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Abstract. Integrins mediate cell adhesion, migration, 
and a variety of signal transduction events. These inte- 
grin actions can overlap or even synergize with those of 
growth factors. We examined for mechanisms of collab- 
oration or synergy between integrins and growth fac- 
tors involving MAP kinases, which regulate many cellu- 
lar functions. In cooperation with integrins, the growth 
factors EGF, PDGF-BB, and basic FGF each produced 
a marked, transient activation of the ERK (extracellu- 
lar signal-regulated kinase) class of MAP kinase, but 
only if the integrins were both aggregated and occupied 
by ligand. Transmembrane accumulation of total ty- 
rosine-phosphorylated proteins, as well as nonsynergis- 
tic MAP kinase activation, could be induced by simple 
integrin aggregation, whereas enhanced transient accu- 
mulation of the EGF-receptor substrate eps8 required 

integrin aggregation and occupancy, as well as EGF 
treatment. Each type of growth factor receptor was it- 
self induced to aggregate transiently by integrin ligand- 
coated beads in a process requiring both aggregation 
and occupancy of integrin receptors, but not the pres- 
ence of growth factor ligand. Synergism was also ob- 
served between integrins and growth factors for trigger- 
ing tyrosine phosphorylation of EGF, PDGF, and FGF 
receptors. This collaborative response also required 
both integrin aggregation and occupancy. These studies 
identify mechanisms in the signal transduction response 
to integrins and growth factors that require various 
combinations of integrin aggregation and ligands for in- 
tegrin or growth factor receptors, providing opportuni- 
ties for collaboration between these major regulatory 
systems. 

I 
NTEGRINS mediate a wide variety of biological pro- 
cesses by functioning as receptors and transmem- 
brane transducers in cell adhesion, migration, and sig- 

nal transduction events (Hynes, 1992; Gumbiner, 1993; 
Clark and Brugge, 1995; Schwartz et al., 1995; Yamada and 
Miyamoto, 1995; Rosales et al., 1995; Richardson and Par- 
sons, 1995; Parsons, 1996; Ruoslahti, 1996; Gumbiner, 
1996). For example, interactions of ligands with integrins 
can stimulate a variety of signaling events including ty- 
rosine phosphorylation (reviewed by Schwartz et al., 1995; 
Clark and Brugge, 1995; Richardson and Parsons, 1995), 
cytoplasmic alkalinization (Schwartz, 1993), calcium influx 
(Tucker et al., 1990; Schwartz, 1993; Schwartz and Den- 
ninghoff, 1994), activation of two types of mitogen-acti- 
vated protein (MAP) 1 kinases, i.e., extracellular signal- 
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vated protein. 

related kinase (ERK) (Chen et al., 1994; Schlaepfer et al., 
1994; Morino et al., 1995; Zhu and Assoian, 1995) and c-Jun 
NH2-terminal kinase or JNK (Miyamoto et al., 1995b), ac- 
cumulation of cytoskeletal molecules at sites of cell adhe- 
sion to extracellular matrix (reviewed by Turner and Bur- 
ridge, 1991; Sastry and Horwitz, 1993; Geiger et al., 1995; 
Yamada and Miyamoto, 1995), and altered gene expres- 
sion (Damsky and Werb, 1992; Miyake et al., 1993; Lin et al., 
1994; Fan et al., 1995; Delcommenne and Streuli, 1995; 
Mondal et al., 1995; Lafrenie and Yamada, 1996). Both the 
occupancy of integrin receptors by a ligand and integrin 
clustering into aggregates play roles in integrin function, 
and these two stimuli can synergize (Yamada and Miya- 
moto, 1995). Ligand-mediated integrin clustering has also 
been reported to induce the aggregation of the growth fac- 
tor receptor for FGF (Plopper et al., 1995), and to stimu- 
late the phosphorylation of PDGF 13-receptors even in the 
absence of any growth factor ligand (Sundberg and Rubin, 
19%). 

Integrins can collaborate or synergize functionally with 
growth factors in a variety of biological processes (reviews 
include Damsky and Werb, 1992 and Schwartz et al., 1995). 
Some examples include cell growth and/or differentiation 
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of fibroblasts, mammary epithelial cells, myoblasts, and 
chondrocytes (Blum et al., 1987; Tucker et al., 1990; Arner 
and Tortorella, 1995; Zhu and Assoian, 1995; Zhu et al., 
1996; Sastry et al., 1996), and activation of the Na-H anti- 
porter via a pathway dependent on protein kinase C 
(Schwartz and Lechene, 1992). Although increasing num- 
bers of such examples of integrin synergism with growth 
factor pathways are being described at the biological level, 
the possible intermediates and mechanisms of such syner- 
gies are generally still unknown. An interesting exception 
is a mechanism involving dual effects on enzyme activation 
and levels of a substrate, thereby generating a synergistic 
response: integrins increase the activity of a PIP 5-kinase 
via the regulatory molecule Rho, generating the substrate 
4,5-PIP2, while PDGF concurrently activates the enzyme 
phospholipase C~, which hydrolyzes this substrate to gen- 
erate second messengers (McNamee et al., 1993; Chong et 
al., 1994). In another system, the mitogenic effects of insu- 
lin are enhanced by interaction of vitronectin with Otv[33, 

which may be mediated via tyrosine phosphorylation of 
IRS-1, which binds to this integrin (Vuori and Ruoslahti, 
1995). 

