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Background: Neural reorganization occurs after a stroke, and dynamic

functional network connectivity (dFNC) pattern is associated with cognition.

We hypothesized that dFNC alterations resulted from neural reorganization in

post-stroke cognitive impairment (PSCI) patients, and specific dFNC patterns

characterized different pathological types of PSCI.

Methods: Resting-state fMRI data were collected from 16 PSCI patients with

hemorrhagic stroke (hPSCI group), 21 PSCI patients with ischemic stroke

(iPSCI group), and 21 healthy controls (HC). We performed the dFNC analysis

for the dynamic connectivity states, together with their topological and

temporal features.

Results: We identified 10 resting-state networks (RSNs), and the dFNCs could

be clustered into four reoccurring states (modular, regional, sparse, and

strong). Compared with HC, the hPSCI and iPSCI patients showed lower

standard deviation (SD) and coefficient of variation (CV) in the regional and

modular states, respectively (p < 0.05). Reduced connectivities within the

primary network (visual, auditory, and sensorimotor networks) and between

the primary and high-order cognitive control domains were observed

(p < 0.01).

Conclusion: The transition trend to suboptimal states may play a

compensatory role in patients with PSCI through redundancy networks. The

reduced exploratory capacity (SD and CV) in different suboptimal states

characterized cognitive impairment and pathological types of PSCI. The
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functional disconnection between the primary and high-order cognitive

control network and the frontoparietal network centered (FPN-centered)

incomplete compensation may be the pathological mechanism of PSCI. These

results emphasize the flexibility of neural reorganization during self-repair.

KEYWORDS

post-stroke cognitive impairment, resting-state functional magnetic resonance
imaging, dynamic functional network connectivity, graph theoretic analysis,
frontoparietal network

Introduction

Stroke is the second leading cause of death in the world and
a leading cause of long-term disability (Collaborators GBDS,
2019). Stroke caused by limited cerebral blood flow, whether
ischemic stroke or hemorrhagic stroke, seriously destroys the
structural and functional integrity of the local and whole range
(Carrera and Tononi, 2014; Ward, 2017). Once stroke occurs,
neural plasticity and reorganization happen in the area of injury
and in the distant compartment to compensate for the loss of
specialized neural tissue and function (Jones, 2017). Post-stroke
cognitive impairment (PSCI) is one of the common functional
disorders after stroke, affecting up to 1/3 of post-stroke survivors
(Mijajlovic et al., 2017). Symptoms of cognitive impairment are
independent predictors of high-order functional impairment
and community reintegration 2–3 years after stroke (Kapoor
et al., 2019). Exploring the neural mechanism of cognitive
impairment after stroke is beneficial to early diagnosis and
early intervention.

Functional neuroimaging has made an essential
contribution to revealing the neural mechanism after stroke.
Resting-state functional magnetic resonance imaging (rs-
fMRI) studies have indicated that the brain’s spontaneous
neural activity and functional connectivity (FC) have
changed in patients with cognitive impairment after stroke
(Peng et al., 2016; Cai et al., 2021). Peng et al. (2016)
found a significant decrease in regional homogeneity in
the bilateral anterior cingulate cortex and left posterior
cingulate cortex/precuneus in PSCI patients compared to
healthy volunteers and post-stroke non-cognitive impairment

Abbreviations: PSCI, post-stroke cognitive impairment; rs-fMRI,
resting-state functional magnetic resonance imaging; FC, functional
connectivity; dFNC, dynamic functional network connectivity; ICA,
independent component analysis; HC, healthy control; hPSCI,
hemorrhagic stroke with cognitive impairment; iPSCI, ischemic stroke
with cognitive impairment; MoCA, Montreal Cognitive Assessment;
IC, independent component; RSN, resting-state network; SD, standard
deviation; CV, coefficient of variation; AUN, the auditory network;
VN, the visual network; SMN, the sensorimotor network; PON, the
occipital network; PreC, the precuneus network; DMN, the default mode
networks; FPN, the frontoparietal network; ECN, the executive control
network; SN, the salience network; CB, the cerebellar network.

patients. In particular, the functional connectivities in the
default mode network may be related to the occurrence of
cognitive impairment after stroke and cognitive recovery
(Park et al., 2014; Jiang et al., 2018). However, previous
studies used analytical approaches that assumed static
connectivity during the whole duration of the MRI scan,
which does not allow for a fine-grained temporal evaluation of
the rs-fMRI signal.

