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Abstract: In this study, we evaluated the effects of protopanaxadiol (PPD), a gut 
microbiome induced ginseng metabolite, in increasing the anticancer effects of a 
chemotherapeutic agent fluorouracil (5-FU) on colorectal cancer. An in vitro HCT-116 
colorectal cancer cell proliferation test was conducted to observe the effects of PPD, 5-FU 
and their co-administration and the related mechanisms of action. Then, an in vivo xenografted 
athymic mouse model was used to confirm the in vitro data. Our results showed that the 
human gut microbiome converted ginsenoside compound K to PPD as a metabolite. PPD 
and 5-FU significantly inhibited HCT-116 cell proliferation in a concentration-dependent 
manner (both p < 0.01), and the effects of 5-FU were very significantly enhanced by 
combined treatment with PPD (p < 0.01). Cell cycle evaluation demonstrated that 5-FU 
markedly induced the cancer cell S phase arrest, while PPD increased arrest in G1 phase. 
Compared to the control, 5-FU and PPD increased apoptosis, and their co-administration 
significantly increased the number of apoptotic cells (p < 0.01). Using bioluminescence 
imaging, in vivo data revealed that 5-FU significantly reduced the tumor growth up to Day 20 
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(p < 0.05). PPD and 5-FU co-administration very significantly reduced the tumor size in a 
dose-related manner (p < 0.01 compared to the 5-FU alone). The quantification of  
the tumor size and weight changes for 43 days supported the in vivo imaging data. Our 
results demonstrated that the co-administration of PPD and 5-FU significantly inhibited the 
tumor growth, indicating that PPD significantly enhanced the anticancer action of 5-FU,  
a commonly used chemotherapeutic agent. PPD may have a clinical value in 5-FU’s  
cancer therapeutics. 
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1. Introduction 

Ginseng is a popular herbal medicine worldwide. Asian ginseng and American ginseng are two 
commonly used ginseng species [1]. It is generally accepted that the major pharmacological 
constituents of both ginsengs are ginsenosides, a group of steroidal saponins [1–3]. Over 80 ginsenosides 
have been identified, and almost all ginsenosides can be found in these two ginseng species [4,5]. 

Asian ginseng is one of most studied natural products in different animal models [1,3]. A large  
case-controlled clinical study in Korea showed that Asian ginseng consumers had a decreased risk for 
many different cancers compared with those not taking the ginseng regularly [6,7]. Our group has 
published a number of studies that have demonstrated the chemoprevention potential of American 
ginseng on colorectal cancer, a major cause of cancer death worldwide. Our data showed, in both in vitro 
and in vivo settings, American ginseng extract, fractions, and single compounds possessed significant 
colon cancer therapeutic potential [8–11]. Of note, American ginseng has approximately two times 
higher total ginsenoside content than Asian ginseng [4,5]. The content ratio of protopanaxadiol group 
ginsenosides (PPDs) vs. protopanaxatriol group ginsenosides (PPTs) in American ginseng is 
approximately 4:1, and thus protopanaxadiol group ginsenosides occupy the majority in the total 
saponins [9]. 

Like most other natural products, the route of administration of ginseng is nearly always oral.  
After ginseng ingestion, its bioavailability is low due to incomplete parent compound absorption and 
the conversion of parent compounds to metabolites by the intestinal microbiome [12–14]. In natural 
product research, many previous studies have employed primarily reductionist methodologies in parent 
compound bioactivity screening. However, the bioavailability and bioactivity of their metabolites, an 
important issue linked to the in vivo effects, have often been overlooked. Study of the 
biotransformation pathways of protopanaxadiol group ginsenosides demonstrated that, via the enteric 
microbiota, compound K is a major ginseng metabolite with obviously stronger anticancer effects 
compared to its parent compounds, such as ginsenosides Rb1, Rc and Rd [10,15]. Previous reports 
have shown that PPD can be converted by gut bacteria from ginseng extract [16] or Rb1 [17]. However, 
before this study, there was no direct evidence that PPD could be converted from compound K. 