Theoretically, a particularly direct mechanism of inte- 
grin-growth factor synergy might be for the downstream 
effects of integrins and of occupied growth factor recep- 
tors to be additive or synergistic. Since the MAP kinase 
pathway has been implicated as a regulator of such a wide 
variety of cell growth, differentiation, and gene activation 
pathways, and because integrins and growth factors can 
each separately stimulate this pathway, we have explored 
the possibility that integrins and growth factors might 
function cooperatively with respect to MAP kinase activa- 
tion. 

We have tested this hypothesis using human fibroblasts 
in suspension interacting with ligand-coated beads and 
soluble growth factors, avoiding conditions of long-term 
serum starvation. We find both a marked activation of 
ERK and upstream synergistic tyrosine phosphorylation 
of the cognate receptors following appropriate integrin 
stimulation of human fibroblasts in cooperation with EGF, 
PDGF, or basic FGF (bFGF). This process requires that 
the integrin receptors be both aggregated and occupied by 
ligand. This latter dual requirement mirrors requirements 
for both integrin aggregation and occupancy to induce the 
physical aggregation of each of these receptors at sites of 
integrin clustering. The assembly of integrins and growth 
factor receptors into these large signaling and cytoskeletal 
complexes, after matrix contact involving both integrin ag- 
gregation and occupancy, could explain the synergy we ob- 
serve by transiently concentrating effectors and substrates 
together at a local site for greater mutual interaction. 

Materials and Methods 

Cell Culture and Bead Assays 
Human foreskin fibroblasts were cultured in DMEM supplemented with 
10% heat-inactivated fetal bovine serum (Hyclone, Logan, C'F), 1 mM 
glutamine, 50 Ixg/ml streptomycin, and 50 U/ml penicillin. The cells were a 
gift from Susan Yamada (National Institute of Dental Research, NIH) 
and were used at cell passages 9-18. Cells were maintained in regular me- 
dium, avoiding any serum starvation until after trypsinization. 

Latex beads (mean diameter 11.9 ~,m, Sigma Chem. Co., St. Louis, 

MO) were coated with ligand or antibody and incubated with cells as de- 
scribed previously for the experimental induction of focal integrin cluster- 
ing and transmembrane accumulation of cytoplasmic molecules (Miyamoto 
et al., 1995a). Cells were routinely preincubated for 2 h in fibronectin- 
depleted serum with 25 ixg/ml cycloheximide to prevent fibronectin secre- 
tion, detached with trypsin-EDTA, and then allowed to recover from the 
trypsinization in DMEM containing fibronectin-depleted serum for 20 
min. The cells were then washed twice with serum-free medium and incu- 
bated in suspension in serum-free DMEM for an additional 30 min (total 
of ~40 min in serum-free medium). After a 20-min incubation with 
ligand- or antibody-coated beads in serum-free DMEM in suspension, 
cells were treated for 5 min at 37°C with or without the following growth 
factors from BioSource International (Camarilli, CA): 10 or 100 ng/ml hu- 
man recombinant epidermal growth factor (EGF), 10 ng/ml human re- 
combinant platelet-derived growth factor-BB (PDGF-BB), or 10 ng/ml 
human recombinant basic fibroblast growth factor (bFGF) for 5 min at 
37°C. The peak of MAP kinase (ERK) activation after stimulation of hu- 
man fibroblasts with these growth factors was determined in preliminary 
studies to occur routinely at this 5-min time point. 

For immunofluorescence, cells were fixed in PBS with 4% paraformal- 
dehyde and 5% sucrose, and analyzed by immunofluorescence micros- 
copy as described (LaFlamme et al., 1992; Miyamoto et al., 1995a) using a 
Nikon HFX-II microscope equipped for fluorescein and rhodamine fluo- 
rescence. In experiments using mouse anti-13t K20 antibody on beads, an 
excess of rat monoclonal anti-mouse IgG2a antibody (50 ixg/ml) was in- 
cluded at each step to block cross-reactivity of the FITC-labeled second- 
ary rat monoclonal anti-mouse IgG~ antibodies. 

Immunological Reagents 
Antibodies to integrins used to coat the latex beads were rat monoclonal 
antibodies mAb 16 to the ct 5 integrin subunit and mAb 13 to the 131 inte- 
grin subunit (Akiyama et al., 1989; LaFlamme et al., 1992), as well as 
mouse monoclonal antibody K20 to the 131 integrin subunit (Immunotech, 
Westbrook, ME). Polyclonal rabbit anti-growth factor receptor antibodies 
against EGF-receptor, PDGF a-receptor, PDGF 13-receptor, and bFGF- 
receptor were purchased from Santa Cruz Biotechnology (Santa Cruz, 
CA). Mouse monoclonal antibodies against FAK and epidermal growth 
factor substrate 8 (eps8) were from Transduction Laboratories (Lexing- 
ton, KY) and against phosphotyrosine (mAb 4G10) were from Upstate 
Biotechnology Inc. (Lake Placid, NY). Sheep anti-mouse IgG conjugated 
with peroxidase (Amersham Corp., Arlington Heights, IL) was used as the 
secondary antibody for Western immunoblotting. FITC- and rhodamine- 
labeled secondary antibodies were obtained from BioSource Interna- 
tional. 

