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The p53-inducible CLDN7 regulates
colorectal tumorigenesis and has

prognostic significance

Abstract

Most colorectal cancer (CRC) are characterized by allele loss of the genes located on the short arm of chromosome 17 (17p13.1),
including the tumor suppressor p53 gene. Although important, p53 is not the only driver of chromosome 17p loss. In this study, we
explored the biological and prognostic significance of genes around p53 on 17p13.1 in CRC. The Cancer Genome Atlas (TCGA)
were used to identify differentially expressed genes located between 1000 kb upstream and downstream of p53 gene. The function of
CLDNY7 was evaluated by both in vitro and in vivo experiments. Quantitative real-time PCR, western blot, and promoter luciferase
activity, immunohistochemistry were used to explore the molecular drivers responsible for the development and progression of CRC.
The results showed that CLDN7, located between 1000 kb upstream and downstream of p53 gene, were remarkably differentially
expressed in tumor and normal tissues. CLDN7 expression also positively associated with p53 level in different stages of the
adenoma-carcinoma sequence. Both iz vitro and in vivo assays showed that CLDN7 inhibited cell proliferation in p53 wild type
CRC cells, but had no effects on p53 mutant CRC cells. Mechanistically, p53 could bind to CLDN7 promoter region and regulate
its expression. Clinically, high CLDN7 expression was negatively correlated with tumor size, invasion depth, lymphatic metastasis
and AJCC III/IV stage, but was positively associated with favorable prognosis of CRC patients. Collectively, our work uncovers the
tumor suppressive function for CLDN7 in a p53-dependent manner, which may mediate colorectal tumorigenesis induced by p53

deletion or mutation.
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Colorectal cancer (CRC) is one of the most commonly diagnosed can-
cer worldwide [1]. It is estimated that 145,600 patients will be diagnosed
with CRC and that 51,020 patients will die from the disease in the United
States in 2019 [2]. The development of CRC is a multistep process that is

relapse free survival, CNV, copy number variation
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driven by the genetic or epigenetic inactivation of tumor suppressor genes
and activation of oncogenes. Exploring the mechanisms underlying the
growth and progression of CRC is essential for improving treatment.
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Tumor suppressor p53, encoded by TP53 gene which is located on
human chromosome 17p 13.1, is a critical tumor suppressor involved in
maintaining genomic integrity [3]. Upon DNA damage, p53 is activated
and triggers a transcriptional response that causes either cell arrest or apop-
tosis, ultimately reducing the risk of propagating mutations [4]. In recent
years, increasing evidence shows that p53 can modulate autophagy, regu-
late metabolism, repress cellular plasticity, and facilitate ferroptosis [5-8].
Mutation and/or deletion of p53 gene that lead to the increase of tumori-
genicity and invasiveness of cancer is observed in more than 50% of
human cancers including CRC [9]. Mutations disabling the p53 gene fre-
quently occur through a two-hit mechanism wherein one allele harbors a
missense mutation and the other allele is deleted in a larger segmental
human chromosome 17p deletion [10]. The most common p53 configu-
ration involves a missense mutation together with a segmental 17p dele-
tion [11]. In addition to p53, chromosome 17p encodes over 300
protein-coding genes that include other tumor suppressors functionally
validated. Hence, chromosome 17p deletions can produce heterogeneity
in the nature and number of p53-linked tumor suppressor genes subject
to reduced dosage. In most cases, chromosome 17p deletions encompass
all or most of the chromosome arm and are associated with poor prognosis
in many tumors such as chronic lymphocytic leukemia [11], multiple
myeloma [12] and acute myeloid leukemia [13]. Liu, Chen, and colleagues
demonstrated that the loss of other genes in 17p13 region contributes
multiple activities that act independently of p53 inactivation to drive
tumorigenesis [10]. Moreover, deletions engineered to be syntenic to
17p13 drive more aggressive tumors than simple p53 deficiency in mice.

Collectively, it has become increasingly clear that both p53 mutations
and chromosome 17p deletions contribute phenotypes to cancer that go
beyond p53 loss. p53-regulated genes and interacted proteins form a huge
network. It has been reported that positive and negative regulatory loops
both upstream and downstream of p53 cooperate to finely tune its func-
tions as a transcription factor. While p53 is known to transcriptionally
activate numerous genes, it is still not clear how p53 target genes are acti-
vated and trigger tumorigenesis in CRC.

Here, we analyzed data on human colorectal carcinomas from the Can-
cer Genome Atlas (TCGA) collection to explore whether expression of
genes located between 1000 kb upstream and downstream of p53 was reg-
ulated by altered activity of p53. We identified a p53-regulated gene
named Claudin 7 (CLDN?7), which is one of the most dominant claudins
expressed in the intestine and is the main determinant of tight junction
barrier function. Multiple databases and CRC tissue microarray showed
that CLDN7 was remarkably down-regulated in CRC tissues and was
associated with p53 expression, predicting satisfactory patient outcomes.
In addition, upregulated CLDN7 dramatically contributed to the inhibi-
tion of wild type (WT) p53 cancer cell growth in in vitro and in vive
experiments. Mechanistically, WT p53 protein binds to the promoter
region of CLDN7 and upregulates the expression of CLDN7. By contrast,
mutant type (MT) p53 protein leads to an insignificant effect on the
expression of CLDN7 in CRC cells. Moreover, CLDN7 could serve as
a good prognostic indicator in p53 WT CRC patients but had no signif-
icantly prognostic prediction effect on p53 WT CRC patients, indicating
that the effects of CLDN7 on CRC is closely related to p53 gene status.
Overall, our study reveals that p53-inducible CLDNY7 is a promising bio-
marker for prognostic prediction, and plays a tumor suppressor role in

CRC in a p53-dependent manner.

Materials and methods
Data collection and data processing

The RNA-Seq data and additional patient information were down-
loaded from public TCGA (http://cancergenome.nih.gov/) CRC data

repositories. The cancer cell line RNA-seq data of various types of cancer
was downloaded from Broad Institute Cancer Cell Line Encyclopedia
(CCLE, https://portals.broadinstitute.org/ccle). Count-based differential
expression pipeline for mRNA-seq data were analyzed using R based pack-
age edge. The microarray data and additional patient information were
downloaded from NCBIs Gene Expression Omnibus (GEO, http://
www.ncbi.nlm.nih.gov/geo/). Data were preprocessed with ‘impute' pack-
age when needed. For finding differently expressed mRNAs, data were
divided into two pattern including CRC and normal colorectal tissue. Dif-
ferent expressed mRNAs were acquired by ‘limma' package in R 3.2.1.
Fold change >2 and False Discovery Rate (FDR) <0.01 were considered
statistically significant.

