-
dation and we therefore proceeded to analyze the steady-
state levels of mitochondrial transcripts, using qRT-PCR
and northern blot analyses. Mitochondrial mRNA steady-
state levels were significantly increased in both dmsuv3-
silenced (Figure 3C-E) and P-element insertion (Supple-
mentary Figure S2B) larvae. Surprisingly, northern blot
analysis failed to identify the accumulation of any obvious
RNA degradation products for any of the transcripts an-
alyzed (Supplementary Figure S2C), in contrast to previ-
ously reported results in human cell lines (23). Addition-
ally, although mRNA steady-state levels were increased,
the ribosomal RNAs 12S and 16S were unaffected in the
KD larvae (Figure 3C, D), suggesting DmSUV3 is not in-
volved in post-transcriptional regulation of the mitochon-
drial rRNAs. Interestingly, the increase in mRNA steady-
state levels coincided with only a mild effect on de novo tran-
scription in KD larvae 5 days ael, which stabilized during
a lh chase (Figure 3F). Although we cannot exclude that
differential intra-mitochondrial ribonucleotide pools might
affect transcription in KD larvae, our results suggest that
the loss of DmSUV3 leads to a specific stabilization of mi-
tochondrial messenger RNAs. Additionally, we observed a
profound synthesis of a single transcript of unknown func-
tion (Figure 3F, asterisk). We were unable to determine the
identity or function of this transcript, but the low levels of
this transcript in control samples suggests that this tran-
script is either rapidly turned over in controls or the loss
of DmSUV3 results in increased synthesis.
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Figure 1. DmSUV3 is a mitochondrial protein essential for Drosophila melanogaster development. (A) HeLa and Schneider 2R+ cells expressing a GFP-
tagged DmSUYV3 fusion protein (DmSUV3-GFP) stained with mitotracker red CMXRos to visualize the mitochondrial network. Scale bars represent 20
pm (top panel) or 5 wm (bottom panel). (B) Schematic representation of the P-element insertion in the dmsuv3 gene. (C) Hatching rates in dmsuv3 knock
down (w;UAS-dmsuv3-RNAi/+;daGAL4/+) and control (w;UAS-dmsuv3-RNAi/+; and w;;daGAL4/+) lines. (D) qRT-PCR of dmsuv3 transcript levels
in knock down (KD) and control larvae at 5 days after egg laying (ael). RP49 transcript was used as endogenous control. All data are represented as mean
+ SEM (***P < 0.001, n = 7). (E) Body size comparison in control (w;;), heterozygous P-element insertion (w;;P{EPgy2}CG9791FY12505 ) TM6B-GFP)
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P-element insertion and homozygous P-element insertion larvae at 3 days ael. RP49 transcript was used as endogenous control. All data are represented
as mean + SEM (*P < 0.05, **P < 0.01, ***P < 0.001, n = 5).
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(F) De novo mitochondrial transcription in isolated mitochondria from control and dmsuv3 KD larvae at 5 days ael. Mitochondrial rRNA 12S was used

as a loading control. All data are represented as mean + SEM. (*P < 0.05, **P < 0.01, ***P < 0.001, n = 5).



DmSUV3 deficiency decreases mitochondrial tRNA steady-
state levels and impairs mitochondrial translation

The increased steady-state levels of mRNAs per se do not
explain the severe biochemical phenotype observed in dm-
suv3 KD larvae, and we therefore performed in organello
labeling of mitochondrial translation products in isolated
mitochondria from larvae at 5 days ael. As shown in Fig-
ure 4A, dmsuv3-silenced larvae show a generalized decrease
in the synthesis of all mitochondrial-encoded polypeptides,
consistent with the decreased mitochondrial subunit steady-
state levels (Figure 2C).

To investigate how decreased degradation of mitochon-
drial mRNAs can lead to a translational defect, we mea-
sured mitochondrial tRNA steady-state levels by northern
blot analysis. To our surprise the majority of the tested tR-
NAs (9 out of 10) were significantly decreased in KD lar-
vae 5 days ael (Figure 4B and C). Interestingly, the most
severely affected tRNAs were consistently flanked by non-
coding sequences, such as tRNAS™ tRNASYS, tRNAP™ or
tRNAT (Figure 4B-D). This observation was independent
of the strand or the position within the genome.