Characterization of Protein Tyrosine Phosphorylation 
Ceils were preincubated with DMEM with fibronectin-depleted serum 
and 25 ixg/ml cycloheximide, detached with trypsin-EDTA, and allowed 
to recover for 20 min in fibronectin-depleted medium as described 
(LaFlamme et al., 1992). To assess the effect of each growth factor and in- 
tegrins on protein tyrosine phosphorylation, cells were rinsed twice with 
serum-free DMEM and incubated for an additional 30 min without serum, 
and then 5 × 105 cells in 500 p.l serum-free medium were incubated with 
107 beads for 20 min at 37°C. The aggregated complexes of cells and beads 
were incubated with or without 10 ng/ml of each growth factor for an addi- 
tional 5 min at 37°C. The cells were rinsed with PBS containing 1 mM so- 
dium orthovanadate, and then lysed with RIPA buffer (1% Triton X-100, 
1% sodium deoxycholate, 0.1% SDS, 150 mM NaCI, 50 mM Tris-C1, pH 
8.0, 0.2 U/ml aprotinin, 2 I~g/ml leupeptin, 1 Ixg/ml pepstatin A, 2 mM 
PMSF, 1 mM sodium orthovanadate). The extracts were subjected to 
SDS-PAGE and Western immunoblotting using anti-phosphotyrosine an- 
tibody (Guan et al., 1991). 

Measurement of Extracellular Signal-regulated 
Kinase Activation 
Cells prepared as described above were incubated in suspension in serum- 
free DMEM for 30 min. Cells (106) were then incubated with 2 × 107 
beads in 500 ixl serum-free medium for 20 min at 37°C. The aggregated 
complexes of cells and beads were treated with or without each growth 
factor (10 ng/ml) for 5 min at 37°C. For measurement of ERK activity, 
ceils were extracted with 1% NP-40, 20 mM Hepes, pH 7.5, 10 mM 
EGTA, 40 mM 13-glycerophosphate, 2 mM N%VO4, 1 mM DTT, 2.5 mM 
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MgC12, 20 wg/ml aprotinin, 20 ixg/ml leupeptin, and 1 mM PMSF. Both 
ERK1 and ERK2 proteins were immunoprecipitated at 4°C using anti- 
ERK1 or anti-ERK2 antibody (Santa Cruz Biotechnology), which cross- 
reacted with both ERK1 and ERK2 proteins, and then with protein G Sepha- 
rose (Pierce, Rockford, IL) for 1 h. These complexes were washed three 
times with PBS containing 1% NP-40 and 2 mM Na3VO 4, once with "Iris 
buffer (100 mM Tris-C1, pH 7.5, 500 mM LiCI), and then once with kinase 
reaction buffer (12.5 mM MOPS, pH 7.5, 12.5 mM 13-glycerophosphate, 
7.5 mM MgC12, 0.5 mM EGTA, 0.5 mM NaF, 0.5 mM Na3VO4). 

To assay ERK activity, the immunocomplexes were incubated with ki- 
nase reaction buffer containing 1 IxCi ~t-[32p]ATP, 20 mM unlabeled ATP, 
3.3 mM DTF, and 1.5 mg/ml myelin basic protein (MBP, Sigma) as a sub- 
strate for ERK at 30°C for 20 rain. The samples were then suspended in 
Laemmli electrophoresis sample buffer, heated at 100°C for 5 min, and an- 
alyzed by SDS-PAGE. Using gel slices for each sample, radioactivity was 
determined with a liquid scintillation counter (LS 6000IC; Beckman In- 
strs., Fullerton, CA). 

Results 

Collaborative Activation of  MAP Kinases by Integrins 
and Growth Factors 

M A P  kinase activation was explored  as a key regula tory  
pa thway potent ia l ly  involved in integrin-growth factor 
synergy. Integrins and growth factors are each known to 
tr igger separa te ly  the activation of  the E R K  class of M A P  
kinase. Such activation of  the E R K  class of M A P  kinase is 
shown for human fibroblasts  in Fig. 1 using E G F ,  P D G F ,  
or  b F G F  (Fig. 1, asterisks). As previously r epor ted  (Miya- 
moto  et al., 1995b), simple clustering of  integrins with an 
aggregating,  but  not  anti-functional  an t ibody on beads  
( m A b  K20), could also induce transient  E R K  activation, 
as could f ibronectin-  and anti-functional  an t ibody ( m A b  
13)-coated beads  (Fig. 1). However ,  the s t imulat ion of 
E R K  activity by E G F ,  P D G F - B B ,  or  b F G F  was not  en- 
hanced for any of these growth factors by cost imulat ion 
with integrin aggregat ion med ia ted  by the monoclonal  an- 
t i body  K20 on beads;  i.e., the  two mechanisms  of  E R K  
act iva t ion  were  unexpec ted ly  not  addi t ive  for  E G F  (Fig. 
1 A),  P D G F - B B  (Fig. 1 B), or  b F G F  (Fig. 1 C). 