Time-varying characteristics of FC in a conscious and task-
free human brain can be analyzed by “dynamic” functional
network connectivity (dFNC) using rs-fMRI data (Hutchison
et al., 2013b; Allen et al., 2014). dFNC allows connectivity
between brain areas to differ over brief periods, contrary
to the assumption of “static” connectivity across the whole
duration of a functional MRI scan. Some studies evaluated the
dynamic connectivity using independent component analysis
(ICA) combined with the sliding window method to identify
spatial maps in the windowed blood oxygen level-dependent
(BOLD) signal (Premi et al., 2019; Bonkhoff et al., 2020).
dFNC analyses can be displayed as various “connectivity
states” of the brain and transition trajectories between them
by summarizing recurrent large-scale connectivity patterns
(Leonardi et al., 2014). Changes in dFNC have been linked to
cognitive function, such as Alzheimer’s disease (Schumacher
et al., 2019), Parkinson’s disease with dementia (Fiorenzato
et al., 2019), mild cognitive impairment (Jiao et al., 2021), and
subjective cognitive decline (Chen et al., 2021). Furthermore, the
topological properties of the connectivity states and the meaning
of the states can be illuminated by graph theory, which is an
analysis method unraveling the complex network organization
(Yu et al., 2018). Recently, accumulating evidence has found
that stroke mainly leads to changes in the motor large-scale
network’s FC and temporal properties (Bonkhoff et al., 2020;
Wang et al., 2020). As shown in stroke patients, abnormal
dynamic connectivity patterns could predict acute motor
impairment and recovery (Bonkhoff et al., 2021). However,
whether changes in dFNC are related to cognitive impairment
after stroke is unclear.

This study aimed to estimate distinct dynamic connectivity
states and their topological network properties to elaborate
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on the states’ meaning. Furthermore, we investigated the
differences in dynamic connectivity among different PSCI
groups and the healthy control group. We hypothesized that
dFNC alterations resulted from neural reorganization in PSCI
patients, and specific dFNC patterns characterized different
pathological types of PSCI.

Materials and methods

Participants

This study included 37 PSCI patients and 21 healthy controls
(HC) closely matched with the patient groups by age and
gender. According to the age distribution of all patients, 21
intervals were divided and the mean age within the interval
was calculated. The HC group was age-matched by adding
or subtracting 4 years. We recruited PSCI patients from
the Department of Neurological Rehabilitation at Zhongnan
Hospital of Wuhan University, including 16 PSCI patients with
hemorrhagic stroke (hPSCI group) and 21 PSCI patients with
ischemic stroke (iPSCI group). Stroke patients were enrolled in
this study if they had the symptoms of stroke, confirmed by CT
or MRI (Yew and Cheng, 2015). Further inclusion criteria were:
(1) first-ever stroke, 7 days–3 months; (2) 40–80 years old (Jiang
et al., 2018); (3) at least one cognitive domain was impaired,
the Montreal Cognitive Assessment scores (MoCA) was lower
than 26 (Yin et al., 2020); (4) right-handed; and (5) voluntarily
participated in this study and signed the informed consent form.
Exclusion criteria were: (1) unstable vital signs; (2) postoperative
craniotomy or skull defect; (3) pre-stroke cognitive impairment
such as Alzheimer’s disease, Parkinson’s disease, dementia, and
mild cognitive impairment; (4) severe aphasia or other reason
that could not complete the cognitive test; (5) disorders that may
interfere with cognitive assessment, such as mental illness; and
(6) contraindications for MRI scanning. The inclusion criteria
for HC were: (1) matched with the patient groups by age and
gender; (2) the MoCA scores was higher than 26; (3) right-
handed; (4) voluntarily participated in this study and signed
the informed consent form. The exclusion criteria were same
as the PSCI group.

Approval was obtained from the Medical Research Ethics
Committee and Institutional Review Board of Zhongnan
Hospital (2019012). The procedures used in this study adhere to
the tenets of the Declaration of Helsinki. Informed consent was
obtained from all individual participants included in the study.

Behavioral assessment

A professional therapist conducted neuropsychological
tests. The therapist has received systematic training on
neuropsychological scale evaluation. All subjects underwent

one neuropsychological test named the Beijing version of the
Montreal Cognitive Assessment.

Data acquisition and preprocessing

The entire experimental design processing flow is shown in
Figure 1.

All images were acquired on a MAGNETOM Trio 3.0
T MR scanner (Siemens, Germany). Resting-state data were
acquired using a gradient echo-planar imaging (EPI) sequence:
TR/TE = 2,000/30 ms, FOV = 240 mm × 240 mm, flip angle
(FA) = 78◦, matrix = 64 × 64, thickness = 4.0 mm, number
of slices = 35, and voxel size = 3.75 × 3.75 × 4 mm3. The
number of acquired resting-state scans were 480 s. Structural
3D T1-weighted images were acquired with a three-dimensional
magnetization-prepared rapid gradient echo (3D-MPRAGE)
sequence: TR/TE = 2,000/2.3 ms, thickness = 1.0 mm, FA = 8◦,
FOV = 225 mm × 240 mm and voxel size = 1 × 1 × 1 mm3.
During functional MRI scanning, participants were instructed
to lie down in a comfortable position, close their eyes,
stay awake and avoid thinking about anything if possible.
Use two foam pads to fix the head to minimize the
movement of the patient’s head and use the rubber earplugs
to reduce the noise generated during the MRI scan to
ensure the smooth progress of the MRI scan and the
quality of the image.