Gene set enrichment analysis (GSEA) was performed to investigate the
potential biological pathways involved in CRC pathogenesis via CLDN7.
FDR of 0.01 was established as cut-off for the identification of biologically
relevant genes. The gene sets showing with FDR more than 0.25 were
considered enriched between the classes under comparison. The gene sets
collection (c2.all.v4.0.symbols.gmt) from the Molecular Signatures Data-
base—MsigDB
used for the enrichment analysis.

(http://www.broad.mit.edu/gsea/msigdb/index.jsp)  was

Functional and pathway enrichment analysis

The gene ontology (GO) database has a large collection of gene anno-
tation terms, allowing genome annotation using consistent terminology.
GO enrichment analysis including molecular function (MF), cellular com-
ponents (CC) and biological processes (BP), identified which GO terms
were over or underrepresented within a given set of genes. GO analysis
was conducted using the Database for Annotation, Visualization and Inte-
grated Discovery (DAVID, Frederick, USA. https://david.ncifcrf.gov/),
analysis tools for extracting meaningful biological information from mul-
tiple gene and protein collections.

Human tissue microarray analysis

Two human CRC tissue microarrays contained a total of 169 paired
CRC and para-cancerous samples. Sections of CRC and normal tissue
were stained with CLDN7 antibody (Abcam, USA). The tissue slides were
evaluated by two independent investigators. Protein expression was evalu-
ated based on intensity (the grade was measured on a scale of 0-3: 0, no
staining; 1, weak staining; 2, moderate staining; 3, strong staining) and
extent of staining (the percentage of positive tumor cells was measured
on a scale of 0-4: 0, none; 1, 1-25%; 2, 26-50%; 3, 51-75%; 4,
>75%). To obtain the final score, we multiplied the extent by grades of
intensity staining. Then the samples were ranked by the final score. Pro-
tein expression was then ultimately stratified into high and low expression
based on the median of the sample size.

Cell culture, reagents and transfection

The human CRC cell lines Lovo, HCT116 (p53WT), HCT116
(p53—/—) and HT29 (p53R273H) cells were obtained from ATCC
(Manassas, VA, USA) and cultured in RPMI-1640 or Mycoy's 5a with
100 U/mL penicillin, 100 g/mL streptomycin and 10% fetal bovine
serum. Doxorubicin (DOX) and pifithrin-a (PFTa) were obtained from
Sigma-Aldrich. Expression plasmids for CLDN7 were generated by insert-
ing synthesized ¢cDNAs into pCDNA3.1 vector (GeneRay, Shanghai).
Cells were seeded into six-well plates at 2x 10 cells/well overnight and
transfected with 1.5 pg plasmids using FuGene HD (Promega). SiRNAs
specifically targeting p53 were purchased from GenePharma (Shanghai,
China) using the following sequences: p53: siRNA-1, 5-GUAAUCUA
CUGGGACGGAATT-3'; siRNA-2, 5-GAAGAAACCACUGGAUG
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GATT-3". Lovo or HCT116 cells were plated onto the six-well plates 24 h
before transfection at 30% confluence, and the transfection was then per-
formed with 50 nM siRNA using Dharma FECT 1 transfection reagent
(Dharmacon, Lafayette, CO, USA) based on the manufacturer's instruc-
tions. A scrambled siRNA (GenePharma) was used as a control.

Quantitative real-time PCR analysis

Total RNA was isolated from cells 96 h after transfection by Trizol
reagent (Invitrogen) and reverse transcription of total RNA was performed
using a PrimeScript RT Reagent Kit (Perfect Real Time; Takara). Quan-
titative PCR (qPCR) was performed with SYBR Premix Ex Taq II
(Takara) using an ABI Prism 7900HT Sequence Detection System
(Applied Biosystems, USA), and the quantification was calculated using
the 2_ AACT method and presented as fold change. B-Actin (ACTB)
was used for normalization of the expression of each target gene, and
the detailed primer sequences are shown in Suppl. Table 1.

Western blotting

Proteins were fractionated on a 10-12% SDS-polyacrylamide gel by
electrophoresis and transferred onto polyvinylidene fluoride (PVDF,
Bio-Rad, Hercules, CA) membranes. After blocking in 5% fat-free milk
for 60 min, the membranes were incubated with primary antibodies
against p53 (Santa Cruz), CLDN7 (Abcam), p21 (Cell Signaling), Occlu-
din (Thermo Fisher), ZO1 (Thermo Fisher), E-cadherin (Cell Signaling),
Cyclin D1 (Cell Signaling), Cyclin D3 (Cell Signaling), Cleaved caspase3
(Abcam), Cleaved caspase9 (Abcam) and Cleaved PARP (Abcam) at 4 K
overnight. After extensive washing, the membranes were incubated with
secondary antibodies labeled with HRP (KangChen, China) and signals
were detected using ECL Kit (Pierce Biotech, Rockford, IL). The images
were then analyzed using Image] 1.43 software. Detection of B-actin
(ACTB) was performed as an internal control. At least two independent
experiments were performed in all experiments.

Cell viability assay

Cell viability was determined using a cell counting kit (CCKS)
(Dojindo Laboratories, Japan). The transfected CRC cells were plated
onto 96-well plates at 2000 cells/well, and cells were then incubated with
CCKS8 reagent (10 pL/well) for 2 hours at 37 °C after culture for 24, 48,
72, and 96 h. The optical densities were measured at 450 nm with a
microplate reader (Molecular Devices Sunnyvale, CA, USA).

Colony formation assay

Briefly, the transfected CRC cells were plated into six-well plates at a
density of 1000 cells/well and cultured for 9 days. Colonies were then
fixed with 4% paraformaldehyde for 30 min and stained with 0.1% crystal
violet for 10 min. Colonies with >100 cells were counted under an
inverted microscope, and experiments were performed three separate
times.