In  contrast ,  if such ant ibody-aggregated  integrins were 
also incubated  with the synthetic pept ide  Gly-Arg-Gly-  
Asp-Ser  ( G R G D S )  containing the key R G D  sequence to 
induce l igand occupancy,  a large t ransient  act ivation of  
E R K  activity was then induced after addi t ion of  E G F  (Fig. 
1 A) ,  P D G F - B B  (Fig. 1 B), or  b F G F  (Fig. 1 C). A similar 
s trong activation was observed  when growth factors were 
added  under  o ther  condit ions thought  to induce both  inte- 
grin occupancy and aggregation,  i.e., ant i-functional  anti- 
body-  or  f ibronect in-coated beads  (Fig. 1, A and B). This 
coopera t ive  act ivat ion occurring in the presence of  inte- 
grin aggregat ion plus occupancy was substantial ly larger 
than that  ob ta ined  without  integrin s t imulat ion even with 
10 ng/ml of  each growth factor,  and it was often larger than 
even the sum of E G F  and in tegr in-media ted  activation 

Figure 1. Synergistic activation of ERK by integrin aggregation 
plus ligand occupancy in cooperation with growth factors. Cells 
were preincubated for 20 min at 37°C with beads coated with the 
ligands listed in each figure. The cells with attached beads were 
then incubated with (asterisks) or without each growth factor at 
10 ng/ml for 5 min at 37°C; the growth factors tested were EGF 
(A), PDGF-BB (B), and bFGF (C). Activation of ERK was as- 

sayed by autoradiography of the myelin basic protein band 
(MBP, above each graph) and by scintillation counting of incor- 
porated radioactivity. Conditions compared included: absence of 
beads (No Beads), polylysine-coated beads (Polylysine), nonin- 
hibitory anti-131 mAb K20-coated beads (rnAb K20), non-inhibi- 
tory anti-J31 mAb K20-coated beads coincubated with GRGDS 
peptide at 500 p~g/ml for 1 h (mAb K20+GRGDS), adhesion- 
blocking anti-J31 mAb 13-coated beads (mAb 13), or human 
plasma fibronectin-coated beads (Fibronectin); asterisk denotes 
costimulation with growth factor for 5 min after 20 min preincu- 
bation of cells with ligand-coated beads. 
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levels; it was thus strongly additive or weakly synergistic. 
Similar results were obtained in three experiments. 

Requirements for Integrin-mediated 
Transmembrane Accumulation of Phosphorylated 
Proteins and EGF-Receptor Substrate 

Since ERK and other signaling molecules can be induced 
to accumulate in transmembrane fashion using ligand- 
coated beads (Miyamoto et al., 1995; Plopper et al., 1995), 
we examined for accumulation of total phosphotyrosine- 
containing proteins and of a growth factor substrate. This 
localized transmembrane accumulation of tyrosine-phos- 
phorylated proteins required only simple integrin aggrega- 
tion, as evaluated using a non-inhibitory anti-integrin anti- 
body on beads to induce aggregation and a monoclonal 
anti-phosphotyrosine antibody for detection (Fig. 2 A). 
Addition of integrin R G D  peptide ligand or the use of fi- 
bronectin had relatively modest effects on the extent of ac- 
cumulation, and the presence of EGF resulted in a particu- 
larly strong total accumulation of tyrosine-phosphorylated 
proteins (Fig. 2 and data not shown). This result appears 
consistent with the previously reported accumulation of a 
number of  signal transduction molecules at sites of integrin 
aggregation even in the absence of integrin occupancy, 
though enhanced in amplitude by occupancy (Miyamoto 
et al., 1995; Plopper et al., 1995). 

A target of EGF receptor-mediated phosphorylation 
termed eps8 has been implicated in regulation of cell pro- 
liferation and malignancy (Fazioli et al., 1993; Matoskova 
et al., 1995). In marked contrast to the EGF receptor itself, 
in the absence of EGF treatment this EGF receptor sub- 
strate did not accumulate at sites of integrin aggregation 
above basal levels; no enhanced accumulation was seen 
even with integrin occupancy, and even under conditions 
with intact fibronectin on the beads (Fig. 2 B). However, if 
the EGF receptor was occupied by its growth factor ligand 
EGF, eps8 accumulated significantly more effectively if 
conditions of both aggregation and occupancy of integrins 
were also fulfilled (Fig. 2 B, asterisks). The magnitude of 
eps8 accumulation was greater if the dose of EGF was in- 
creased (Fig. 2 B). The accumulation of eps8 induced by 
EGF and integrin collaboration was transient, with a 
marked decline in responsiveness to EGF after 60 rain of 
continuous integrin stimulation (Fig. 2 B, center). Thus, in 
order to accumulate most effectively, this EGF-receptor 
substrate requires integrin aggregation and ligand occu- 
pancy, as well as growth factor receptor occupancy, and 
the enhancement of ability to accumulate is transient. 