Loss of DmSUYV3 leads to altered processing of mitochon-
drial transcripts

Our results thus far suggest that the steady-state level of var-
ious mitochondrial RNA species is differentially regulated,
and that increased mRNA levels, in combination with de-
creased tRNA levels, can result in a severe respiratory chain
defect. However, as many of the mRNAs and tRNAs are en-
coded on the same polycistronic precursor RNA we hypoth-
esised that post-transcriptional processing or maturation of
the RNAs might be affected.

We thus investigated the polyadenylation status of mi-
tochondrial RNAs, as we previously demonstrated that al-
tered polyadenylation in flies due to the loss of the leucine-
rich pentatricopeptide repeat containing (LRPPRC) pro-
tein homolog, the bicoid stability factor (BSF), can result
in a severe respiratory chain defect (33). Surprisingly, by
cloning and sequencing we observed a significant decrease
in poly(A) tail length in several mtDNA-encoded tran-
scripts, including ATP6/8 (decreased to 60%), ND3 (33%)),
ND6 (23%), ND1 (38%), as well as 16S rRNA (60%) (Fig-
ure 5SA).

We further performed high-resolution northern blot
analysis to investigate tRNA integrity. While aminoacy-
lation of tRNAs was not affected (Supplementary Fig-
ure S3A), we observed aberrant processing intermediates
of a subset of mitochondrial tRNAs (Figure 5B and C).
Strikingly, tRNAs with the most severely affected steady-
state levels also presented with unprocessed intermediates.
In order to determine the nature of these transcripts, we
performed detailed mapping, using end-labeled oligonu-
cleotides covering sequences flanking cither side of the af-
fected tRNAs as well as sequences on the tRNA and its
complement strand (Figure 5B). We consistently observed
unprocessed transcripts of tRNAs flanked by noncoding se-
quence (e.g. tRNAT" tRNASY, tRNAS™) in knockdown
(Figure 5B, C and Supplementary Figure S4A) and also
in P-element larvae (Supplementary Figure S3B), despite
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not showing an overall decrease in tRNA steady-state lev-
els. In contrast, tRNAs with coding sequence directly ad-
jacent were unaffected (e.g. tRNAY?, Supplementary Fig-
ure S4B). Overall, tRNAs were found attached to their 3’
flanking (e.g. tRNATP  Figure 5C), 5 flanking RNA se-
quences (tRNAS!" Supplementary Figure S4A) or 3’ and
5" flanking sequences (tRNA™", Figure 5C) suggesting that
processing of both tRNA ends is affected in the absence of
DmSUV3. These unprocessed extensions ranged from just a
few nucleotides (e.g. tRNASY, Supplementary Figure S4B)
to entire antisense tRNAs (e.g. tRNATP, Figure 5C). We
observed only one exception to this. Analysis of the down-
stream region of tRNAPP® did not reveal any incorrectly
processed tRNA despite being flanked by non-coding DNA
on its 3’ end (Supplementary Figure S4B).

To further confirm the accumulation of precursor RNA
molecules containing tRNAs, we performed strand-specific
gRT-PCR spanning the tRNA junctions, previously anal-
ysed by northern blot analysis. We found a significant accu-
mulation of the 5 and 3’ junctions of tRNATP, tRNA®Y*
and tRNAT" (Figure 5D and E) and the 3’ junction of
tRNAS™ (Supplementary Figure S4D) in KD larvae, sup-
porting the observation that precursor transcripts accumu-
late in the absence of DmSUV3. In agreement with the
northern blot results, we found no accumulation of COX3-
tRNASY or tRNASY-ND3 junctions in KD larvae (Sup-
plementary Figure S4E) in comparison to w;;daGAL4/+
control, as the unprocessed extension of this tRNA is too
short to be amplified with our qRT-PCR analysis.