Apoptosis and cell cycle analysis

FITC-Annexin V apoptosis detection kit (Ebioscience, USA) was used
for determination of cell apoptosis according to the manufacturer's proto-
col. After washing with PBS, the transfected CRC cells were resuspended
in staining buffer, and 5 pl FITC-AnnexinV was added to 100 pl cell sus-
pension. After incubation at room temperature for 20 min in darkness, cell
preparation was subjected to flow cytometry analysis (Becton Dickinson,

USA).

Cells were stained with propidium iodide (PI) for cell cycle analysis.
Briefly, cells (1 x 10° cells/ml) were fixed with 70% ethanol for 24 h at
4 °C and incubated with PI for 30 min, after which cells were analyzed
by flow cytometry (Becton Dickinson, USA).

Transwell assay

To perform transwell assay, we precoated the transwell chambers (8-
pm pore size; Millipore, USA) with Matrigel (BD Biosciences, USA) that
diluted in 1:4 proportion with serum-free medium. Cells were transfected
with pCDNA3.1 and CLDN7 before 5 x 10° cells suspended in serum-
free medium were seeded into the upper chamber, and the lower chamber
was provided with medium containing 20% FBS as a chemoattractant.
After 48 h incubating, cells that pass through the filter were fixed by
4% paraformaldehyde (Dingguo Biotechnologies, China) and stained by
0.1% crystal violet (BBI Life Sciences Corporation, China). The migrated
cells could be counted by a microscope. Cell numbers in three randomly
selected fields at 100 x magnification were counted to compare the migra-
tion capacities of the cells between groups.

Cellular localization assays

CRC cells were fixed with methanol for 15 min, permeabilized in
0.2% Triton X-100 for 20 min and blocked with 5% BSA for 60 min
at room temperature. After blocking, cells were incubated with primary
antibodies (p53 or CLDN7) at 4 °C overnight. Then, cells were incubated
with secondary antibody for 20 min at room temperature in a lucifugal
chamber. Samples were washed with PBS for three times followed by treat-
ment with DAPIL. Samples were photographed using Zeiss LSM 510 laser

confocal scanning microscopy.

Reporter gene constructs and luciferase assays

CLDNY7 promoter regions were cloned into the Kpn I and Hind III
sites of the promoter firefly luciferase reporter vector pGL3-Basic (Pro-
mega, Germany). Either p53 WT or p53 MT (p53R273H,
p53R175H), and pGL3-CLDN7 (0.5 pg of each DNA/well) were co-
transfected into HCT116 (p53WT) cells. pGL3-Basic served as the empty
vector. Transfections were carried out using Lipofectamine 2000 (Invitro-
gen), according to the manufacturer's instructions. Twenty four hours
after transfection, Firefly luciferase and Renilla luciferase activities were
measured using the Dual Luciferase Reporter Assay System (Promega).
The results were calculated as relative luciferase activity (Firefly lucifer-
ase/Renilla luciferase). The experiment was repeated at least three times.

Mouse xenograft model

Athymic male nu/nu mice aged 5 weeks were purchased and housed at
Shanghai Model Organisms Research Center, and experiments were
approved by the Research Ethics Committee. Subcutaneous implant
model was established by subcutaneous injection of 5 x 10° cells stably
expressing either lentivirus-Vector, or lentivirus-CLDN7, and tumor size
was monitored with a callipers once every 2 days. Tumor volume was cal-
culated by the following formula: volume = 0.5 x length x width®. After
20 days, mice were sacrificed for tumor harvest, and tumor weights were
measured. The obtained tumors were subjected to IHC staining to evalu-

ate the expression of Ki-67, cleaved caspase 3, p53 and CLDN?7.

Statistical analysis

All statistical analyses were carried out using GraphPad Prism 8.0 or
SPSS for Windows 17.0.1 software. Data from at least three independent
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experiments performed in triplicates were presented as means p standard
deviation (SD). If data were with normal distribution and the variations
were comparable between groups, the paired-sample t test or
independent-sample t test was used for comparison between two groups.
The comparisons among three or more groups were performed by One-
Way ANOVA test if the variations between groups were comparable. Enu-
meration data were examined by Kappa test. The Chi-square test or Fisher
Exact test was used to analyze clinicopathological data. Overall survival
(OS) and relapse free survival (RFS) were evaluated using the Kaplan-
Meier method and curves were compared with the log-rank test. Cox's
proportional hazards regression model was applied to evaluate the prog-
nostic factors by univariable and multivariable analyses. The correlation
of the two genes was determined by Spearman correlation test. A value
of P < 0.05 was set as the significant difference.

Results

Identification of differentially expressed genes around p53 on
chromosome 17p13.1

To find out genes that may be regulated by p53 and participate in the
development of CRC, we analyzed genes located between the upstream and
downstream 1000 kb of p53 from Ensembl genome database and found a total
of 157 transcripts (Suppl. Table 2). Then the expression of these transcripts was
further investigated in normal colorectal and CRC tissues. Firstly, CRC data
sets and corresponding clinical data were downloaded from the publicly avail-
able TCGA database. After removal of novel transcript, microRNA and small
nucleolar RNA from 157 transcripts, 117 transcripts were analyzed in the pre-
sent study (Suppl. Table 3, Suppl. Fig. 1A). Next, we generated a comparable
heatmap and found that the expression of many genes was significantly differ-
ent in CRC and adjacent normal tissues (Fig. 1A). Furthermore, functional and
pathway enrichment analysis of the differentially expressed genes in this module
were conducted using DAVID. GO term enrichment analysis demonstrated
that genes were enriched in 28 pathways including apoptotic process
(GO:0006915), positive regulation of angiogenesis (GO:0045766), and lipoxy-
genase pathway (GO:0019372) (Fig. 1B). Cell component analysis indicated
that genes were significantly enriched in MLL1 complex, cytoplasm and mem-
brane (Suppl. Fig. 1B). Molecular functional analysis demonstrated that the
genes were primarily involved in oxidoreductase activity, hepoxilin A3 synthase
activity and protein self-association (Suppl. Fig. 1C). Subsequently, 50 pairs of
CRC and adjacent normal tissues from TCGA CRC cohort were further
explored, and 40 genes were defined as significantly different between cancer
and adjacendy normal tissues with the adjusted p value of less than 0.05 with
a fold change >2. We also screened the differentially expressed genes in four
GEO databases, and CLDN7, NTN1, PITPNM3, TMEM88, TNFSF13,
and VAMP2 were identified as differentially expressed genes in four GEO
CRC cohorts using intersection calculation (Fig. 1C) (Table 1). The mRNA
expression levels of the six genes in 50 CRC samples were significanty
decreased compared with those in their paired normal tssues (Fig. 1D).
Patients' OS and RFS analysis showed that CLDN7 was noted to be signifi-
cantly associated with OS (Hazard ratio = 0.69, 95% CI = 0.48-0.99,
P=0.0360, Fig. 1E) and RFS (hazard ratio = 0.64, 95% CI = 0.43-0.95,
P =0.0420, Fig. 1F) in CRC patients, whereas other five genes have no signif-
icance in predicting the clinical outcome of these patients (2> 0.05). These
data suggest that CLDN7, as a neighboring gene of p53, may play a role in
the occurrence and progression of CRC.