Requirements for Integrin-mediated Growth Factor 
Receptor Aggregation 

We attempted to trace the requirements for MAP kinase 
activation and eps8 aggregation back to possible physical 
changes mediated by integrins in the localization of growth 
factor receptors themselves. Integrin clustering at sites of 
fibroblast contact with ligand-coated beads was found to 
be accompanied by local accumulation of each of the three 
growth factor receptors examined (Figs. 3 and 4). EGF re- 
ceptors were found to accumulate in a ring around fi- 
bronectin-coated beads (Fig. 3 A). Similarly, anti-func- 
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Figure 2. Quantitation of bead-induced accumulation of ty- 
rosine-phosphorylated proteins (A) or epidermal growth factor 
receptor substrate 8 (eps8; B) with or without EGF stimulation 
as assessed by immunofluorescence. After 20 min or 60 min 
preincubation with beads, cells were treated with (asterisks) or 
without 10 ng/ml or 100 ng/ml human recombinant epidermal 
growth factor (EGF) for 5 min before fixation for immunoftuo- 
rescence localization. The ordinate indicates the percentage of 
beads positive for immunofluorescence accumulation of tyrosine- 
phosphorylated proteins (Tyr-P) or eps8 using the types of test 
beads listed along the abscissa; values indicate mean and stan- 
dard deviation as determined using "blind" counts of transmem- 
brane accumulation of eps8 immunofluorescence adjacent to 
beads. Polystyrene beads were coated with one of the following 
ligands: fibronectin, adhesion-blocking antibody mAb 13 to the 
131 subunit, non-inhibitory antibodies K20 to the 131 subunit, or 
polylysine. Where indicated, cells were preincubated with GRGDS 
or GRGES peptide for 1 h at 37°C before the addition of mAb 
K20-coated beads. Asterisk denotes costimulation with EGF for 
5 min after preincubation with ligand-coated beads for 20 or 60 rain. 

tional antibodies (postulated to provide both aggregation 
and integrin occupancy) induced a localized accumulation 
of E G F  receptors (Fig. 4). However, simple aggregation of 
integrins by an aggregating monoclonal antibody on beads 
did not induce such aggregation of growth factor receptors 
(Figs. 3 C and 4). On the other hand, if this integrin-medi- 
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Figure 3. Integrin-induced aggregation of epidermal growth factor receptor (EGF-R) by individual ligand-coated beads. Immuno- 
fluorescence localization of EGF-R was determined after incubation with beads coated with fibronectin, polylysine, or mAb K20. Each 
inset shows a higher magnification view focusing on the equator of the beads marked by the highlighted black arrowheads. Fibronectin- 
coated beads induced localization of EGF-R when assayed at 20 min (A). Absence of EGF-R localization adjacent to either polylysine- 
coated beads (B) or mAb K20-coated beads (C) was observed. To visualize the bead, the same cell incubated with mAb K20-coated 
beads shown in C is shown using combined transmitted light and fluorescence to illuminate the bead (D). After incubation with 
GRGDS peptide, immunolocalizafion of EGF-R was found adjacent to mAb K20-coated beads (E); the same bead is also shown illumi- 
nated by transmitted light (F). Bar, 20 Ixm. 

ated aggregation was combined with occupancy with RGD 
(but not RGE)-containing peptides, or by using fibronec- 
tin as the ligand on beads, a similar striking clustering of 
EGF receptors was observed (Figs. 3 E and 4). Similarly, 
accumulations of both PDGF a-receptors and PDGF 
13-receptors, as well as FGF receptors, were induced by in- 
tegrin interactions with ligands (Fig. 4). In all of these 
three additional cases, both integrin aggregation and occu- 
pancy were necessary preconditions, as determined by 
analyses using aggregating antibodies and RGD vs RGE 
peptides (Fig. 4 A: compare +GRGDS with +GRGES),  
and beads coated with fibronectin or anti-functional vs 
non-inhibitory antibodies (Fig. 4 A). The integrin-induced 
accumulation of growth factor receptors was progressively 
and markedly reduced after prolonged periods of integrin- 
ligand interaction (Fig. 4 B); the effects on growth factor 
receptor localization were thus also transient. 

Synergistic Growth Factor Receptor Phosphorylation 

A recent study described the induction of PDGF [~-recep- 
tor phosphorylation by integrin clustering in the absence 
of any growth factor ligand (Sundberg and Rubin, 1996). 
The effects on MAP kinase activation that we observed 
might therefore be related to additive receptor phosphory- 
lation. Under our conditions used in this study, however, 
integrin interaction with fibronectin resulted in little or no 
detectable increase in tyrosine phosphorylation of either 
EGF or PDGF receptors (Fig. 5, A and C, lanes 1-3), even 
though FAK phosphorylation was stimulated by fibronec- 
tin. Addition of the corresponding growth factor produced 

the expected increase in receptor tyrosine phosphoryla- 
tion in the presence or absence of bound polylysine-coated 
beads (Fig. 5, A and C, lanes 4 and 5). Interestingly, how- 
ever, the combination of fibronectin-coated beads and 
growth factors resulted in a synergistic enhancement of 
the tyrosine phosphorylation of the cognate receptor. This 
effect was observed for both EGF receptors and PDGF re- 
ceptors (lane 6 in Fig. 5, A and C). Controls using the same 
blots reprobed with antibody against either the EGF re- 
ceptor or the PDGF 13-receptor confirmed equal loading 
of lanes (Fig. 5, B and D). 

