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Abstract: Herein we report the first catalytic transfer hydro-
genation of silyl enol ethers. This metal free approach employs
tris(pentafluorophenyl)borane and 2,2,6,6-tetramethylpiperi-
dine (TMP) as a commercially available FLP catalyst system
and naturally occurring g-terpinene as a dihydrogen surrogate.
A variety of silyl enol ethers undergo efficient hydrogenation,
with the reduced products isolated in excellent yields (29
examples, 82 % average yield).

Over the past decade, the development of Frustrated Lewis
Pair (FLP) chemistry has received considerable attention.[1]

Representing an area of particular interest, FLPs can be
employed as catalysts in metal free hydrogenation process-
es.[2] Dihydrogen is typically employed as the reductant in
such processes, however, recent advances have shown that
amines,[3] cyclohexadienes,[4] ammonia borane,[5] and
Hantzsch esters[6] can be employed as dihydrogen surrogates
in B(C6F5)3-catalyzed transfer hydrogenation. Systems
employing an additional Lewis base, rendering it an FLP-
type process, have been developed by Du and co-workers for
the enantioselective transfer hydrogenation of ketimines and
quinoxalines.[7] Alternatively, metal free transfer hydrogena-
tion via dehydocoupling catalysis has been developed using
borane and phosphenium salt catalysts.[8]

Silyl enol ethers have often served as a test bed for the
development of novel FLP catalytic systems (Sche-
me 1A).[9, 10] In contrast to imines and N-heterocycles, which
can serve the role of the Lewis base within an FLP-type
system,[2] the lower basicity of silyl enol ethers necessitates an
additional Lewis base for dihydrogen activation and subse-
quent hydrogenation. In 2008, Erker and co-workers reported
the first FLP-catalyzed hydrogenation of silyl enol ethers
using a 1,8-bis(diphenylphosphino)naphthalene/B(C6F5)3

FLP system.[9a] In 2012, Paradies and co-workers employed
a [2.2]-paracyclophane derived bisphosphine as the Lewis
base component of an FLP for silyl enol ether hydrogena-

tion.[9c] Du and co-workers subsequently developed methods
for enantioselective FLP-catalyzed hydrogenation of silyl
enol ethers using in situ generated axially chiral boranes as
Lewis acids in combination with t-Bu3P as the Lewis base.[9d,e]

Despite these notable advances, there exists no reports to
date that describe the transfer hydrogenation of silyl enol
ethers via any metal or metal free catalytic process. Further-
more, all previous reports of FLP-catalyzed hydrogenation of
silyl enol ethers employ highly specialized FLP systems, such
as those shown in Scheme 1A, and require > 1 bar dihydro-
gen pressure. Taking inspiration from the aforementioned
works, and as part of our ongoing investigations into novel
applications of FLPs in catalysis,[11] herein we report the first
catalytic transfer hydrogenation of silyl enol ethers, which
uses a commercially available 2,2,6,6-tetramethylpiperidine/
B(C6F5)3 FLP catalyst system[12] and naturally occurring g-
terpinene[4a] as a dihydrogen surrogate (Scheme 1B).

To commence our studies, we selected silyl enol ether 1 as
a model substrate (Table 1). After extensive optimization,[13]

it was found that a FLP system composed of B(C6F5)3

(10 mol %) and 2,2,6,6-tetramethylpiperidine (TMP)

Scheme 1. Previous work and outline of the FLP-catalyzed transfer
hydrogenation strategy.
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(10 mol %) using g-terpinene 2a (1.3 equiv) as a dihydrogen
surrogate in toluene ([1] = 0.16m) at 130 88C for 4 h, enabled
the efficient transfer hydrogenation of 1, giving silyl ether 3 in
96% NMR yield (entry 1). No observable hydrogenation
occurs in the absence of either Lewis acid or Lewis base,
confirming FLP-type catalysis is in operation (entries 2 and
3). Using the ChildsQ method,[14] Alcarazo and co-workers
have determined the relative Lewis acidity of the three
boranes examined in this study, B(C6F5)3, B(2,4,6-F3C6H2)3