Data preprocessing was performed in the MATLAB
environment (version R2016b, Mathworks, Natick, MA,
United States) using the SPM 12.1 Preprocessing procedures
included the following steps: (1) the Neuroimaging Informatics
Technology Initiative (NIFTI) format conversion from the
raw DICOM images; (2) remove the first 10 time points
to ensure steady-state magnetization; (3) the slice timing
correction and realignment correction for head motion; (4)
the coregistration of the structural and functional images;
(5) normalized into the standard Montreal Neurological
Institute (MNI) space with 3 × 3 × 3 mm3 resample; (6) the
smoothing with a 4 × 4 × 4 mm3 full-width-half-maximum
(FWHM) Gaussian kernel; Since excessive head motion can
seriously affect the dFNC analysis (Hutchison et al., 2013a),
we calculated individual maximum displacement and mean
framewise displacement (FD) to reduce the potential head
motion bias. We excluded participants with a maximum
displacement above 2 mm and a maximum rotation above 2
degrees. We also excluded subjects with a mean FD > 0.5 mm
(Power et al., 2012). According to these criteria, no subjects
was excluded. The FD did not differ significantly among the
three groups (p = 0.37). Our study finally enrolled 37 PSCI
patients and 21 HC.

1 http://www.fil.ion.ucl.ac.uk/spm
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FIGURE 1

The entire experimental design processing flow. hPSCI, cognitive impairment group after hemorrhagic stroke; iPSCI, the cognitive impairment
group after ischemic stroke; HC, health control group; ICA, independent component analysis; dFNC, dynamic functional network connectivity.

Group independent component
analysis

After preprocessing, all resting-state data were processed
using the fMRI toolbox software (GIFT version 4.0b)2 to
decompose the preprocessed images into different functional
networks (Erhardt et al., 2011). Firstly, the number of
independent components (ICs) was estimated using the

2 http://icatb.sourceforge.net

minimum description length (MDL) based on all fMRI
data, yielding 47 components. The data of all subjects were
then reduced in dimensionality automatically using principal
component analysis at the group level (Bell and Sejnowski,
1995). Secondly, the infomax ICA algorithm was repeated 30
times in ICASSO to ensure stability and reliability (Li et al.,
2007). Thirdly, the data were back-reconstructed using the
GICA algorithm to obtain object-specific spatial maps and
time courses (Calhoun et al., 2001). Finally, we needed to
identify ICs reflected the actual neural activity in the brain.
The selection criteria were that the activation peak coordinates
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were predominantly in the gray matter with low spatial overlap
with known vascular, ventricular, motion-related, and sensitivity
artifacts (Cordes et al., 2000). In addition, the power of the
corresponding time course signals should be predominantly
concentrated in the low-frequency band, with the ratio of power
below 0.10 and 0.15–0.25 Hz. Finally, 21 ICs were considered
meaningful according to the above criteria, sorting into 10
resting-state networks (RSNs) based on the spatial correlation
values between ICs and prior knowledge from previous studies
(Shirer et al., 2012; Allen et al., 2014).

Post-processing of time courses

After ICs selection, we performed additional post-
processing steps on the 21 ICs using the published formula
of Allen et al. (2014). Firstly, detrending the time course
considering the data’s linear, quadratic, and cubic trends.
Secondly, the effect of head motion was regressed to obtain
more accurate results. Then, filtering with a fifth-order
Butterworth low-pass filter with a high-frequency cutoff
frequency of 0.15 Hz and removing spikes to ensure that
artificial spikes would not negatively affect the signal analysis.

Dynamic functional network
connectivity

This study used the sliding window approach in the dFNC
toolbox of GIFT to segment the time series of post-processed
ICs to capture the dynamic changes of FC (Allen et al., 2014;
Damaraju et al., 2014). By adding a rectangular window of
length 22-TRs (corresponded to 44 s) with a Gaussian value of
3 TRs and a sliding step of 1TR to a BOLD time series of length
230-TRs, the entire scanned time series can be partitioned into
208 windows. We chose the window length of 22-TR based on
Allen’s study (Allen et al., 2014), and cognitive states seemed to
be identified at window length around 30–60 s (Shirer et al.,
2012). We first estimated the regularized accuracy matrix (i.e.,
the inverse of the covariance matrix) to estimate the covariance
matrix better (Smith et al., 2011). The penalty on the L1 norm
was used in the graph LASSO framework to ensure sparsity, and
the regularization parameters for each subject were optimized
using the cross-again validation framework (Friedman et al.,
2008). We regressed age, sex, mean framewise translation,
and rotation covariates. Finally, we performed Fisher’s r-z
transformation on all FC matrices. Thus, we obtained 208 FC
matrices with 210 (21 × 20/2) edges for each subject, reflecting
the time-varying FC pattern over the entire scan period.