High-resolution northern blot analysis revealed the ac-
cumulation of precursor transcripts containing tRNAs
and non-coding flanking regions. However, strand-specific
gRT-PCR also showed a significant increase in tRNA-
mRNA junctions (ND2-tRNATP, anti-tRNAT"-COXI,
Figure 5D). We therefore performed northern blot anal-
ysis against both mRNA and tRNA transcripts, using
strand-specific or end-labeled oligonucleotide probes (Fig-
ure 6A). The strong increase of ND2 transcript in KD lar-
vae was confirmed, using a strand-specific ribonuclotide
probe (Figure 6C). Using labelled oligonucleotides against
the immediately downstream tRNATP revealed an addi-
tional band besides tRNATP migrating at a similar size
to ND2, while a labeled oligo against the non-coding re-
gion of anti-tRNA®Y* presented the same band (Figure 6C,
asterisk). Interestingly, the anti-tRNA® probe addition-
ally revealed a transcript corresponding to the downstream
COX1 transcript (Figure 6C, hashtag). Overexposure of
the gels shows the polycistronic transcript covering at least
ND2 to COXI1 in KD larvae (Figure 6C, Supplemen-
tary Figure SSA, dollar) and in agreement, the transcripts
containing anti-tRNA®*-anti-tRNAT"-COX1 and ND2-
tRNATP-anti-tRNA®S-anti-tRNAD"-COX1 were found
significantly increased using strand specific qRT-PCR (Sup-
plementary Figure S5B).

We further investigated transcripts on the complement
strand, using the same membrane (Figure 6D). A strand-
specific probe against anti-ND?2 revealed a stabilized tran-
script slightly bigger than ND2, which probably covers the
entire anti-ND2 transcript, plus the mirror tRNAs of me-
thionine and tryptophan on either side of ND2. In addi-
tion, we observed the accumulation of precursor transcripts
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containing tRNA®, tRNAD and a stabilized transcript
encoding parts of the anti-cox] mRNA, suggesting an un-
known processing intermediate (Figure 6D, asterisk).

In accordance with these results, tRNAF is also found
in unprocessed precursor RNA molecules containing ND5
(Supplementary Figure S5C and S5D), and the tRNAPhe—
NDS5 junction also accumulated in KD larvae using strand-
specific qRT-PCR (Supplementary Figure S5E). In con-
trast, we did not observe accumulation of processing inter-
mediates containing tRNAY2! and junction levels between
tRNAV2.16S rRNA were not increased (Supplementary
Figure S5C, S5D and S5F). Thus, our results suggest that
SUV3 helicase activity is required for the correct processing
of mitochondrial transcripts, and its loss leads to the ac-
cumulation of unprocessed tRNA intermediates, affecting
mitochondrial translation and OXPHOS function in meta-
zoan.

Loss of DmPNPase does not affect processing or tRNA levels

To exclude that the observed processing defects are caused
by the disruption of the mitochondrial degradosome, we
silenced DmPNPase in flies. Similar to Dmsuv3 silencing,
Dmpnpase knockdown flies were pupal lethal. Interestingly,
while the knockdown of DmSUV3 lead to increased DmP-
NPase mRNA levels, DmSUV3 expression did not change
in response to DmPNPase silencing (Figure 7A and B). Al-
though we observed increased mRNA and unchanged 12S
and 16S rRNA steady-state levels (Figure 7C), comparable
to observations in the DmSUV3 KD, we failed to detect
processing intermediates in dimpnpase larvae, nor did we de-
tect reduced tRNA levels (Figure 7D).

DISCUSSION

SUV3 has been proposed to be an essential component of
the mitochondrial degradosome in yeast (22) and humans
(45). Conflicting reports on SUV3 function and the mito-
chondrial degradosome led us to investigate the role of the
Drosophila homolog of SUV3. We report that DmSUV3 co-
localizes exclusively with mitochondria and is required for
the correct processing of mitochondrial tRNAs.