CLDNY7 expression associates with p53 activation and a better
outcome in CRC

To clarify whether there was a relationship between CLDN7 and p53,
we analyze the relationship between p53 and CLDN7 through different

databases. Data from the Human Protein Atas (Fig. 2A) suggested a pos-
itive association between the expression of CLDN7 and p53 in CRC tis-
sues. Additionally, analysis of multiple datasets using a multiple
experiment matrix revealed that mRNA level of six aforementioned
genes (CLDN7, PITPNM3, TNFESF13, TMEMS88, NTN1) were all pos-
itively correlated with p53 mRNA, among which CLDN7 mRNA expres-
sion significantly associated with p53 mRNA (Fig. 2B). Similarly, data
from the TCGA dataset and the larger GEO CRC cohort confirmed pos-
itive association between the expression CLDN7 and p53 mRNA in CRC
tssues (Fig. 2C). Moreover, CLDN7 expression also positively associated
with p53 level in different stages of the adenoma-carcinoma sequence
(Suppl. Table. 4). GSE39582 dataset revealed that the expression level
of CLDN7 mRNA in p53 mutant group was significantly lower than that
in p53 WT group (Fig. 2D). We further assessed the expression of
CLDN7 in multiple CRC cell lines. Compared to CRC cell lines with
MT p53, WT p53 CRC cell lines (RKO, Lovo and HCT116) tented
to have higher expression level of CLDN7 (Suppl. Fig. 2A). Kaplan—Meier
analysis was then applied to evaluate the OS and RES of CRC patients
with high or low expression of CLDN7 stratified by different p53 gene
status (WT versus MT) (Fig. 2E). In p53 WT group, patients with low
CLDN7 expression showed significantly shorter OS (p =0.236) and
RES (p = 0.0449). However, CLDN7 expression exhibited no statistically
significant value in predicting the OS (p = 0.7639) and RFS (p = 0.5095)
of CRC patients in p53 MT group. These data suggested that the effect of
CLDNY7 on the prognosis of CRC was related to p53 gene status and
might be more valuable in predicting the outcome of CRC patients with

pS3 WT.

CLDNY7 is a p53-responsive gene

Altered gene expression can be associated with copy number variation
(CNV) or a more complex pattern of dysregulation in gene expression
control [14]. Methylation level of the promoter regions also affects the
transcription rate [14]. To analyze the effect of DNA CNV and methyla-
tion on CLDNY7 expression, we predicted CNV and DNA methylation of
six differentially expressed genes identified in CRC above. The results
revealed that compared with normal tissues, only 1.8% of CLDN7 in
CRC underwent copy number variation, mainly in gene deletion, and
there was no significant difference in DNA methylation (Suppl. Fig. 2B,
O.

It has well been documented that p53 regulates target gene expression
by binding to the p53 response elements in the promoter regions, thereby
regulating cell proliferation, apoptosis, cell cycle and other cellular pro-
cesses [15]. Therefore, it was reasonable to propose that p53 could be a
transcription factor regulating CLDN7 expression. To test this hypothesis,
we firstly observed the localization of p53 and CLDN7 in Lovo, HCT116
(p53WT) and HT29 (R273H) by immunofluorescence. It was shown
that p53 was mainly located in the nucleus while CLDN7 predominantly
distributed in the cytoplasm and cell membrane regardless of p53 status
(Fig. 3A), suggesting that the endogenous CLDN7 and p53 proteins
had no intracellular colocalization and physical interaction of CLDN7
and p53 was excluded. We therefore asked whether p53 could directly reg-
ulate CLDN7 expression. After knocking down or overexpressing p53 in
Lovo and HCT116 cells (p53 WT), the expression level of CLDN7 also
decreased or increased at mRNA and protein levels (Fig. 3B, C). We also
investigated the typical genes including CLDN1, ZO1, E-cadherin,
Occludin, and Jaml, which were involved in regulation of epithelium
tight junction by western blot. Knockdown or overexpression of p53,
the protein levels of these genes were rarely changed, indicating that
p53 specifically modulate the expression of CLDN7 rather than the other
tight junction-related genes (Suppl. Fig. 3A, 3B). Subsequently, we ana-
lyzed if p53 was regulated by CLDN7. p53 mRNA (Suppl. Fig. 3C)
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Fig. 1. Genetic analysis within 1000 kb upstream and downstream of p53. (A) Heatmap of genes located between 1000 kb upstream and downstream of p53 in
adjacent normal and CRC tissues. 117 genes were defined as differentially expressed genes with 2 < 0.05 and fold change >2 in CRC TCGA database. Color
represents gene transcripts above (red) or below (blue) the global median scaled to 15-fold upregulation or downregulation, respectively. (B) GO enrichment of
genes located between 1000 kb upstream and downstream of p53 gene in CRC. Twelve pathway enrichment terms were displayed. Color indicates adjusted p
value, and size indicates the number of enriched genes. Higher enrichment scores correlate with lower P-values, suggesting that the enrichment of the differentially
expressed genes in a given pathway is significant. (C) Fifty pairs of CRC and adjacent normal tissues were analyzed. Venn diagram showed the down-regulated or
up-regulated gene in four GEO colorectal cancer cohorts (GSE8671, GSE18105, GSE32323, and GSE42328). Six genes were identified as differentially
expressed genes between cancer tissues/patients and normal tissues/patients in four cohorts. (D) Six differentially expressed genes in the same data set compared
with paired-adjacent normal tissue using student's t-test. Plot represents the mRNA expression levels in 40 CRC samples and paired normal tissues (P < 0.0001).
(E and F) Patients' overall survival (OS) and relapse free survival (RFS) of six differentially expressed genes were analyzed. The hazard ratdo (HR) and 95%
confident interval (CI) are plotted. All the bars correspond to 95% confidence intervals.
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Table 1. Six genes significantly differentially expressed in normal and colorectal cancer tissues.