After the sliding window analysis, we used the k-means
clustering algorithm to determine the FC states by clustering
the covariance matrix of all windows in all subjects (Lloyd,
1982). We used the squared Euclidean distance to estimate
the similarity between window FC matrices. Using cluster

number validity analysis, we evaluated the optimal number
of clusters, computing as the ratio between the within-cluster
and between-cluster distances. Finally, we determined that the
optimal number of clusters was equal to four.

Graph-theory parameter analysis

The GRETNA software3 was used to determine the
topologic organization of each dFNC state based on the ICs
resulting from the ICA analysis (Wang et al., 2015). We defined
the 21 ICs and inter-21 correlations as nodes and edges,
respectively. First, four FC matrices were fully connected with
a sparsity threshold S, defined as the ratio of the number
of actual edges to the maximum potential number of edges
in a network. We set sparsity threshold values with a range
of 0.05–0.5 in a step of 0.01 (Zhu et al., 2021). As a result,
a weighted, undirected graph was produced. Then, calculate
the topologic organization (Global efficiency, Local efficiency,
Clustering coefficient, and Characteristic path length) of the
network at each sparsity threshold. For each state, the area under
the curve (AUC) was calculated for each topological metric over
the entire threshold range to avoid the specific selection of a
threshold (Koshimori et al., 2016).

Dynamic properties analysis: Temporal
properties and strength

We statistically evaluated the following dynamic
connectivity measures of the dFNC states: (1) Reoccurrence
fraction, which means the percentage of total time spent by
subjects in a particular state; (2) Dwell time, which means time
spent by subjects in a state without switching to another state;
and (3) The number of transitions, which indicates how often
subjects changed states.

We also calculated the correlation coefficient’s standard
deviation (SD) and coefficient of variation (CV) across windows
to scrutinize the variability of FC. SD is the standard deviation
value of the FNC for all windows in each state, and CV is the
ratio of SD to the mean of the FNC in time (Tijhuis et al., 2021).
We calculated these two indexes in each state and the medians
of the SD and CV (210 FNCs).

Additionally, we tested for group differences in dynamically
connectivity pairs in each connection state.

Statistical analysis

We analyzed general demographics and clinical variables
using SPSS 23.0 software. First, the Shapiro-Wilk (S-W) test

3 http://www.nitrc.org/projects/gretna
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was applied for the normality of the distribution of scale scores.
A three-level one-way analysis of variance (ANOVA) with post-
hoc t-tests was used to compare the three groups’ age, years
of education, mean FD, and MoCA scores. The two-sample
t-test was used to detect differences in the disease duration and
lesion volume between the stroke groups. A chi-square test was
performed for the comparison of gender, lesion side, and lesion
location. The significance level was set at 0.05.

The fractional time, dwell time, the number of transitions,
SD, and CV were calculated with the one-way ANOVA with
post hoc analysis (p < 0.05). If there was no significant difference
after one-way ANOVA, a two-sample independent t-test was
performed (p < 0.05). We performed a three-level one-way
ANOVA with a post-hoc t-test to test for the connectivity
strength of each state among the three groups (p < 0.01,
uncorrected). Age, sex, years of education, disease duration,
and FD were included as covariates in all analyses. Finally, the
correlations between the dFNC measures of those significant
between the groups and MoCA scores were performed using
Pearson correlation analysis (p < 0.05).

Results

Demographic and clinical results

As shown in Table 1, age, sex, and education level did not
differ significantly among the three groups (p > 0.05). We found
no significant difference in the disease duration and lesion side
between the hPSCI and iPSCI groups (p > 0.05). The thalamus
and basal ganglia were the primary damage sites in the hPSCI
group, whereas cortical infarction occurred in the iPSCI group
(p = 0.003). The iPSCI group showed higher lesion volume
than the hPSCI patients (p = 0.004). There were substantial
differences in MoCA scores between the stroke and HC groups
(p < 0.05). The hPSCI group had higher MoCA scores than the
iPSCI group, although without significant difference (p > 0.05).
The lesion overlaps for the two stroke groups were shown in
Supplementary Figure 1.

Identification of resting-state networks

The rs-fMRI data of 58 participants were successfully
decomposed into 47 ICs, and the ICASSO returned a stability
index of 0.96 (SD = 0.037), demonstrating high reliability.
Finally, 21 ICs reflected the actual neural activity in the
brain were identified. We identified 10 RSNs from the 21 ICs
based on their anatomical and presumed functional properties
(Damoiseaux et al., 2006; Smith et al., 2009; Zuo et al., 2010;
Mueller et al., 2014; Xiao et al., 2017), including the auditory
network (AUN: ICs 30, 43), the visual network (VN: ICs 26,
29, 34), the sensorimotor network (SMN: IC 35), the occipital

network (PON: IC 25), the precuneus network (PreC: IC 28),
the default mode networks (DMN: ICs 18, 21), the frontoparietal
network (FPN: ICs 16, 27, 33, 41, 42), the executive control
network (ECN: ICs 39, 44, 45), the salience network (SN: ICs
17, 37), and the cerebellar network (CB: IC 14) (Figure 2). The
detailed information is shown in Supplementary Table 1.