Currently, newer chemotherapeutic and chemopreventive agents continue to be investigated, including 
those derived from botanical sources. Patients with cancer often resort to herbal medicines, including 
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ginseng, to reduce the side effects of chemotherapy or even attempt to increase the effects of the drug 
treatment [18,19]. A major concern of herb and drug co-administration is their interactions [20,21]. 
Previous evidence suggested that intestinal microbiota could convert protopanaxadiol group ginseng 
saponins to PPD. We have shown, using human colorectal cancer cells in vitro, that ginseng or ginseng 
compounds did not reduce, but enhanced the effects of fluorouracil (5-FU), a frequently used 
chemotherapeutic agent for colon cancer treatment [22–25]. However, in respect to other active 
ginseng compounds, such as PPD [11], its interactions with 5-FU have not been evaluated. 

In this study, we first demonstrated that compound K could be converted to PPD as a metabolite by 
the human gut microbiome. Next, we chemically synthesized PPD to obtain enough quantity for the 
following pharmacological observations. Subsequently, an in vitro colorectal cancer cell proliferation 
test was conducted to evaluate the effects of PPD and 5-FU co-administration and the related 
mechanisms of action. Finally, an in vivo xenografted athymic mouse model was used to confirm the 
observed in vitro data in which PPD significantly enhanced the activities of 5-FU. To verify the 
validity of the in vivo results, the tumor inhibition effects were assessed by three methods, i.e., 
Xenogen bioluminescence imaging, manual tumor size and tumor weight measurements. 

2. Materials and Methods 

2.1. In Vitro Biotransformation 

Previously collected stool samples from healthy adult subjects were used [26]. The stool was 
suspended in saline, and the enteric bacteria fraction was obtained after centrifugation, and mixed with 
anaerobic medium containing compound K (5 mg/mL) [14]. The mixture was anaerobically incubated 
at 37 °C for 24 h. Then, the reacted mixtures were processed [14,27]. HPLC/Q-TOF-MS analysis was 
performed on an Agilent 1290 LC system (Agilent Technologies, Waldbronn, Germany). The separation 
was carried out on an Agilent Zorbax Extend-C18 UPLC column (4.6 mm × 250 mm, 5 μm) with a 
constant flow rate of 1 mL/min at 25 °C. The mobile phase was composed of water (0.1% formic acid, A) 
and acetonitrile (0.1% formic acid, B). Gradient elution started with 20% B and held for 30 min, 
changed to 45% B for 30 min, changed to 75% B for 18 min, changed to 100% B for 2 min and held 
for 6 min. The sample volume injected was set at 2 μL. Analysis was performed on an Agilent G6540 
Q-TOF-MS spectrometer equipped with an ESI interface. The constituents were analyzed in negative 
mode. The system was operated under MassHunter workstation software, version B.02.00. Metabolites 
of the compound K were determined [14]. 

2.2. Preparation of Protopanaxadiol (PPD) and Chemicals Used in this Study 

Total ginsenosides (2.0 g), n-butanol (250 mL), and sodium hydroxide (10 g) were added to a  
500 mL round bottom flask. The mixture was heated to 130 °C and stirred with argon for 2 days and 
allowed to cool at room temperature. Then, the reaction mixture was washed with water (2 × 100 mL), 
1% HCl (2 × 100 mL), 5% NaHCO3, and brine. The organic phase was dried over magnesium sulfate. 
The removal of the solvent under reduced pressure resulted in a sticky oil, which was purified by a 
silica gel column to release PPD. 
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The purity of the PPD was determined through HPLC analysis. The HPLC system was a Waters  
2960 instrument with a 996 photodiode array detector (Milford, MA, USA). The separation was  
carried out on a Restek Ultra C8 column (5 μ, 250 × 4.6 mm) (Bellefonte, PA, USA) at 25 °C. Water  
(solvent A) and acetonitrile (solvent B) were used. Gradient elution started with 60% B, was changed 
to 95% B for 30 min and held for 2 min. The flow rate was 1.0 mL/min and the detection wavelength 
was set to 202 nm. 

Before observations, the PPD was dissolved in dimethyl sulfoxide (DMSO) to make stock solution 
and kept at −80 °C as aliquots. Compound K was obtained from ChromaDex Inc. (Irvine, CA, USA). 
Fluorouracil (5-FU) was obtained from American Pharmaceutical Partners (Schaumburg, IL, USA). 
Unless specifically indicated, all other chemicals used in this study were obtained from Sigma-Aldrich 
(St. Louis, MO, USA) or Fisher Scientific (Pittsburgh, PA, USA). 