This synergistic enhancement of growth factor receptor 
tyrosine phosphorylation was not observed with a combi- 
nation of EGF with simple integrin aggregation mediated 
by non-inhibitory antibody K20 plus EGF, even though in- 
tegrin aggregation alone was able to stimulate FAK phos- 
phorylation as previously reported (e.g., see Yamada and 
Miyamoto, 1995; Fig. 5 E, lanes 3 and 8). Instead, synergis- 
tic stimulation of EGF receptor tyrosine phosphorylation 
required a combination of three conditions: EGF treat- 
ment, integrin ligand occupancy, and antibody-induced ag- 
gregation (compares lane 9 with lanes 3-5, and 8 in Fig. 
5 E). Substitution of a peptide with a conservative amino 
acid substitution (GRGES) for the GRGDS peptide re- 
suited in a loss of the synergistic receptor phosphorylation, 
even though FAK tyrosine phosphorylation remained 
(Fig. 5 E, lane 10). Very similar results were obtained 
when the same conditions were compared for phosphory- 
lation of PDGF receptors mediated by PDGF-BB, i.e., 
both integrin aggregation and occupancy were necessary 
for synergistic tyrosine phosphorylation of PDGF recep- 
tors (Fig. 5 F). 
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Figure 4. Quantitation of bead-induced accumulation of EGF- 
receptor, PDGF a-receptor, PDGF [3-receptor, or bFGF-recep- 
tor as assessed by immunofluorescence microscopy. The ordinate 
indicates the percentage of beads positive for immunofluores- 
cence for each antigen listed on the right; values indicate mean 
and standard deviation. In A, the different types of beads or 
beads plus soluble peptide are listed along the bottom of the fig- 
ure. Polystyrene beads were coated with one of the following 
ligands: fibronectin, adhesion-blocking antibody mAb 13 to the 
integrin 131 subunit, non-inhibitory antibody K20 to the 131 sub- 
unit, or polylysine. To examine the role of ligand occupancy, cells 
were preincubated with G R G D S  or control GRGES peptide for 
1 h at 37°C before the addition of mAb K20-coated beads. B 
shows the transient nature of the clustering of growth factor re- 
ceptors. Fibronectin-coated beads were incubated with the cells 
for 20, 40, or 60 min before examination for clustering of the four 
different receptor antigens listed on the right. 

Discussion 

Integrin-mediated signaling is a complex process. This 
study has examined the requirements for integrin induc- 
tion of growth factor receptor and substrate accumulation 
in signaling complexes, as well as for potential synergism 
between the actions of integrins and growth factors on re- 
ceptor phosphorylation and MAP kinase activation. Major 
new conclusions from our study include the following: (1) 
The ERK class of MAP kinases is activated by integrin ag- 
gregation alone or by various growth factors, but the two 
are not additive in the absence of integrin occupancy. 
However, in the presence of both integrin aggregation and 
occupancy, there is a striking increase in ERK activity with 
the growth factor ligands EGF, PDGF, or bFGF. (2) Al- 
though the local accumulation of bulk tyrosine-phosphor- 
ylated proteins requires only integrin aggregation and not 
occupancy, maximal accumulation of EGF-receptor sub- 
strate 8 (eps8) requires both integrin aggregation and oc- 
cupancy, as well as the ligand EGF itself. (3) Each of the 
different growth factor receptors, for EGF, PDGF (et- and 
[3-receptors), and bFGF, are induced to accumulate at 
sites of integrin-ligand aggregation. This process does not 
require external growth factor ligand, but it does require 
both integrin aggregation and occupancy. (4) Synergy with 
integrins also occurs at the level of growth factor receptor 
phosphorylation: receptor tyrosine phosphorylation is only 
minimally enhanced by integrin action, is stimulated by 
growth factors, and is enhanced markedly by the combina- 
tion of integrin and growth factor. 

A schematic summary of our findings is presented in 
Fig. 6, indicating three levels of response to stimulation of 
integrin or growth factor receptors. This collaborative re- 
sponse involving growth factor receptor phosphorylation, 
substrate accumulation, and MAP kinase activation pro- 
vides new mechanisms relevant to synergism at a biologi- 
cal level between specific growth factors and integrin re- 
ceptors. 

The autophosphorylation of growth factor receptors of 
the tyrosine kinase family is thought to be induced by 
ligand-mediated dimerization (Fantl et al., 1993; Lemmon 
and Schlessinger, 1994; Heldin, 1995). Although clustering 
of such receptors by antibodies is often sufficient to trigger 
autophosphorylation and the downstream effects induced 
by ligand binding, simple dimer formation may not be 
sufficient, and the process may require effects of ligand 
binding on receptor subunit orientation or conformation 
(Gadella and Jovin, 1995). Downstream stimulation of ERK 
in the MAP kinase pathway is well-characterized for this 
class of receptor kinases, and the activation of ERK results 
in a variety of effects on gene regulation, growth, and dif- 
ferentiation (e.g., see reviews by Blumer and Johnson, 
1994; Johnson and Vaillancourt, 1994; Treisman, 1996). 