Dynamic functional network
connectivity states analysis

The dynamic interactions of the 10 functional networks
were evaluated using the sliding window and k-means clustering
analyses. The whole sample showed four reoccurring patterns
during the rs-fMRI acquisition (Figure 3). State I (12% of all
windows), a modular connectivity state, was characterized by
high positive connections within primary perceptional domains.
The primary network is the general term of visual network,
auditory network and sensorimotor network (AUN, VN, SMN).
State II (31% of all windows), a regional connectivity state, was
characterized by the regional connection between the networks.
State III (42% of all windows), a spare connectivity state, was
generally characterized by extensively sparse FNCs. State IV
(15% of all windows), a strong connectivity state, was described
by tightly positive FNCs within and between all RSNs.

Graph topological parameters

The global metrics of global efficiency, local efficiency,
clustering coefficient, and characteristic path length were
depicted in Supplementary Figure 2, calculated at each sparsity
level. We found that state IV had the highest global efficiency,
the lowest characteristic path length, the highest clustering
coefficient, and local efficiency. State III showed the lowest
clustering coefficient and local efficiency. These metrics for
states I and II were between states III and IV (Table 2).

Dynamic properties analysis

Table 3 and Figure 4 showed that no significant differences
in reoccurrence fraction, mean dwell time, or the number of
transitions between states were found among the three groups
(p > 0.05).

We discovered that hPSCI patients showed lower whole-
brain SD and CV in state II compared with HC (SD: t = 2.17,
p = 0.037; CV: t = 2.07, p = 0.046) (Figures 5A,B), while iPSCI
patients showed lower whole-brain SD and CV in the state I
compared with HC (SD: t = 2.06, p = 0.046; CV: t = 2.15,
p = 0.038) (Figures 5C,D).

Additionally, we compared the strength of connections in
the stroke groups and HC group in each state (Figure 6). Both
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TABLE 1 Demographic, clinical, and neuropsychological data in cognitive impairment group after hemorrhagic stroke (hPSCI group), the cognitive
impairment group after ischemic stroke (iPSCI group), and healthy control group (HC group).

Variable hPSCI (n = 16) iPSCI (n = 21) HC (n = 21) P-value

Age (years) 60.38 ± 9.78 55.81 ± 10.61 60.10 ± 6.59 0.22

Sex (male/female) 12/4 18/3 17/4 0.57

Education (years) 11.31 ± 3.22 12.24 ± 3.03 11.81 ± 2.80 0.65

Disease duration (days) 49.93 ± 22.80 47.57 ± 50.00 − 0.87

Lesion side (Left/Right) 10/6 16/5 − 0.48

Lesion location (Cortex/Subcortex) 3/13 15/6 − 0.003

Lesion volume (Voxel) 25,027 ± 32,775 83,149 ± 69,981 − 0.004

MoCA 16.62 ± 4.57a 15.48 ± 5.22a 29.10 ± 1.14 <0.001

One-way ANOVA with post hoc test was used for age, years of education, MOCA scores among three groups; Two sample t-test was used for the duration of the disease and lesion volume;
A Chi-square test was conducted to compare gender, lesion side, and lesion location; MoCA, Montreal Cognitive Assessment Scale.
aSignificant compared to HC.

FIGURE 2

Spatial maps of the 21 independent network components. They were divided into 10 functional networks based on their anatomical and
functional properties, including the auditory network (AUN), the visual network (VS), the sensorimotor network (SMN), the occipital network
(PON), the precuneus network (PreC), the default mode network (DMN), the frontoparietal network (FPN), the executive control network (ECN),
the salience network (SN), and the cerebellar network (CB).

PSCI patients showed more reduced FNC in state III, and
increased FNC between FPN and other higher-order cognitive
networks and primary networks compared with the HC.
We observed two weaker within-network connections (FPN,
AUN in state III), six weaker between-network connections
(state I: FPN-SN; state II: FPN-DMN; state III: AUN-VN,
AUN-PON, AUN-FPN, VN-PreC) and five stronger between-
network connection (state I: FPN-DMN, FPN-CB; state III:
AUN-CB; state IV: SN-SMN, ECN-VN) in the hPSCI group
compared to the HC group (Figures 6A–D). We also observed
12 weaker between-network connections in the iPSCI group