2.3. Cell Culture 

HCT-116 human colorectal cancer cells (ATCC, Manassas, VA, USA) were routinely grown in a 
humidified atmosphere of 5% CO2 at 37 °C with McCoy’s 5A medium, supplemented with 10% fetal 
bovine serum and 50 IU penicillin/streptomycin. Cells were grown in a 25-mL flask and were routinely 
subcultured using 0.05% trypsin-EDTA solution. Cells were maintained at the culture conditions 
described above for subsequent experiments. 

2.4. Cell Proliferation Assay 

To examine the antiproliferation effect of the study agents, HCT-116 cells were seeded in 96-well 
plates at approximately 1 × 104 cells/well. After 24 h, indicated concentrations of drugs were added to 
the wells. After treatment for 48 h, cell proliferation was evaluated using an MTS assay according to 
the manufacturer’s instructions. Briefly, the medium was replaced with 100 μL of fresh medium and 
20 μL of MTS reagent (CellTiter 96 Aqueous Solution, Promega, Madison, WI, USA) in each well, 
and the plate was returned to the incubator for 1–2 h. A 60 μL aliquot of medium from each well was 
transferred to an ELISA 96-well plate and its absorbance at 490 nm was recorded. 

2.5. Cell Cycle Analysis 

The HCT-116 cells were plated at a density of 2 × 105 cells onto 24-well plates. The medium was 
replaced 24 h after seeding with fresh medium containing PPD (10 and 20 μM) and/or 5-FU (30 μM). 
To analyze the cell cycle distribution, cells were trypsinized after 48 h of exposure to the drugs, fixed 
gently with 80% ethanol, and stored at −20 °C for 2 h. They were then treated with 0.25% Triton X-100 
for 5 min in an ice bath. The cells were resuspended in 300 μL of PBS containing 40 μg/mL propidium 
iodide (PI) and 0.1 mg/mL RNase. The cells were incubated in a dark room for 20 min at room 
temperature, and cell cycle analysis was performed using a FACScan flow cytometer (Becton Dickinson, 
Mountain View, CA, USA) and FlowJo 9.5 software (Tree Star, Ashland, OR, USA). For each 
measurement, at least 10,000 cells were counted. 
  

 



Nutrients 2015, 7 803 
 
2.6. Apoptosis Analysis 

For apoptosis detection, floating cells in the medium and adherent cells were collected after 48 h of 
treatment with PPD (10 and 20 μM) and/or 5-FU (30 μM). Using an Annexin V Apoptosis Detection Kit 
(BD Biosciences, Rockville, MD, USA), cells were stained with annexin V-FITC and propidium iodide 
(PI) according to the manufacturer’s instructions. Untreated cells were used as the control for double 
staining. Cells were analyzed immediately using a FACScan flow cytometer. For each measurement, at 
least 20,000 cells were counted. 

2.7. In Vivo Antitumor Evaluation 

Human colorectal cancer cell line, HCT-116-Luc, was used to establish a xenograft model in 
immunodeficient BALB/c nude mice. HCT-116-Luc cell line that stably expresses firefly luciferase 
was generated using a retroviral vector expressing firefly luciferase [28]. Briefly, recombinant 
retrovirus was packaged in HEK-293 cells by co-transfecting cells with pSEB-Luc and pAmpho 
packaging plasmid using LipofectAMINE (Invitrogen, Carlsbad, CA, USA). Pooled stable cells 
(designated HCT-116-Luc) were selected with blasticidin S (0.6 µg/mL) for 7 days. The firefly luciferase 
activity was confirmed by using Promega’s Luciferase Assay kit (Promega, Madison, WI, USA). 