Gene Transcript stable ID ~ Chromosome  Transcript start ~ Transcript end ~ Strand ~ Gene description Transcript ~ LogFC P Value
name (bp) (bp) type (Normal/
CRCO)

CLDN7 ENST00000360325 17 7E+06 7E+06 -1 Claudin 7 Protein 1.63 4.82E—33
coding

NTNI1 ENST00000173229 17 9E+06 9E+06 1 Netrin 1 Protein 3.52 4.27E-51
coding

PITPNM3 ENST00000421306 17 GE+06 7E+06 -1 PITPNM family member 3 Protein 2.24 1.48E—28
coding

TMEMS88 ENST00000301599 17 8E+06 8E+06 1 Transmembrane protein 88 Protein 1.51 4.79E-21
coding

TNESF13  ENST00000483039 17 8E+06 8E+06 1 TNF superfamily member 13 Protein 1.64 1.18E—18
coding

VAMP2 ENST00000316509 17 8E+06 8E+06 -1 Vesicle associated membrane Protein 1.87 1.68E—34

protein 2 coding

and protein level (Suppl. Fig. 3D) did not significantly changed in
CLDN7 overexpressed HCT116 cells. Dual luciferase reporter assay
showed that no effect of CLDN7 on the transcriptional activity of p53
(Suppl. Fig. 3E), and p53 main target genes p21 WAF1/Cipl " pUMA,
GADD45A, BAX, FAS did not significantly upregulated or downregu-
lated after overexpressing CLDN7 in HCT116 cells (Suppl. Fig. 3F).
To further confirm that p53 was involved in mediating CLND7 expres-
sion, we treated HCT116 cells (p53WT) with the p53 stimulus DOX
and pharmacological p53 transcriptional activity's inhibitor PFTo for var-
ious times, respectively. The results showed that mRNA and protein
expression of p53 and CLDN7 was simultaneously increased after DOX
stimulation (Fig. 3D). On the other hand, small-molecule inhibitor of
p53 transcriptional activity reduced CLDN7 levels along with p21 VA"
©P1 especially at 36 hours (Fig. 3E). Furthermore, after overexpressing
p53 WT and p53 MT (p53 R237H or p53 R175H) in HCT116 cells
(p53WT) respectively, CLDN7 expression were significantly upregulated
in p53 WT overexpressed cells at both the mRNA and protein levels,
while did not obviously increase in p53 MT overexpressed cells (Fig. 3F).
We identified binding sites for p53 in CLDN7 transcripts in silico pro-
moter prediction (Suppl. Table 5). To test whether p53 binds to CLDN7
promoter, dual luciferase reporter assay was performed. HCT116 cells
(p53WT) were transfected with luciferase reporter pGL3-Basic or
pGL3-CLDNY7 and luciferase activity was measured in cells with different
p53 gene status. The results showed that the fluorescence intensity of the
p53 WT group was significantly higher than p53 MT groups, suggesting
that p53 WT but not p53 MT binds directly to the promoter region of
CLDNY7 (Fig. 3G). Taken together, our findings suggested that CLDN7
was positively regulated by p53 WT, which functions as a transcription
factor and regulates the expression of CLDN7 by binding to its promoter
region.

CLDNY7 functions as a tumor suppressor in CRC depending on p53

status

To clarify whether CLDN7 played a role in CRC tumorigenesis, the
gene expression profiles in TCGA CRC cohort with high or low expres-
sion of CLDN7 were performed by GSEA analysis. GSEA revealed that
the gene sets, including GO_NEGATIVE_REGULATION_OF_EPI
THELIAL_CELL_PROLIFERATION, GO_NEGATIVE_REGULA
TION_OF_CELL_CYCLE, ALCALA_APOPTOSIS and KEGG_P53_-
SIGNALING_PATHWAY, were positively correlated with high CLDN7
group (Fig. 4A-D). For further understanding the biological pathways
involved in CRC pathogenesis, the gene sets were visualized as interaction
networks with the Cytoscape based on the median of CLDN7 expression
levels. The results showed that the gene signatures of cell proliferation, cell
cycle, p53 pathway signaling, metabolism of proteins, and pathways in

cancer were enriched in patients with high CLDN7 expression, but not
in patients with low CLDN7 expression (Fig. 4E). These data implied that
CLDN7 may be related to p53 and is an important modulator in CRC
tumorigenesis.