compared to HC (state I: FPN-SN; state II: FPN-VN; state
III: AUN-VN, AUN-SMN, AUN-FPN, AUN-ECN, VN-PreC,
FPN-PreC; state IV: FPN-VN), while two within-network were
also weaker in state I (FPN). We found that the iPSCI group
had five stronger between-network connections than the HC
group (state I: AUN-CB, FPN-SMN, FPN-SN; state III: FPN-
PON, ECN-SN) (Figures 6E–H) (p < 0.01, uncorrected).
No significant FNC differences were found between the
hPSCI and iPSCI groups. No significant correlations were
found between the dFNC measures of those significant
and MoCA scores.
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FIGURE 3

dFNC states in the whole sample (k = 4). The centroid of each functional network connectivity state with the total number of occurrences of
each state and percentage of the total number of occurrences. The color bar represents the value of the correlations: Red color represents
positive correlations and blue color represents negative correlations. AUN, the auditory network; VN, the visual network; SMN, the sensorimotor
network; PON, the occipital network; PreC, the precuneus network; DMN, the default mode networks; FPN, the frontoparietal network; ECN,
the executive control network; SN, the salience network; CB, the cerebellar network.

TABLE 2 The global properties for each state.

State I State II State III State IV

Global efficiency 0.0577743200 0.0489913187 0.0511881147 0.0891780906

Local efficiency 0.0814455927 0.0711789255 0.0680513656 0.1253151329

Clustering coefficient 0.1293941784 0.1148311677 0.1090590835 0.1546121243

Characteristic path length 4.0172062096 5.2242265733 4.7838186459 2.7482607561

Discussion

This study was the first to use the dFNC method and graph
theory analysis to estimate distinct dynamic connectivity states
and their topological network properties to elaborate on the
meaning of state. We identified 10 resting-state networks, and
the dFNCs in the whole brain network can be clustered into
four reoccurring states (modular state, regional state, sparse

state, and strong state). For reoccurrence fraction and mean
dwell time, there was an increasing trend in modular and
regional states and a decrease in sparse and strong states in
the PSCI groups. The hPSCI patients with the main thalamus
and basal ganglia injury sites exhibited lower SD and CV in
the regional state than HC. In contrast, the iPSCI patients with
predominantly cortical infarcts showed lower SD and CV in
the modular state. Compared to HC, reduced connectivities
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TABLE 3 The temporal properties for each state and each group.

Variables hPSCI (n = 16) iPSCI (n = 21) HC (n = 21) F P-value

State I

Reoccurrence fraction 17.53 ± 33.77 18.17 ± 29.08 2.19 ± 4.62 2.64 0.08

Dwell time 15.66 ± 27.56 22.30 ± 38.96 4.10 ± 9.18 2.25 0.12

State II

Reoccurrence fraction 31.45 ± 41.76 37.02 ± 34.88 24.76 ± 33.01 0.60 0.55

Dwell time 50.51 ± 77.84 40.03 ± 58.71 26.59 ± 47.71 0.71 0.49

State III

Reoccurrence fraction 38.81 ± 42.75 35.91 ± 32.74 51.14 ± 40.99 0.90 0.41

Dwell time 52.47 ± 75.00 44.12 ± 56.55 71.29 ± 78.26 0.82 0.45

State IV

Reoccurrence fraction 12.19 ± 25.89 8.91 ± 19.82 21.91 ± 28.26 1.54 0.22

Dwell time 21.88 ± 49.84 7.95 ± 13.75 17.98 ± 23.55 1.04 0.34

Total transition number 2.38 ± 2.42 4.33 ± 3.54 3.86 ± 3.48 1.74 0.19

One-way ANOVA with post hoc test was used. hPSCI, cognitive impairment group after hemorrhagic stroke; iPSCI, the cognitive impairment group after ischemic stroke; HC, health
control group.

within the primary network (AUN, VN, SMN) and between
the primary and high-order cognitive control domains were
observed, especially FPN-centered FNC.

The dFNCs in the whole brain network could be clustered
into four reoccurring states (state I-IV: modular connectivity
state, regional connectivity state, sparse connectivity state, and
strong connectivity state). Wang et al. (2020) also clustered
patients with chronic-phase pontine infarction into four
reoccurring states using dFNC. They found an imbalance in
the separation and integration of whole-brain functions (Wang
et al., 2020). Unlike other studies, we calculated the topological
properties of each state to understand the meaning of states.
We found that state IV had the highest global efficiency and
the lowest characteristic path length among the four states,
exhibiting extensive tight connectivity within and among all
RSNs. The global efficiency and characteristic path length are
well-known indicators of integration defined as the ability
to rapidly combine specialized information from distributed
brain regions (Rubinov and Sporns, 2010; Shine et al., 2016).
State III had lower global efficiencies and higher characteristic
path lengths, suggesting the information integration efficiency
of state III was not as strong as that of state IV. In
addition, state IV showed the highest clustering coefficient and
local efficiency among all four states, implying the strongest
functional segregation. The clustering coefficient indicates the
degree of network grouping, and a higher clustering coefficient
means a higher degree of network modularity (Cohen and
D’Esposito, 2016). The local efficiency reflects the information
transferability of local neighboring brain regions (Rubinov and
Sporns, 2010). Thus, state IV was a highly segregated state,
and state III was the least segregated state; states I and II were
intermediate. In conclusion, state IV was a strong state with
the highest network integration and segregation; state III was a

sparse state with the least segregation ability (Wang et al., 2020).
The degree of network integration and segregation of states I
and II were between states III and IV; hence, we refer to states I
and II as suboptimal states based on the topological properties,
showing the network’s redundancy (Yamashita et al., 2021).