The use and care of animals were carried out under the guidelines approved by the Institutional 
Animal Care and Use Committee (ACUP number: 70917, approval date: 12 April 2014). Female 
BALB/c nude mice (4–6 weeks of age, Harlan, Indianapolis, IN, USA) were used. Subconfluent  
HCT-116-Luc cells were harvested and resuspended in PBS to a density of 2 × 107 cells/mL. Prior to 
inoculation, cell viability was tested by 0.4% trypan blue exclusion assay (viable cells > 90%). 
Approximately 1 × 106 HCT-116-Luc cells in 100 μL PBS were injected subcutaneously into both 
flanks of each animal. The cancer cell inoculation was performed seven days before Day 1. There were 
four animal groups (n = 8/group) in this study, and starting on Day 1 mice received PPD, 5-FU, or 
vehicle injection intraperitoneally (IP): (1) “5-FU group”, 5-FU 30 mg/kg (a dose lower than the 
commonly used cancer treatment dose) once a week; (2) “PPD15 + 5-FU group”, PPD 15 mg/kg every 
other day plus 5-FU 30 mg/kg once a week; (3) “PPD30 + 5-FU group”, PPD 30 mg/kg every other day 
plus 5-FU 30 mg/kg once a week; (4) “Control group”, vehicle injection. 

For Xenogen bioluminescence imaging, animal whole body optical imaging was carried out as 
previously described [28]. Animals were imaged with a Xenogen IVIS 200 imaging system (Caliper  
Life Sciences, Hopkinton, MA, USA) at the indicated time points. D-Luciferin sodium salt (Gold 
Biotechnology, St. Louis, MO, USA) at 150 mg/kg body weight in 0.1 mL sterile PBS was administered 
IP as a substrate before imaging. Acquired pseudo images were collected by superimposing the emitted 
light over the grayscale photographs of the animal. Quantitative image analysis was performed with 
Living Image 4.2 software (Caliper Life Sciences, Hopkinton, MA, USA). 

For tumor size calculations, the tumor was measured twice a week. Tumor size in volume (mm3) 
was calculated using the following formula: Tumor volume = (width2 × length)/2. For tumor weight 
measurements, at the end of the observation period, animals were sacrificed and the induced tumors 
were surgically removed. The tumor weight was immediately measured at room temperature on an 
electrical balance. 
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2.8. Statistical Analysis 

Data are presented as mean ± standard error (SE). In vitro and in vivo data were analyzed using 
analysis of variance (ANOVA) for repeated measures and Student’s t-test. The level of statistical 
significance was set at p < 0.05. 

3. Results 

3.1. Compound K Biotransformation and PPD Purity Analysis 

After anaerobically incubating compound K with a human stool sample, PPD, as a major metabolite 
of compound K, was detected via HPLC/Q-TOF-MS analysis (Figure 1B). When the sterilized stool 
sample was used for the same incubating procedure, there was no PPD detected suggesting the enteric 
microbiome plays a key role in the observed biotransformation. 

To order to obtain a relatively large amount of PPD for subsequent in vitro and in vivo anticancer 
pharmacological observations, the PPD was synthesized as described in the Materials and Methods 
section. The HPLC-determined purity was 95.3% (Figure 1C). 

 

Figure 1. In vitro evaluation to assess the effects of the human stool microbiome in 
metabolizing compound K (CK) and the protopanaxadiol (PPD) purity test. (A) Chemical 
structures of CK and PPD; (B) typical HPLC-MS chromatogram of CK biotransformation 
by the intestinal microbiome; (C) the purity of synthesized PPD was determined using 
HPLC-UV analysis. 
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3.2. Effects of PPD and 5-FU on HCT-116 Colon Cell Proliferation 

Figure 2A,B show the antiproliferative effects of 5-FU and PPD on HCT-116 human colorectal 
cancer cells. After treatment for 48 h, compared with control (normalized to 100%), PPD or 5-FU 
significantly inhibited HCT-116 cell proliferation in a concentration-dependent manner (both p < 0.01). 

The influence of PPD on 5-FU induced antiproliferation in the cancer cells is shown in Figure 2C. 
When used alone for 48 h, 5-FU (10, 20, 30 μM) decreased the cell growth by 5.7 ± 3.9% and  
20.2 ± 2.4% and 30.1 ± 1.6%, respectively (p > 0.05, p < 0.01 and p < 0.01 respectively, compared 
with control). Combined treatment of PPD (10 μM) with 5-FU (10, 20, 30 μM) decreased the HCT-116 
cell growth by 13.8 ± 2.6%, 27.4 ± 3.7% and 49.4 ± 1.7%, respectively (p < 0.05, p < 0.01 and p < 0.01 
respectively, compared with 5-FU alone). When 5-FU was combined with PPD 20 μM, cell growth 
was further decreased (Figure 2C). These results suggested that PPD significantly enhanced 5-FU 
induced antiproliferative effect on the cancer cells. 