Subsequently, in vitro assays were performed to verify the previous
findings. Two cell lines with high CLDN7 protein levels, Lovo and
HCT116 (p53 WT), and p53 MT cell line HT29 cells as well as p53-
deficient cell line HCT116 (p53—/—) cells with low CLDN7 protein
expression, were selected for functional analysis (Suppl. Fig. 2A). CLDN7
was overexpressed in Lovo, HCT116 (p53WT), HCT116 (p53—/—) and
HT?29 (p53R273H) cells, respectively. Cell proliferation assay showed that
CLDNY7 overexpression led to marked inhibition of cell proliferation in
Lovo and HCT116 (p53WT) cell lines, whereas had no significant effect
on the proliferation of HCT116 (p53—/—) and HT29 (p53R273H) cells
(Fig. 5A). Colony formation assays showed similar results. Compared with
CLDNY7 overexpressed HCT116 (p53—/—) and HT29 (p53R273H)
cells, it was shown that approximately two-fold less colonies were found
in CLDN7 overexpressed Lovo, HCT116 (p53WT) cells (Fig. 5B). Sub-
sequently, flow cytometry was performed to determine the effect of
CLDNY7 on cell apoptosis and cycle. As shown in Fig. 5C, upregulation
of CLDNY7 significantly increased the proportion of apoptotic cells in
Lovo and HCT116 (p53WT) cell lines compared with that in the control
groups. However, no significant differences were identified in HCT116
(p53—/—) and HT29 (p53R273H) cells between CLDN7 and control
group (Suppl. Fig. 4A). In addition, upregulation of CLDN7 induced
GO0/G1 phase arrest of the cell cycle in Lovo and HCT116 (p53WT) cell
lines but not HCT116 (p53—/—) and HT29 (p53R273H) cells (Fig. 5D,
Suppl. Fig. 4B). The promoting effect of CLDN7 on cell cycle arrest was
confirmed by the decreased protein expression of two master G1-S check-
point regulators (cyclin D1 and cyclin D3). Furthermore, CLDN7-
induced promotion of apoptosis was confirmed by elevated expression
of key apoptosis markers (cleaved forms of caspase3, caspase9 and PARP).
However, no significant differences were identified in HCT116 (p53—/—)
and HT29 (p53R273H) cells between two groups (Fig. 5E). Additionally,
overexpression of CLDN7 had no effect on main tight junction-related
protein (Suppl. Fig. 4C). These results revealed that CLDN7 had no effect
on p53 MT CRC cells, and CLDN7 might inhibit cell growth by regulat-
ing cell cycle progression and apoptosis independent on affecting epithelial
tight junction in p53 WT cells. Therefore, a wild-type p53 is required for
CLDNY7 to function as a tumor suppressor in CRC cells. We also exam-
ined the effects of CLDN7 on CRC cell invasion and metastasis. In the
transwell assay, we showed that ectopic expression of CLDN7 significantly
decreased the migration abilities in Lovo and HCT116 (p53 WT) cells,
and greatly suppressed invasiveness of both cells (Suppl. Fig. 4D).

Next, we examined the iz vivo roles of CLDN7 in Lovo, HCT116
(p53 WT), HCT116 (p53—/—) and HT29 (p53R273H) cells. CRC cell

lines stably expressing CLDN7 or cells harboring the control vector were
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Fig. 2. p53 is related to CLDN7 expression and affects the role of CLDN7 in CRC patients' prognosis in the database. (A) Representative images of
CLDNY7 and p53 in CRC tissues detected by IHC were shown, respectively. The relationship between CLDN7 and p53 expression was statistically

analyzed by Kappa test. (B) Correlation between six differentially expressed

genes (CLDN7, PITPNM3, TNESF13, TMEMS88, NTN1) mRNAs and

p53 mRNA used by multiple experiment matrix (MEM). (C) Spearman correlation analysis for CLDN7 in CRC versus p53. Plotted data are log> mRNA
expression from TCGA and GSE39582. (D) CRC patients with WT p53 (blue) and MT p53 (red) from GSE39582 were analyzed for CLDN7 mRNA
expression. The horizontal line represents the mean values. P-values were calculated using paired Student's #tests. (E) Kaplan—Meier analysis for the OS
and RFS of CRC patients with different p53 gene status separated into two groups by optimum cut-off value for the CLDN7 expression. P values were

calculated by a log-rank test.

subcutaneously inoculated into nude mice for further investigation of the
tumorigenicity of CLDN7. The tumor size formed by Lovo and HCT116
(p53 WT) cells stably expressing CLDN7 was significantly smaller than
that formed by the control cells, with a significant slower growth rate of
the tumor xenografts (Fig. 5F). CLDN7 also significantly inhibited tumor
growth, as reflected by the tumor weight compared with those of tumors
derived from the vector control cells (Fig. 5G). Nevertheless, HCT116

(p53—/—) and HT29 (p53R273H) cells stably expressing CLDN7
showed no obvious differences in tumor size, tumor weight and tumor
xenografts growth compared with the controls (Suppl. Fig. 4E, F). More-
over, immunohistochemical analysis using tumor proliferation marker Ki-
67 antibody and apoptosis marker cleaved caspase 3 antibody were
employed to evaluate the proliferation of the tumor xenografts. In concor-
dance with the iz vitro findings, fewer proliferating cells were detected in
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xenografts formed by Lovo and HCT116 (p53 WT) CLDN7 overexpress-  Lovo and HCT116 (p53 WT) CLDN7 overexpressing cells compared
ing cells compared with those in xenografts formed by control cells  with those in xenografts formed by control cells (Fig. 5H). However, no
(Fig. 5H). More apoptotic cells were detected in xenografts formed by  significantly differences were found between control and HCT116
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Fig. 5. CLDNY7 plays a tumor suppressor role in CRC cells in a p53-dependent manner. (A) CCKS8 assay was performed to determine cell viability. (B)
CLDNY7 expression of CRC with different p53 status was determined by western blotting and cell colony formation capacity was detected and qualified.
(C and D) Cell apoptosis and cell cycle were determined by flow cytometric analysis. (E) The expression levels of cell cycle-related protein cyclin D1,
cyclin D3, and apoptosis-related protein cleaved caspases 3, 9 and PARP were determined by western blotting in CRC cells with CLDN7 or pCDNA. (F
and G) Lovo and HCT116 (p53WT) cells stably expressing the control vector or CLDN7 were injected subcutaneously into nude mice (2 = 7 for each
group). Tumor volumes were measured at the indicated time points and the mean tumor volumes were calculated. Data are presented as the mean p SD.
At the end of experiment, tumors from two groups were dissected, photographed, and weighed. H. Sections of tumor xenografts from CLDN7
overexpressing p53 WT CRC cells subcutaneously injected nude mice were stained with CLDN7, p53, ki-67 and cleaved caspase 3 antibodies by
immunohistochemical (IHC) (scale bars = 100 pm). The data are the means p SD of three independent experiments, *P < 0.05; **P < 0.01.
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(p53—/—) and HT29 (p53R273H) CLDN7 group (Suppl. Fig. 4G). In
summary, our in vivo results further support the tumor-suppressing role

of CLDN7 in CRC dependent on p53 gene status.