This study found that the three groups’ differences in
reoccurrence fraction and dwell time in all connection states
did not reach statistical significance. Compared with the HC
group, there was an increasing trend for reoccurrence fraction
and dwell time in states I and II and a decreasing trend for
reoccurrence fraction and dwell time in states III and IV in the
PSCI group. We discreetly speculate that the damage of regional
neural activity and the disruption of function network integrity
caused by stroke could be responsible for the decreasing trend in
reoccurrence fraction and dwell time in states III and IV in PSCI
patients. At the same time, to compensate for the lost function,
the brain compensates toward the suboptimal states, i.e., state
I and state II. Patients with PSCI exhibit overall cognitive,
visual, and language dysfunctions, which may be caused by the
disruption of information exchange between subcortical tissues
and cognitively relevant brain areas (Smith, 2017). It has been
demonstrated that the brain has the ability to self-repair to adapt
to pathological changes following injury (Marlier et al., 2015;
Szelenberger et al., 2020). The trend of increased states I and II
may be a compensatory mechanism to compensate for the severe
deficits in some cognitive functions during subacute phase.
We speculated that the suboptimal states showed that network
redundancy played an essential role in cognitive self-recovery in
patients with PSCI.

In addition, we found that hPSCI patients showed lower
whole-brain SD and CV in state II, and iPSCI patients showed
lower whole-brain SD and CV in the state I compared with
HC. The variability of dFNC measures means the ability of

Frontiers in Aging Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fnagi.2022.893297
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-893297 August 5, 2022 Time: 7:38 # 10

Rao et al. 10.3389/fnagi.2022.893297

FIGURE 4

Temporal properties of dFNC states for the three groups.
(A) Reoccurrence fraction; (B) dwell time; (C) number of
transitions. The error bars represent standard deviation; hPSCI,
cognitive impairment group after hemorrhagic stroke; iPSCI, the
cognitive impairment group after ischemic stroke; HC, health
control group.

exploring cognition. High variability of dFNC measures means
high-order brain areas, and low variability of dFNC measures
means low-order brain areas. One study revealed functional
organization was more variable in the high-order areas than in
primary areas such as sensory/perceptual auditory processing
(Tahmasebi et al., 2012). Hu et al. (2018) found that stroke
patients exhibited reduced regional, temporal variability in the
acute phase and gradually recovered over time. In particular,
increased temporal variability in the ipsilesional precentral
gyrus correlated with motor recovery (Hu et al., 2018). Low
SD and CV mean the decreased exploratory capacity between
the RSNs (Tahmasebi et al., 2012; Jalilianhasanpour et al.,
2021). Our results suggested that cognitive impairment may be

associated with the decline in SD and CV. We speculated that
even though modular and regional states were compensating,
they had not yet returned to normal levels and remained
in the decompensation situation during the subacute phase
in iPSCI patients.

Furthermore, the decrease of SD and CV in different types
of stroke occurred in different states, which may be related to
the location and pathological of the lesion. In the hPSCI group,
the damage site was mainly subcortical, with the thalamus
and basal ganglia predominant. A hemorrhagic stroke occurs
when a blood vessel ruptures, causing the blood supply to
neurons disrupted, mechanical tissue rupture, and hematoma
formation (Xiao et al., 2017). The basal ganglia and thalamus
are considered to be essential sensory conduction relay stations
that are linked to perceptual, cognitive, and motor processes
(Moustafa et al., 2017). They had extensive connections with
the cerebellum and the cerebral cortex, but they were slightly
injured, not completely destroyed, which may cause decreased
SD and CV in the regional state (Bostan and Strick, 2018).
In the iPSCI group, cortical infarction caused by the middle
cerebral artery’s injury was predominant. Network damage after
an ischemic stroke occurs in the local vicinity of the lesion
and ischemic penumbra, which may be related to the decreased
SD and CV in a modular state characterized by high positive
connections within primary perceptional domains (Sekerdag
et al., 2018). The location and severity of the injury may be
related to the damage of SD and CV, which may influence
the prognosis of cognitive impairment. Future studies should
further investigate the SD and CV differences in different states
based on the location of the injury in a larger imaging dataset.
Perhaps in the future, we can analyze the prognosis of stroke
patients by using different states combined with SD and CV
analysis through longitudinal MRI data from a large sample of
stroke patients.