and B(2,6-F2C6H3)3, to be 100%, 70% and 56% respec-
tively.[15] B(C6F5)3 proved to be optimal for this process,
highlighting that a strong Lewis acid is required for efficient
hydride abstraction from cyclohexa-1,4-dienes due to the
formation of a high energy Wheland complex (entries 1, 4 and
5).[4] Alternative Lewis bases, DABCO, 1,2,2,6,6-pentame-
thylpiperidine (PMP) and t-Bu3P, among others tested,[13]

gave lower conversions to 3 (entries 6–8). Using an alter-
native dihydrogen surrogate, namely 1,5-dimethoxycyclo-
hexa-1,4-diene 2b, resulted in only 23 % NMR yield of 3,
which is likely due to coordination of 2b to B(C6F5)3 (entry 9)
via the ether oxygen atoms. Employing cyclohexa-1,4-diene
2c or ammonia borane 2d instead of 2a gave no observable
product formation (entries 10 and 11). A range of solvents
was examined,[13] including benzene (entry 12), but none were
advantageous over toluene. Increasing the concentration [1]
to 0.32m (entry 13), reducing the temperature to 60 88C
(entry 14), shortening the reaction time to 2 h (entry 15)
and reducing the catalyst loading to 5 mol% (entry 16) all
resulted in decreased conversion to 3, confirming that optimal
reaction conditions (entry 1) had been determined.

For the purposes of assessing the scope of this protocol,
the standard reaction conditions (Table 1, entry 1) were used
except the reaction time was extended to 16 h to ensure full
conversion across a range of substrates (Scheme 2). Initially,
the effect of varying the silicon group within the silyl enol
ether on the FLP-catalyzed transfer hydrogenation protocol
was examined and it was found that TMS, TES, TBS, TIPS
and TBDPS protected enol ethers were all tolerated. Due to
their instability towards silica gel chromatographic purifica-
tion, TMS, TES and TBS protected alcohols were deprotected
in situ using TBAF (product 4, 72–93 % yield), whereas TIPS
and TBDPS protected alcohols 5 and 6 were isolated in 73%
and 74 % yields, respectively. In order to fully explore the
substrate scope of this protocol, we initially produced a small
library of TMS protected enol ethers. In some cases, when
subjected to the optimized reaction conditions for transfer
hydrogenation, significant quantities of silyl enol ether
decomposition was observed, most likely due to the presence
of a strong Lewis acid, B(C6F5)3, and the elevated reaction
temperature (130 88C). This issue was addressed in such cases
by simply employing the more robust TBS protected enol
ether. Substitution of the aryl group within the silyl enol ether
(R1 scope) was explored next, giving the corresponding
secondary alcohols in excellent isolated yields (products 7–28,
79% average yield). Within the aryl unit, various 4-, 3- and 2-
alkyl substitution was tolerated in addition to electron-
donating (4/3/2-OMe) substituents. However, 4-trifluoro-
methyl substitution resulted in only 8% conversion to
reduced product 17. This result can be rationalized by the
inductively electron-withdrawing CF3 group reducing the
basicity of the silyl enol ether, resulting in slow protonation by
the protonated Lewis base (cf. Scheme 3 for proposed
reaction mechanism). Halide substitution (4-F, 4-Cl, 4-Br
and 4-I) within the starting materials was tolerated, incorpo-
rating an additional functional handle into the products for
subsequent elaboration via cross-coupling methods.[16]

Extended aromatic systems (1-Np, 2-Np and 9-phenanthryl)
and heteroaryls (2-thiophenyl, 2-benzothiophenyl and 2-
benzofuranyl) can also be present within the silyl enol ether
substrate. Trisubstituted indanone- and cyclohexanone-
derived silyl enol ethers participated in the FLP-catalyzed
transfer hydrogenation protocol, giving secondary alcohols 28
and 29 in 84% and 70 % isolated yields, respectively. Finally,
a pinacolone-derived TMS-protected enol ether was fully
converted to pinacolyl alcohol 30 using the optimized reaction
conditions.