The previously best-characterized mechanism for growth 
factor and integrin synergy involves the separate actions of 
cell surface receptors that bind fibronectin (presumably 
integrins) and the growth factor PDGF on enzyme and 
substrate in inositol lipid metabolism to generate enzyme- 
substrate synergism (McNamee et al., 1993). Particularly 
relevant findings, however, are the recently reported coac- 
cumulation of a variety of signaling molecules such as a 
growth factor receptor for FGF (Plopper et al., 1995) and 
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Figure 5. Synergistic effects on growth factor receptor tyrosine phosphorylation induced by integrin aggregation plus ligand occupancy 
in cooperativity with growth factors. Cells were incubated with ligand-coated beads for 20 min at 37°C. The cell-beads complexes were 
treated with each growth factor for 5 min at 37°C, and protein tyrosine phosphorylation was determined by Western immunoblotting 
with monoclonal anti-phosphotyrosine (A, C, E, and F). Cells were incubated without growth factors (lanes 1-3 of A-D) or stimulated 
with 10 ng/ml EGF (lanes 4--6 of A and B) or PDGF-BB (lanes 4---6 of C and D) after preincubation with the following: control with no 
beads (lanes I and 4); with polylysine-coated beads (lanes 2 and 5), or with fibronectin-coated beads (lanes 3 and 6). The electrophoretic 
mobility and total amount of EGF receptor (B) or PDGF B-receptor (D) protein was analyzed in each lane by stripping and reanalyzing 
the same immunoblot with the appropriate antibody; similar amounts were found for each condition. In E and F, roles of integrin aggre- 
gation and occupancy in the synergism for receptor tyrosine phosphorylation were examined. Cells were incubated without growth fac- 
tors (lanes 1-5) or stimulated with 10 ng/ml EGF (lanes 6-10 of E) or PDGF-BB (lanes 6-10 of F) after preincubation with the follow- 
ing: control with no beads (lanes I and 6); with polylysine-coated beads (lanes 2 and 7), with aggregating non-inhibitory mAb K20 beads 
(lanes 3 and 8); with mAb K20 plus GRGDS (lanes 4 and 9); or with mAb K20 plus the control peptide GRGES (lanes 5 and 10). 

MAP kinases (Miyamoto et al., 1995b) in bead-induced 
transmembrane cytoskeletal and signaling complexes. Ing- 
ber and others have suggested that such accumulations 
could be centers of signaling, since receptor enzyme and 
substrate are brought into close proximity in these large 
accumulations of cytoskeletal and signaling molecules at 
integrin-induced adhesion sites that may form discrete 
functional complexes (Turner and Burridge, 1991; Dam- 
sky and Werb, 1992; Fazioli et al., 1993; Carraway and 
Carraway, 1995; Jockusch et al., 1995; Geiger et al., 1995; 

Plopper et al., 1995; Yamada and Miyamoto, 1995; Sund- 
berg and Rubin, 1996). The present study establishes that 
integrin stimulation can induce a similar accumulation of 
FGF, EGF, and PDGF a- and PDGF B-receptors in fibro- 
blasts, and that it requires not only integrin aggregation, 
but also ligand occupancy. This latter finding suggests that 
occupancy may be needed for conformational unmasking 
or exposure of the 131 integrin cytoplasmic tail for addi- 
tional cytoplasmic interactions, as suggested by previous 
studies on altered function after occupancy that appear to 
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I INTEGRIN 
AGGREGATION 

Aggregation of phosphotyrosine-containing 
proteins and signaling molecules 

Activation of ERK and JNK classes of MAP kinase 

OCCUPANCY 

Aggregation of growth factor receptors 

GROWTH ~1  
FACTOR BINDING 

Synergistic phosphorylation of growth factor receptors 
Accumulation of phosphorylation substmte EPS-8 
Enhanced activation of ERK type of MAP kinase 

Figure 6. Collaborative or synergistic interactions of integrin and 
growth factor receptors. Schematic listing of the sequential coop- 
erative effects of simple integrin aggregation with integrin occu- 
pancy, and then growth factor receptor occupancy on localization 
and function of several types of signal transduction molecule, 
based on data presented in this study. 

be independent of aggregation (LaFlamme et al., 1992; 
Schwartz et al., 1995). 

It was of interest that accumulation of total tyrosine- 
phosphorylated proteins did not require integrin occu- 
pancy and was not accompanied by growth factor receptor 
clustering. This finding suggests that simple aggregation of 
proteins with phosphotyrosine residues is not sufficient to 
induce accumulation of tyrosine kinase growth factor re- 
ceptors, which instead required concurrent integrin occu- 
pancy. The mechanism of accumulation of growth factor 
receptors remains to be determined, but it is noteworthy 
that these same conditions were needed for integrin-medi- 
ated transmembrane accumulation of cytoskeletal mole- 
cules such as talin, ot-actinin, and actin (Miyamoto et al., 
1995b; Yamada and Miyamoto, 1995b). Evidence for in- 
teractions of EGF receptors with cytoskeletal molecules 
has been reported in several previous studies, and the sub- 
population associated with the cytoskeleton appears to be 
enriched in high-affinity EGF receptors (Roy et al., 1989; 
van Bergen en Henegouwen et al., 1992; Gronowski and 
Bertics, 1993). These findings suggest that the accumula- 
tion of growth factor receptors in the absence of growth 
factor ligands or receptor autophosphorylation might be 
mediated by cytoskeletal interactions. 