We also investigated FNC differences between groups in
each state. Both PSCI patients in this study showed more
reduced FNC in state III compared with the HC. They showed
reduced network connectivity within the primary domains
and between the primary and high-order cognitive control
domains, indicating internal and external damage. The iPSCI
group manifested more disconnection between the primary and
high-order cognitive control domains than the hPSCI group,
consistent with the lower cognitive scores in the iPSCI group
compared with the hPSCI group. This may be due to ischemia
leading to more apoptosis and neuronal necrosis. In particular,
the functional network connectivity centered on FPN was
impaired. Most previous studies have found that abnormalities
in the DMN and ECN increase the risk of PSCI using static
FNC (Ding et al., 2014; Lim et al., 2014; Siegel et al., 2016).
Our study suggested that damage was FPN-centered, suggesting
dynamic FNC illuminate different mechanisms. Many studies
have reported that FPN is related to cognitive control and
episodic memory (Kompus et al., 2009; Ray et al., 2020).

Frontiers in Aging Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fnagi.2022.893297
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-893297 August 5, 2022 Time: 7:38 # 11

Rao et al. 10.3389/fnagi.2022.893297

FIGURE 5

SD and CV differences between groups. (A) SD difference between hPSCI patients and HC; (B) CV difference between hPSCI patients and HC;
(C) SD difference between iPSCI patients and HC; (D) CV difference between iPSCI patients and HC. SD, standard deviation; CV, coefficient of
variation; hPSCI, cognitive impairment group after hemorrhagic stroke; iPSCI, the cognitive impairment group after ischemic stroke; HC, health
control group; ∗P < 0.05. The error bars represent standard deviation of SD and CV.

Our study suggested that the functional disconnection between
the primary and FPN-centered high-order cognitive control
network may lead to cognitive impairment after stroke.

In addition, our results showed increased FNC between
FPN and other higher-order cognitive networks and primary
networks in both PSCI groups. The brain can adapt to
pathological changes by enabling and developing compensatory
networks due to the impairment of some circuits (Barulli
and Stern, 2013). Studies found that the area surrounding
the stroke injury area formed a new connection with distant
brain areas to compensate for the dysfunction brought by
some damaged brain areas (Brown et al., 2007; Zhao et al.,
2021). Zhao et al. (2018) indicated enhanced connectivity
between the right FPN and DMN, hypothesizing that it
might be a compensatory reorganization for the reduced
inter−network connectivity between the posterior DMN and
VN. Our results indicated that increased FPN-centered FNC
might compensate for maintaining the cognitive load after
the onset of cognitive impairment. We inferred that cognitive
impairment resulted from FPN-centered FC compromised and
incomplete compensation.

The limitations of this study were: (1) The small sample
size and the significant individual differences. The large variance
in making comparisons between the three groups may lead to

some present trends but not significant. Although there were no
significant differences in our study, the results of mean trends
in small samples should be of equal concern. In addition, we
should divide patients into subsamples of cortical lesions or
subcortical lesions to further study the effects of lesion location;
(2) No longitudinal study was conducted. It is unclear how
these changes changed with stroke recovery. A longitudinal
follow-up study would be performed in the near future; (3)
There is no fixed standard for the length of the sliding window,
and the length of 22TR was chosen in our study based on
experience. We can try different window lengths in the future;
(4) k-mean is the most used clustering method, characterized
by no overlap between clustering centers of mass, and other
clustering methods can be tried; (5) The results related to group-
comparison of the connectivity strength could be corrected
by multiple-comparison such as FDR to get more accurate
results, and (6) After one-way ANOVA, there was no significant
difference among three groups for SD and CV indices. Then,
we used the two-sample t-tests to observe the between-group
difference (hPSCI vs. HC, iPSCI vs. HC). This is an uncommon
procedure because post hoc tests are only performed if the
initial global test is significant. Thus, we should increase the
sample size and do further research using one-way ANOVA with
post hoc tests in the future.
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FIGURE 6

Functional connectivity differences in each state. (A–D) The difference of functional connection between hPSCI and HC groups in each state.
(E–H) The difference of functional connection between iPSCI and HC groups in each state. P < 0.01, uncorrected. The red lines represent
stronger functional connectivity than the HC group. The blue lines represent weaker functional connectivity than the HC group.

Conclusion

In this study, we explored the temporal characteristics of
different types of PSCI based on dFNC analysis. There was
a tendency to transition toward suboptimal states in patients
with PSCI, and the redundancy of the suboptimal states may
play a compensatory role. The reduced exploratory capacity in
different suboptimal states characterized cognitive impairment
and pathological types of PSCI. The functional disconnection
between the primary and FPN-centered high-order cognitive
control network may lead to cognitive impairment after
stroke. Increased FPN-centered FNC might compensate for
maintaining the cognition function. These results emphasize the
flexibility of neural reorganization during self-repair.
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