 

Figure 2. Antiproliferative effects of (A) 5-FU and (B) protopanaxadiol (PPD) on the  
HCT-116 human colorectal cancer cells after 48 h of treatment. PPD and 5-FU significantly 
inhibited the proliferation of the cancer cells; (C) when PPD is combined with 5-FU,  
the antiproliferative effects of 5-FU were significantly enhanced by PPD. + p < 0.05;  
++ p < 0.01 compared to control. * p < 0.05, ** p < 0.01 compared to 5-FU group. 

3.3. Effect of PPD and 5-FU on Cell Cycle 

In this experiment, we examined whether the decrease of the cancer cell growth is a consequence of 
the cell cycle arrest at a specific phase. As shown in Figure 3, the cell cycle profile in the control group 
was G1 28.9%, S 43.3% and G2/M 19.9%. When treated with 30 µM of 5-FU, the cell cycle profile 
was changed to G1 19.3%, S 70.4% and G2/M 5.7%. 5-FU markedly induced S phase arrest of the cell 
cycle. On the other hand, treatment with 20 µM of PPD significantly increased cell cycle arrest in the 
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G1 phase. Following exposure to 20 µM of PPD plus 30 µM of 5-FU for 48 h, the percentage of  
HCT-116 cells at the G1 phase of the cell cycle increased to 29.7%, compared with those exposed only 
to 5-FU (p < 0.01), while the percentage of cells in the S and G2/M phases was significantly reduced 
with the co-treatment (Figure 3B). 

 

Figure 3. Effects of protopanaxadiol (PPD) on 5-FU-induced cell cycle arrest. HCT-116 
human colorectal cancer cells were treated with PPD at various concentrations (10 and  
20 µM) in the absence or presence of 5-FU (30 µM) for 48 h. The cell cycle was assessed 
using PI/RNase staining and flow cytometric analysis. (A) The representative histograms 
of DNA content in each experimental group; (B) percentage of each cell cycle phase with 
various treatments or with control. Data obtained from triplicate experiments. + p < 0.05;  
++ p < 0.01 compared to control; * p < 0.05; ** p < 0.01 compared to 5-FU group. 

3.4. Apoptotic Effects of PPD and 5-FU on HCT-116 Cells 

To examine whether the observed cell growth inhibition was caused by apoptosis, using flow 
cytometry, the induction of apoptosis was determined. The cytograms of bivariate annexin V/PI 
analysis of the HCT-116 cells are shown in Figure 4A. Compared to the untreated control (apoptosis 
5.0 ± 0.6), 10 and 20 µM of PPD increased apoptosis to 6.4 ± 0.9% and 9.1 ± 0.7%, respectively  
(p > 0.05 and p < 0.05 respectively, compared with control) (Figure 4B). These data showed that PPD 
increased the proportion of apoptotic cells at 20 µM. Incubation with 5-FU at 30 μM for 48 h 
significantly increased apoptotic cells (p < 0.01 compared with control). When 5-FU (30 μM) was 
combined with PPD (10 or 20 µM), the percentage of apoptotic cells increased to 21.1 ± 2.2% and  
28.8 ± 1.5%, respectively, which are significantly higher compared with values of the 5-FU treatment 
alone (both p < 0.01). These results suggested that the cell growth inhibition of combined PPD and  
5-FU was related to the apoptotic induction (Figure 4). 
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Figure 4. Effects of protopanaxadiol (PPD) on 5-FU-induced apoptosis. HCT-116 human 
colorectal cancer cells were treated with PPD at various concentrations (10 and 20 µM) in 
the absence or presence of 5-FU (30 µM) for 48 h. Apoptosis was quantified using annexin 
V/PI staining followed by flow cytometric analysis. (A) Representative scatter plots of PI 
(y-axis) vs. annexin V (x-axis) in each experimental group; (B) the percentage of apoptotic 
cells. Data obtained from triplicate experiments. + p < 0.05; ++ p < 0.01 compared to 
control; ** p < 0.01 compared to 5-FU group. 