CLDN7 downregulation is correlated with poor clinical outcomes in
CRC patients

To further verify the relationship between CLDN7 and CRC, we
examined CLDN7 mRNA expression in different type of cancer cell lines
from Broad Institute Cancer Cell Line Encyclopedia (CCLE). The results
showed that CLDN7 mRINA expression was highly expressed in 63 CRC
cells (Suppl. Fig. 5A). We next investigated whether CLDN7 expression
was altered in a variety of cancers. CLND?7 varied in its expression in dif-
ferent cancers, but it was down-regulated exclusively in CRC (Suppl.
Fig. 5B). The data were particularly striking for CRC, wherein the
CLDN7 mRNAs were much lower in abundance in CRC tissues than
in paired-adjacent normal tissues in the vast majority of GEO colorectal
cancer cohorts (Suppl. Table 6), and colon polyp and adenoma in seven
colorectal polyp cohorts (Suppl. Table 7). Several representative database
analyses (GSE39582, GSE41258, GSE68468, and GSE37364) were
shown in Suppl. Fig. 5C. Furthermore, clinical outcomes of the CRC
patients with high or low CLDN7 were further analyzed. The Kaplan—
Meier analyses showed that low level of CLDN7 was significantly corre-
lated with a poor prognosis in CRC patients (Suppl. Fig. 5D). Collec-
tively, all these data provide evidence that decreased expression of
CLDNY7 may contribute to CRC tumorigenesis, indicating its tumor sup-
pressor function in CRC.

To validate the clinical significance of CLDN7 in CRC patients, we
detected and compared CLDN7 expression by human CRC tissue
microarray with immunohistochemical (IHC) staining, which consisted
of two cohorts, containing a total of 169 paired CRC and normal tissue
samples. Representative images of IHC staining for CLDN7 were shown
in Fig. 6A and Suppl. Fig. 6A. The expression levels of CLDN7 were mea-
sured semi-quantitatively by multiplying the staining proportion score and
the intensity score. Consistent with our previous findings, CLDN7 was
significantly down-regulated in CRC tissues compared with that in normal
non-tumor colon tissues in cohort 1 (z=90, p <0.001) and cohort 2
(n=79, p <0.001; Fig. 6B). We next evaluated and compared CLDN7
expression with different clinicopathologic features in cohort 1 (Fig. 6C).
We found that high CLDN7 expression was negatively correlated with
tumor size, invasion depth, lymphatic metastasis and AJCC III/IV stage.
In cohort 2, high CLDN7 expression was negatively correlated with serosa
penetration, invasion depth, lymphatic metastasis and AJCC III/IV stage
(Suppl. Fig. 6B). Based on CLDN7 IHC staining intensity, the patients
were classified into CLND7-low expression group and CLND7-high
expression group. The Kaplan—Meier survival analysis revealed that
patients with low CLDN7 expression level were significantly correlated
with worse overall survival compared with those with high CLDN7
expression in cohort 1 (z = 90, HR = 0.36, p = 0.02; Fig. 6D) and cohort
2 (n=101, HR = 0.26, p <0.001; Fig. 6E). To accomplish a prognostic
evaluation, we analyzed the clinical data of the CRC patients. Univariate
analysis revealed that histological grade, lymph node metastasis and
CLDNY expression were significantly correlated with OS in CRC patients
(Suppl. Fig. 6C, D). Subsequent multivariate analysis showed CLDN7
was negatively correlated with the OS of CRC patients and was an inde-
pendent predictor of CRC prognosis (Fig. 6F, G, Cohort 1, HR = 0.36,
2 =0.004; Cohort 2, HR = 0.32, p <0.001).

Discussion

As a key molecular node, p53 consists of a very complicated gene net-
work along with its downstream target genes, and activation of p53 by

various cellular signals leads to the maintenance of genetic stability. Even
though more and more p53 target genes are identified, it is believed that
the majority fraction of p53 target genes has yet to be identified. Identify-
ing important target of p53 in CRC not only helps us understand p53
gene regulatory network but also promotes an in-depth understanding
of CRC tumorigenesis, thereby leading to the development of therapeutic
applications in CRC.

In this study, the genes located between the upstream and downstream
1000 kb of p53 were analyzed by bioinformatics methods. 117 genes were
differentially expressed in CRC tissues, and most of them were downreg-
ulated, suggesting that they may function as tumor-suppressive genes.
Subsequently, GO enrichment analysis showed that differentially
expressed genes were involved in multiple tumor-associated pathways such
as apoptotic process. These findings inspired us to further analyze genes
associated with the occurrence and development of CRC. Thus, we per-
formed paired analysis in the TCGA database and then intersected with
four GEO databases and six differentially expressed genes were eventually
identified, but only CLDN7 was closely related to the clinical prognosis of
CRC. Therefore, this study focused on the relationship between CLDN7
and development of CRC.

CLDNT7, one of the claudins family members, is an important con-
stituent of tight junctions in epithelial cells. Disruption of tight junction
complexes is associated with multiple human diseases, including cancers
[16]. Previous study has shown that CLDN7 is downregulated in a variety
of cancers, such as CRC, head and neck cancer, and esophagus cancer, but
upregulated in other cancers, such as ovarian cancer and gastric cancer
[17,18], which was consistent with our Oncomine data analysis. In nor-
mal intestinal epithelium, the expression of CLDN7 is high and one of
the important mechanisms of CRC progression may be the weakening
of the endothelial barrier function in response to injury. It has been
reported that CLDN7 expression induces mesenchymal to epithelial trans-
formation to inhibit CRC tumorigenesis [19,20]. Moreover, CLDN7 may
suppress the proliferation and migration of CRC cells by interacting with
integrin B1 [21]. One study found that CLND7 was greatly decreased in
human colon cancer tissues and indirectly regulated the integrin/FAK sig-
naling pathway in colon cancer tissue [22]. In addition, CLDN7 deficient
mice result in severe intestinal defects, including severe intestinal inflam-
mation, altered epithelial cell homeostasis and even neonatal death
[23,24]. Knight et al. [25] uncovered that loss of tumor suppressor gene
p53 combined with the expression of a receptor tyrosine kinase in mam-
mary gland of a murine model, synergize to promote tumors with patho-
logical and molecular features of CLDN-low breast cancer. Although
previous studies have shown that CLDN7 expression is reduced in CRC
and inhibits the development of CRC, it is still unclear whether the tumor
suppressor effect of CLDN7 in CRC is associated with p53. To explore
the relationship between CLDN7 and p53, we analyzed p53 and CLDN7
co-expression analysis through multiple databases, and the results showed
that p53 was significantly correlated with CLDN7 at protein and mRNA
levels. Importantly, CLDN7 expression level was significantly different in
p53 WT and p53 MT CRC tissues, and high CLDN7 expression pre-
dicted a good clinical outcome in CRC patients with p53 WT but not
p53 MT. The results indicated that p53 is corelated to CLDN7 expression
and affects the role of CLDN7 in CRC patients.