The addition of growth factor ligand to a system con- 
taining pre-aggregated EGF receptors leads to substan- 
tially increased accumulation of the EGF receptor sub- 
strate eps8, a protein implicated in downstream growth 
regulation and malignant transformation (Fazioli et al., 1993; 
Matoskova et al., 1995). However, eps8 molecules did not 
accumulate above basal levels along with the EGF recep- 
tor if EGF |igand was not present. That is, even though in- 

tegrin occupancy and aggregation is sufficient to induce 
accumulation of EGF receptors, enhanced accumulation 
of the EGF receptor substrate eps8 requires in addition 
the presence of EGF. A simple explanation might be that 
local accumulation of this substrate regulatory molecule 
occurs in proximity to the EGF receptor only after EGF 
receptor autophosphorylation. 

The findings in this paper of strongly augmented activa- 
tion of the ERK class of MAP kinase by integrin aggrega- 
tion and occupancy when they are combined with EGF, 
PDGF, or bFGF are striking, and they demonstrate that a 
well-known signaling pathway can show collaborative acti- 
vation by growth factors and integrins. This type of re- 
sponse may contribute to downstream biological effects of 
such combinations; this possibility should be examined in 
any biological system where collaboration or synergism 
between growth factor and integrin is found. The simplest 
mechanism of such MAP kinase activation would be via 
enhanced receptor tyrosine phosphorylation. In agree- 
ment with Sundberg and Rubin (1996), we could not ob- 
serve direct stimulation of the PDGF a-receptor or EGF 
receptor phosphorylation by an integrin ligand in the ab- 
sence of growth factors. However, we also did not see 
major growth factor-independent stimulation of PDGF 
13-receptors in our experimental system, which differs 
markedly in protocol by deliberately avoiding long-term 
serum starvation. We chose to maintain ceils in serum un- 
til the final steps in order to try to remain closest to normal 
culture conditions in which biological integrin-growth fac- 
tor synergy had been described. In addition, serum starva- 
tion can strongly suppress function of the Rho family of 
regulatory GTPases, which Hotchin and Hall (1995) have 
recently reported to be essential for integrin-mediated 
functions, including integrin aggregation and formation of 
focal contacts. Moreover, in contrast with the results pre- 
sented in this paper under conditions of minimal serum 
deprivation, studies performed after extensive serum star- 
vation of cells find that integrins cannot synergize with a 
growth factor for MAP kinase activation, or in one report 
cannot even activate the ERK1/2 MAP kinase pathway 
(Zhu and Assoian, 1995; Hotchin and Hall, 1995). Al- 
though extensively serum-deprived fibroblasts appear to 
require both integrin-mediated anchorage and growth fac- 
tor stimulation for cell cycle progression and synergy in 
inositol lipid breakdown, other processes such as induction 
of c-myc mRNA and phosphorylation of phospholipase C~ 
do not show synergistic effects (McNamee et al., 1993; Boh- 
mer et al., 1996). 

The strong stimulation we observed of tyrosine phos- 
phorylation of growth factor receptors after stimulation by 
a growth factor in cooperativity with integrin aggregation 
and occupancy was demonstrated for two different types 
of growth factor receptor. The mechanism of the synergis- 
tic enhancement of growth factor tyrosine phosphoryla- 
tion described here is probably steric: the integrin-medi- 
ated aggregation of growth factor receptors before growth 
factor occupancy would transiently concentrate these ty- 
rosine kinase receptors locally, which would be expected 
to enhance their capacity for transphosphorylation. It is in- 
teresting that MAP kinase activation by integrin aggrega- 
tion alone without occupancy was not additive with growth 
factor activation. This result suggests that they share a 
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rate-limited biochemical pathway. In contrast, when inte- 
grin aggregation and occupancy leads to transient growth 
factor receptor clustering, there is striking synergy of re- 
ceptor tyrosine phosphorylation, and a downstream acti- 
vation of the ERK class of serine/threonine kinase. 

The magnitude of the response to integrin-growth factor 
collaboration in tyrosine kinase receptor phosphorylation 
appeared stronger than the downstream activation of MAP 
kinase. Similar nonlinearity between receptor and down- 
stream signaling has been described in other systems (e.g., 
see Vaillancourt et al., 1995), and can be ascribed to the 
existence of multiple phosphorylation sites on the recep- 
tors associated with differing downstream signaling sys- 
tems. 

The transience that we observe in growth factor recep- 
tor clustering, EGF receptor substrate clustering, and 
MAP kinase response may be important for maintaining 
responsiveness and flexibility of this integrin-mediated sig- 
naling system. For example, it might permit rapid, tran- 
sient signaling responses to local changes in extracellular 
matrix composition or to new growth factors as cells mi- 
grate to different locations, or when levels of these mole- 
cules change during embryonic development or during tis- 
sue repair and remodeling. 

In summary, we have identified a system in which 
growth factors and integrins can collaborate directly at the 
levels of tyrosine kinase receptor phosphorylation and 
downstream MAP kinase activation. This synergy with 
each of three well-known growth factors in turn depends 
on both integrin aggregation and receptor occupancy. This 
direct functional cooperation between major regulatory 
systems provides a mechanism by which growth factors 
and integrins can synergize to mediate complex biological 
processes. 
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