Enamines are another class of enolate equivalent that
have been studied as substrates for FLP-catalyzed hydro-
genation,[17] but have never been employed in an FLP-
catalyzed transfer hydrogenation process. Encouraged by our
success with silyl enol ethers, the previously optimized
reaction conditions were employed using acetophenone-
derived disubstituted enamine 31 as substrate, giving 16%
conversion to tertiary amine 32. Unfortunately, despite re-
optimization efforts, the maximum NMR yield of 32 observed
was 23 % when 2,6-lutidine or 2,4,6-collidine was employed as
the Lewis base. Similarly, suitable reaction conditions could
not be identified to effect the FLP-catalyzed transfer hydro-
genation of tri- and tetrasubstituted enamines 33 and 34, with

Table 1: Optimization of the FLP-catalyzed transfer hydrogenation.[a]

Entry Variation from “standard” conditions Yield[b] [%]

1 none 96
2 no B(C6F5)3 <2
3 no TMP <2
4 B(2,4,6-F3C6H2)3 instead of B(C6F5)3 7
5 B(2,6-F2C6H3)3 instead of B(C6F5)3 <2
6 DABCO instead of TMP 41
7 PMP instead of TMP 36
8 t-Bu3P instead of TMP 43
9 2b instead of 2a 23
10 2c instead of 2a <2
11 2d instead of 2a <2
12 benzene instead of toluene 46
13 [1] =0.32 m 87
14 60 88C <2
15 2 h 47
16 5 mol% catalyst 23

[a] Reactions performed using 0.5 mmol of silyl enol ether 1 where
[1] =0.16 m in toluene. [b] Determined by 1H NMR analysis of the crude
reaction mixture with 1,3,5-trimethylbenzene as the internal standard.
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starting materials returned in both cases. Previous reports of
FLP-catalyzed hydrogenation of enamines employ special-
ized boranes or borenium cations with lower relative Lewis
acidity compared to B(C6F5)3.

[17] As such, the low conversions

observed in this system are likely due to coordination of the
nucleophilic enamine to B(C6F5)3.

The proposed mechanism for the FLP-catalyzed transfer
hydrogenation begins with initial hydride abstraction of g-
terpinene by B(C6F5)3,

[18] giving a Wheland intermediate and
[HB(C6F5)3]

@ (Scheme 3).[4] 2,2,6,6-Tetramethylpiperidine
(TMP) is then protonated by the Brønsted acidic Wheland
intermediate,[19] producing p-cymene as a by product. This
step is supported by evidence that no transfer hydrogenation
occurs in the absence of TMP (cf. Table 1, Entry 3). Subse-
quent hydrogenation of the electron rich silyl enol ether
occurs via proton transfer from [HTMP]+, to form a strongly
electrophilic carbonyl moiety, followed by hydride transfer
from [HB(C6F5)3]

@ to complete the catalytic cycle.[20]

In conclusion, we have developed the first catalytic
transfer hydrogenation of silyl enol ethers. This metal free
approach employs a commercially available FLP system
composed of B(C6F5)3 and 2,2,6,6-tetramethylpiperidine
(TMP) and uses naturally occurring g-terpinene as a dihydro-
gen surrogate. A diverse array of silyl enol ethers undergo
efficient hydrogenation, accessing the reduced products in
excellent isolated yields (29 examples, 82% average yield).
Ongoing studies are focused on further applications of FLPs
in catalysis and these results will be reported in due course.

Scheme 2. Scope of the FLP-catalyzed transfer hydrogenation process. Reactions performed using 0.5 mmol of silyl enol ether starting material.
All yields are isolated yields after chromatographic purification unless otherwise stated. [a] Determined by 1H NMR analysis of the crude reaction
mixture with 1,3,5-trimethylbenzene as the internal standard.

Scheme 3. Proposed catalytic cycle for the FLP-catalyzed transfer
hydrogenation process.
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