Previous study showed that DNA CNVs or/and DNA promoter
hypermethylation can lead directly to deregulation of gene expression
[26]. Tt is estimated that CNVs occur in about 9.5% of the human refer-
ence genome [27]. CNVs modulate gene expression by a variety of mech-
anisms, including simple gene dosage effects, duplication or deletion of the
regulatory regions of the target genes, or changes in physical proximity of
genes and response elements [28]. It was reported that deletion of EFNB3
gene and CpG hypermethylation of EFNB3 promoter with 63.2% GC
content are closely linked to p53 tumor suppressor gene on human
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Fig. 6. Low CLDN7 expression is associated with poor prognosis in human CRC tissue microarray cohorts. (A) Representative photographs of CLDN7
IHC staining patterns with CRC and adjacent normal tissues in two tissue microarray cohorts were shown. Scale bar, 20 pm. (B) CLDN7 expression in
CRC and paired adjacent non-tumor tissues was analyzed. (C) The heatmap illustrating the association of different clinical characters with CLDN7 high
and low-expression tumors in cohort 1. (D and E) Kaplan—Meier analysis of the OS rate in CRC patients with different CLDN7 expression levels in two
cohorts. (F and G) Multivariate regression analysis was performed to analyze the correlation of clinic-pathological features (Histological grade, lymph
node metastasis) and CLDN7 expression with OS in two cohorts. All the bars correspond to 95% confidence intervals.

chromosome 17p13.1, which might cause the relatively infrequent expres-
sion of EFNB3 mRNA in CRC [29]. Therefore, CLDN7 CNVs were first
investigated to reveal the underlying mechanism which may lead to
CLDN7 downregulation in CRC. The analysis revealed that only 1.8%
of CLDN7 underwent CNVs, indicating that the down-regulation of
CLDNY expression was not mainly due to genetic alteration. In addition,
it was reported that DNA hypermethylation in the promoter of CLDN7
can result in down-regulation of CLDN7 expression. Hypermethylation at

the CLDN7 promoter occurred in 20% of CRCs with low CLDN7
expression and the resultant decreased CLDN7 expression plays a critical
role in CRC progression [30]. Similarly, hypermethylation of CLDN7
promoter is responsible for the down-regulation in breast cancer cell lines
[31,32], which is similar to the report on human clear cell renal cell car-
cinoma [33].

Herein, we found that there was no significant difference in CLDN7
DNA methylation between CRC and normal patients (2 = 0.68), suggest-
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ing the mechanism of downregulation of CLDN7 in CRC could not be
ascribed to promoter hypermethylation. After excluding the effect of
CNVs and DNA methylation on CLDN7 expression levels, we studied
the effect of p53 on the expression level of CLDN7. These findings
prompted us to further investigate the underlying regulation mechanism
of p53 on CLDN7. We observed that upon overexpressing p53 or stim-
ulating p53 expression by DOX in CRC cells, expression of CLDN7
mRNA and protein was obviously up-regulated, and vice versa. However,
CLDN7 mRNA and protein expression was not significantly up-regulated
in CRC cells overexpressing p53 MT. Taken together, we believed that
p53 may play an important role in regulating CLDN7 expression. Identi-
fying the underlying interactive regulation mechanism of p53 and
CLDN7 may be of high relevance for cancer prevention and treatment.
Cellular localization experiment revealed that p53 did not colocalize with
CLDNY7, indicating that p53 did not affect CLDN7 expression by directly
interacting with CLDN7 protein. As a transcription factor, binding to the
gene promoter is the main mechanism by which p53 regulates target gene
expression [34]. Therefore, we hypothesized that p53 might bind to
CLDNY7 promoter region to regulate its expression. Thus, we conducted
luciferase reporter assay to confirm our conjecture. The results showed
that p53 WT but not p53 MT could directly bind to CLDN7 promoter
region. Further study revealed that p53 target gene promoter did not
respond to CLDN7, and the mRNA expression levels of several p53 target
gene did not change significantly in CLDN7 over-expressing CRC cells,
indicating that CLDN7 had no feedback regulation on p53 expression.

Moreover, different gene expression profiles in CRC patients between
low- and high-CLDN7 expression groups were further evaluated by
GSEA, and multiple regulated networks of genes that were either upregu-
lated or downregulated were identified, including those in the regulation
of cell proliferation, cell cycle, apoptosis, and p53 pathway signaling. To
verify the results of GSEA, in vitro and in vivo assays were performed,
which demonstrated that CLDN7 overexpression significantly inhibited
cell proliferation in p53 WT cells but not p53 MT cells, suggesting that
CLDNY7 functions as a tumor suppressor in CRC depending on p53 gene
status. Multiple databases and human CRC tissue microarray analyses fur-
ther revealed that CLDN7 was decreased in CRC cells and low CLDN7
expression was significantly associated with patients’ poor OS, which was
consistent with previous reports.

Overall, we first discovered that CLDN7, located at downstream of
p53 on 17p13.1, was regulated by WT p53 through binding to its promo-
tor region in CRC. Once p53 is mutated or deleted, the tumor suppressive
function of CLDN7 disappears. These findings suggest that CLDN7 plays
a tumor suppressor role via p53-dependent manner in CRC and p53-
dependent downregulation of CLDN7 may mediate colorectal tumorige-
nesis induced by 17p13.1 deletion. Given there is only a 1.11 fold change
in CLDN7 mRNA expression in p53 WT vs p53 MT CRC. Further stud-
ies are required to test whether CLDN7 has a p53-dependent role in anti-
cancer properties of other tumors and to determine the differential
expression of CLDNY7 through more large survey sample with p53 WT
and MT CRC tissues. In, conclusion, our study promotes an in-depth
understanding of CRC tumorigenesis, which may lead to the development
of therapeutic applications in CRC.
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