3.5. Effects of PPD and 5-FU on Colon Tumor Growth Inhibition using Xenogen  
Bioluminescence Imaging 

Figure 5A shows the representative Xenogen imaging results from animals in different treatment 
groups. Figure 5B shows the quantitative analysis of Xenogen bioluminescence imaging data on  
Day 1 and Day 20. Average tumor size at the indicated time points is expressed by imaging signal 
intensities (photons/second/cm2/ser). 

Using bioluminescence imaging, the data showed that compared to the control, the 5-FU group 
significantly reduced the tumor growth (p < 0.05). The PPD15 plus 5-FU and PPD30 plus 5-FU groups 
significantly reduced the tumor size in a dose-related manner (p < 0.05 and p < 0.01, respectively 
compared to the 5-FU group), indicating that PPD enhanced 5-FU’s antitumor effects. 
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Figure 5. Protopanaxadiol (PPD) enhances the antitumor effects of 5-FU in xenografted 
athymic mice measured by Xenogen bioluminescence imaging. The tumor growth is 
monitored from Day 1 (7 days after human colon cancer cell HCT-116 inoculation) to  
Day 20. (A) Representative Xenogen imaging results from animals in different treatment 
groups; (B) quantitative analysis of Xenogen bioluminescence imaging data. Average 
tumor sizes at the indicated time points are expressed with imaging signal intensities 
(photons/second/cm2/ser). n = 8/group. 5-FU, 5-FU 30 mg/kg; PPD15 + 5-FU, PPD 15 mg/kg 
plus 5-FU 30 mg/kg; PPD30 + 5-FU, PPD 30 mg/kg plus 5-FU 30 mg/kg. ++ p < 0.01 
compared to the model group; * p < 0.05; ** p < 0.01 compared to the 5-FU group. 

3.6. Effects of PPD and 5-FU on Colon Tumor Size and Tumor Weight Changes 

Figure 6A shows the tumor size (in volume) changes with different treatments. The tumor growth 
was monitored up to Day 43. The tumor size data in different groups, up to Day 20, is comparable to 
the data obtained from the bioluminescence imaging. PPD15 plus 5-FU and PPD30 plus 5-FU groups 
very significantly reduced the tumor size (both p < 0.01 compared to the 5-FU group). However, the  
dose-related effect of PPD plus 5-FU was not evident. 

Figure 6B shows the tumor weight changes in different treatment groups monitored at Day 43.  
The trend of tumor weight data is comparable to the data from the bioluminescence imaging and tumor 
size results. The PPD15 plus 5-FU and PPD30 plus 5-FU groups significantly reduced the tumor 
weight (p < 0.01 and p < 0.05, respectively, compared to the 5-FU group). However, similar to the 
tumor size data, no dose-related effects were seen from the PPD plus 5-FU groups. 
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Figure 6. Protopanaxadiol (PPD) enhances the antitumor effects of 5-FU in xenografted 
athymic mice measured by tumor size and tumor weight. The tumor growth is monitored 
up to Day 43. (A) Changes in tumor size (in volume); (B) changes in tumor weight.  
At Day 43, tumor weights are presented as a scatter plot with mean values and error bars. 
5-FU, 5-FU 30 mg/kg; PPD15, PPD 15 mg/kg; PPD30, PPD 30 mg/kg; PPD15 + 5-FU, 
PPD 15 mg/kg plus 5-FU 30 mg/kg; PPD30 + 5-FU, PPD 30 mg/kg plus 5-FU 30 mg/kg.  
n = 8/group. + p < 0.05; ++ p < 0.01 compared to the model group; * p < 0.05; ** p < 0.01, 
compared to the 5-FU group. 

4. Discussion 

Colorectal cancer is one of the most common malignancies and a major cause of cancer death in 
both men and women worldwide [29]. Although early diagnosis with rigorous screening may have 
reduced the incidence of this cancer compared to that of several years ago, the prognosis associated 
with metastatic disease continues to remain bleak [30]. The low 5-year survival rate using the currently 
available chemotherapy underscores the fact that better anticancer drugs need to be developed. Based 
on the fact that many oncology drugs have been developed from botanical sources, there is a 
significant untapped resource in herbal medicines, which needs to be investigated against cancers in 
the gastrointestinal system [19,31–33]. In the last 10 years, we have published many studies using 
ginseng compounds alone or as adjuncts to existing chemotherapy to improve efficacy and reduce 
chemotherapeutic agent-induced adverse events [4,10,24,25]. 