GFP-tagged DmSUV3 localized to mitochondria in
transfected human tissue culture cells as well as Drosophila
Schneider 2R + cells, with no detection in the nucleus. Mam-
malian SUV3 has additionally been proposed to function
in the nucleus, affecting the cell cycle, apoptosis, recombi-
nation and chromatin maintenance pathways (46-48). Al-
though we cannot exclude that DmSUV3 might have some
additional nuclear function in Dm, DmSUV3 shows clear
mitochondrial localization and its ubiquitous knock-down
results in a severe mitochondrial dysfunction with decreased
respiratory chain enzyme activities and complex assembly.
The severe phenotype in the homozygous P-element larvae
prevented us from performing a detailed biochemical inves-
tigation and we therefore focused on RNAi-induced ubiq-
uitous silencing of DmSUV3. Our results demonstrate that
DmSUV3 is essential for fly development and its loss results
in larva to pupal lethality with flies unable to undergo meta-
morphosis.
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SUV3 has been proposed to be part of the mitochon-
drial degradosome, interacting either with the yeast Dssl
(22) or mammalian PNPase (24) ribonucleases to degrade
mitochondrial RNAs. In agreement, silencing of both Dm-
SUV3 and DmPNPase resulted in increased mitochondrial
mRNA stability, and de novo transcription was not in-
creased in DmSUV3 KD larva. In contrast, rRNA lev-
els did not increase, suggesting that PNPase and SUV3
are not involved in a general mitochondrial RNA degra-
dosome. PNPase has been suggested to be involved in the
polyadenylation-dependent degradation of mitochondrial
RNAs (7), although both mature rRNA transcripts are
polyadenylated in the fly (41,49,50), questioning such a role.
Further, we observed only a mild increase in degradation
intermediates, questioning a causative role in the observed
mitochondrial defect and larva lethality.

The tRNA punctuation model requires the tRNAs to
adapt a conformation recognized by the endonuclease com-
plexes RNase P and Z, allowing their release from the poly-
cistronic primary transcripts (3,51). In Dm, 5 processing
of tRNA junctions is suggested to occur prior to 3’ pro-
cessing (52), although clusters of tRNAs are suggested to
be processed from the downstream end (41). Silencing of
dmsuv3 resulted in a significant reduction of numerous tR-
NAs, which were found accumulated in unprocessed precur-
sors containing both protein-coding and non-coding tran-
scripts (summarised in Table S2). Mitochondrial RNA mat-
uration of canonical transcripts occurs via an endonucle-
olytic attack of RNase P and Z, and thus, these intermedi-
ates are unlikely degradation intermediates.

It is therefore likely that DmSUV3 is important for pro-
cessing of primary transcripts. Failure to correctly release
the tRNAs from these transcripts might therefore not only
lead to tRNA depletion, as observed here, but also in-
terfere with translation. Severe tRNA depletion has also
been observed in human cell lines expressing a dominant-
negative mutant of SUPV3L1, although no explanation was
given (23). The importance of SUV3 helicase activity in
the processing of primary transcripts has previously been
suggested in both budding (21,53) and fission (54) yeast,
and thus might be a major function of SUV3 in Meta-
zoans. Support stems from a recent observation in a screen
for mitochondrial proteins involved in mitochondrial RNA
processing, where SUPV3L1 clustered together with com-
ponents of the RNase P and Z processing machinery and
SUPV3L knockdown by RNAIi in a human cell line re-
sulted in increased transcript junctions of the mitochondrial
rRNAs (25). Additionally, RNase P and RNase Z were pro-
posed to form a stable supercomplex with the yeast degra-
dosome (55), further supporting the possibility that SUV3
helicase activity is required to resolve structures that can
interfere with correct processing. SUV3 and PNPase activ-
ity has recently been proposed for the maturation of hu-
man ND6 (56), and the accumulation of unprocessed poly-
cistronic transcripts spanning several transcripts, in KD lar-
vae further supports SUV3 involvement in transcript mat-
uration. Some of these polycistronic transcripts contained
non-coding regions, or represented short processing inter-
mediates, such as anti-COX1 and tRNATY" It is thus tempt-
ing to suggest that correct processing from coding regions
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is required for the rapid degradation of non-coding tran-
scripts.