The enteric microbiome plays an important role subsequent to oral American ginseng administration 
in converting ginseng parent compounds to their metabolites [4,12,34,35]. Study data showed that 
compound K is a major metabolite that reaches systemic circulation, and this metabolite likely 
possesses significant anticancer activities [10,11,36,37]. Previously published data revealed that PPD 
was converted by intestinal microbiota either from total ginseng extract [16] or Rb1 [17]. However, 
there was no direct evidence that PPD can be converted from compound K. We recently reported the 
conversion of ginseng saponins by the human enteric microbiome and detected over 20 metabolites [14]. 
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In this study, we showed, for the first time, that using the human enteric microbiome compound K was 
converted to its metabolite—protopanaxadiol (PPD)—and we also showed PPD is an important 
bioactive metabolite. 

Fluorouracil (5-FU) is one of the most widely used chemotherapeutic agents in first-line therapy for 
colorectal cancer [22,23], and an overall survival benefit after fluorouracil-based chemotherapy has 
been established [38]. For the treatment of metastatic colon cancer, however, higher 5-FU doses 
produced more adverse events while possibly not being more effective than lower doses [39]. If 
combining 5-FU with other agents can decrease the dose of 5-FU while increasing its anticancer effect, 
the patient may benefit from the new treatment regimen. However, 5-FU in combination with ginseng 
compounds has seldom been investigated in in vivo settings [21,25]. 

In this study, an in vitro HCT-116 colorectal cancer cell proliferation test was conducted and we 
observed that PPD and 5-FU significantly inhibited the cancer cells growth, and the effects of 5-FU 
were significantly enhanced by the combined treatment with PPD. 5-FU and PPD increased apoptosis, 
and their co-administration further significantly increased the number of apoptotic cells. Cell cycle 
experiment data indicated that 5-FU markedly induced the cancer cell S phase arrest while PPD  
increased the G1 phase arrest. These effects on the arrest at different points in the cell cycle appear  
to be the pharmacological basis of the observed synergistic effect of these two compounds.  
Future pharmacokinetic studies will be performed, and the conversion from in vitro concentration to  
in vivo dosage will be explored. 

In our in vivo study, xenografted athymic mice inoculated with HCT-116 human colorectal cancer 
cells were used. This nude mouse is a strain with a genetic mutation that causes a deteriorated or 
absent thymus, resulting in the inhibition of the immune system due to a diminished number of T cells.  
We have previously used this nude mouse model to evaluate the antitumor effects of different natural 
compounds [40,41]. In this study, in addition to the previously used Xenogen bioluminescence 
imaging technique, we also compared its results with conventional manual tumor measurements, 
including both the tumor size (in volume) and tumor weight. 

Live animal imaging now is a commonly accepted technique for accurate and quantitative 
assessment of tumor growth. Bioluminescence imaging systems rely on a bioluminescent signal from 
tumor cells, generated from the expression of the firefly luciferase gene [42]. However, since adequate 
tumor blood supply is needed for the bioluminescence imaging result, this technique is not likely 
suitable for imaging large tumors (usually after Day 20), in which the blood circulation within the 
tumors may be compromised (unpublished data). Manual tumor size measurement is a traditional way 
of assessing tumor growth. In addition to being time-consuming, the results of this method could vary 
among the researchers due to its objective nature. Tumor weight measurement is an accurate approach 
even when performed by different investigators. However, this method is only applicable when the 
experimental animals are sacrificed, and thus, quantitatively assessing tumor growth and the effects  
of therapy over a time course cannot be achieved. To confirm the in vivo effects of PPD and 5-FU in 
nude mice, we used these three methods in our study, and the data obtained suggest that the outcome  
is consistent. 
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5. Conclusions 

In this study, we evaluated the effects of PPD and/or 5-FU on colorectal cancer growth inhibition in 
both in vitro and in vivo settings, and obtained consistent results. Compared to the control, 5-FU 
significantly reduced cancer growth. Our data showed that the co-administration of PPD and 5-FU 
very significantly inhibited further cancer growth. In combination with 5-FU, PPD enhanced the 
anticancer action of this commonly used chemotherapeutic agent, and their co-administration may 
have a clinical value in the management of colorectal cancer. 
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