It is generally accepted that poly(A) tail length in mam-
malian and arthropod mitochondria consists of up to
50 adenines, posttranscriptionally added to the immature
RNA (10). In human (7) and mouse (8) ND6 is an excep-
tion, lacking a poly(A) tail, while it is polyadenylated in
flies (33,41). Recently it has been proposed that SUV3 is in-
volved in the deadenylation of mtRNAs in human cell cul-
ture, as the overexpression of a dominant negative mutant
of hSUPVL3 resulted in an increase in poly(A) tail length
(23). In contrast, recent in vitro data demonstrated a con-
ditional interaction between SUV3 with both PNPase, and
the mitochondrial poly(A) polymerase (mtPAP) under low
mitochondrial matrix P; conditions, promoting the poly-
merase function of mtPAP (57). This latter observation is in
agreement with our results, where silencing of SUV3 in flies
leads to a reduction of poly(A) tails of several transcripts,
including ND1, ND3, ND6, ATP6/8 and 16S rRNA. De-
creased polyadenylation has previously been shown due
to the loss of LRPPRC in mice (8) as well as its fly ho-
molog, BSF (33). LRPPRC/BSF is proposed to be involved
in promoting mRNA stability in humans (58), mice (8)
and flies (33), as well as being required for polyadenylation
and maturation of mitochondrial mRNAs. On the other
hand, silencing of DmSUV3 results in decreased poly(A)
tail length, but increased mRNA steady-state levels. Severe
reduction of poly(A) tails has been reported in patients with
spastic ataxia with optic atrophy due to mutations in mt-
PAP (11), resulting in both increased and decreased mRINNA
steady-state levels (59). A similar trend was observed in
human cell lines with silenced mtPAP (26,60), suggesting
that polyadenylation does not universally regulate the sta-
bility of mitochondrial mRNAs. Interestingly, targeting of
a cytosolic poly(A)-specific ribonuclease to mitochondria
results in a marked translational defect (61). We also ob-
served a marked decrease in de novo translation and com-
plex assembly, consistent with the poly(A) tail being impor-
tant for the regulation of mitochondrial translation. In con-
trast, silencing of BSF resulted in increased de novo transla-
tion, despite reduced polyadenylation (33), further compli-
cating the role of the poly(A) tail in mitochondria. Thus, the
role of polyadenylation of mitochondrial RNAs remains a
conundrum, with its only established role to resolve incom-
plete termination signals in the majority of mRNAs and de-
creased poly(A) tail length might only be a secondary event
due DmSUV3 KD.

Experiments in human (45), mouse (62) and yeast (21)
associated the silencing or loss of SUV3 with a severe
mtDNA depletion, suggesting a function of SUV3 during
mtDNA replication. In the mouse, heterozygous disruption
of SUV3 resulted in mtDNA depletion and the accumula-
tion of mtDNA mutations, leading to tumor development
and shortened lifespan (62). In contrast, we observed no
changes in mtDNA steady-state levels in P-element larvae
and a marked increase in mtDNA steady-state levels in KD
larvae, most likely due to a compensatory effect of the mito-
chondrial disruption, previously observed both in flies and
mouse. In mammals two origins of replication are known,
with one origin placed within an ~1kb non-coding regula-
tory region containing a displacement loop, while the sec-
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ond is embedded in a cluster of five tRNAs, two thirds
around the mitochondrial genome (2). Both origins require
RNA primase activity for mtDNA replication (2,63), and
it is thus possible that metazoan SUV3 is necessary to re-
lease unprocessed RNAs from the promoters to allow DNA
replication. Support stems from the observation that the
petite-negative phenotype in yeast SUV3 mutants can be
rescued in intronless yeast strains (64). However, further
work is required to identify the role of SUV3 in mtDNA
replication, in mammals as in the fly.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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