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Introduction
Systemic lupus erythematosus (SLE) is the prototypic sys-
temic autoimmune disease. It is a chronic, multisystem
disease that is characterized by abnormal B cell activation
and differentiation to memory or plasma effector cells.
Abnormal memory effector cells in SLE have specificity for
autoantigen with surface immunoglobulin that is usually of
high avidity because of somatic hypermutation of
immunoglobulin variable regions and possible switching to
the IgG isotype. Abnormal plasma effector cells in SLE
secrete pathogenic autoantibodies including those that
are specific for double stranded (ds)DNA and are involved
in glomerulonephritis, those that are specific for phospho-
lipid-β2 glycoprotein I or cardiolipin and are involved in
thrombosis, those directed to Ro SSA or La SSB and are
involved in the etiology of congenital heart block, and
those specific for Sm/RNP whose mechanism of action is
unclear [1–3].

The precise cause of SLE is unclear, but the initial presen-
tation of disease appears to depend on a multitude of
genetic susceptibility and environmental factors that initi-
ate and/or contribute to pathogenic autoimmunity. Candi-
date initiating factors include female sex hormones,
ultraviolet light from sun exposure, cigarette smoking, and
infections with bacteria and/or viruses that polyclonally
activate B cells. More frequent or aggressive disease is
associated with African-American or African-Caribbean
origin, but SLE also emerges in Asian and Caucasian pop-
ulations. Genetic susceptibility loci include genes that
affect differentiation and survival of immunoglobulin
secreting cells (ISCs), such as those that influence activa-
tion, proliferation, cytokine and chemokine secretion/
responsiveness, and apoptosis of the T and B cells that
are involved in humoral immunity generated in germinal
centers (GCs), as well as genes that are involved in pre-
sentation and clearance of apoptotic material and
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Abstract

Systemic lupus erythematosus (SLE) is a chronic, multisystem autoimmune disease characterized by
the differentiation of short- and long-lived immunoglobulin secreting plasma cells that secrete
pathogenic autoantibodies. Ectopic germinal centers and plasma cells secreting autoantibodies have
been observed in lupus nephritis kidneys. Candidate genetic susceptibility loci for SLE include genes
that affect differentiation and survival of plasma cells, such as those that influence activation,
proliferation, cytokine and chemokine secretion/responsiveness, and apoptosis of the T and B cells
that are involved in humoral immunity generated in germinal centers, as well as genes that are involved
in presentation and clearance of apoptotic material and autoantigens by antigen presenting cells and
other phagocytes. Emerging data have demonstrated that B lymphocytes are active participants in
humoral immune responses that lead to T-dependent and T-independent differentiation of
immunoglobulin-secreting plasma cells by homotypic CD154–CD40 interactions as well as continued
stimulation by B cell activating factor through B cell maturation antigen, B cell activating factor
receptor and transmembrane activater.
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autoantigens by antigen presenting cells and other phago-
cytes [4].

The role of B cells in systemic lupus
erythematosus
Emerging data have demonstrated that B lymphocytes are
active participants in humoral immune responses that lead
to differentiation of ISCs. For example, activated B cells in
secondary lymphoid tissues and in the blood of patients
with active SLE express CD154/TNFSF5/CD40 ligand,
and homotypic CD154–CD40/TNFRSF5 interactions
between B cells from these sources are crucial for differ-
entiation to ISCs [5–8]. Moreover, differentiation of ISCs
is affected by continued stimulation by B cell activating
factor (BAFF/BlyS/TNFSF13B) through two of its recep-
tors – B cell maturation antigen (BCMA) and BAFF recep-
tor (BAFF-R) – in a T dependent (TD) manner [9], and
through its third receptor – transmembrane activater and
CAML interacter (TACI) – in a T independent (TI) manner
[10–13]. Of note, BAFF is located in an SLE susceptibility
locus (13q32-34) [14–17] and has been found to be ele-
vated in the serum of patients with active SLE [18,19].

Simultaneous emergence of the idea that B cells play a
role in autoregulating humoral immune responses, and
data suggesting that B cells from active SLE patients and
lupus prone mice have an intrinsic tendency to overreact
to immunologic stimulation during antigenic challenge
have set the stage for novel hypotheses regarding thera-
peutic approaches to interfere with the emergence and
progression of SLE. The profound B cell abnormalities
observed in SLE patients may either reflect the impact of
multiple genetic factors that affect intrinsic B cell function
and/or they may be secondary to other primary immuno-
logic abnormalities [1]. For example, abnormalities during
B cell differentiation in secondary lymphoid tissues may
permit the generation and survival of ISCs that secrete
pathogenic autoantibodies. Alternatively, an intrinsic ten-
dency to respond excessively to immunologic stimulation
may provide the drive for the emergence of pathogenic
ISCs, even though B cell maturation, somatic hypermuta-
tion of immunoglobulin, and subsequent selection are not
mechanistically abnormal. Because the mature B cell
repertoire has tremendous cellular turnover every day,
even minor abnormalities may lead to active SLE over time
[20]. Importantly, the emergence of active SLE does not
usually occur until the second or third decade of life.
Development of SLE during childhood may reflect a
greater total load of genetic and environmental influences.

Immunoglobulin secreting cells
ISCs are defined by very high expression of CD38 and the
presence of intracellular immunoglobulin [21,22]. In addi-
tion, all ISCs have a high ratio of secreted to membrane
forms of immunoglobulin heavy chain mRNA, a high cyto-
plasmic to nuclear ratio with prominent endoplasmic

reticulum, expanded Golgi apparatus and secretory vac-
uoles, and expression of J chain – a molecule that is
involved in polymerization of IgM and IgA. In normal indi-
viduals the ISC B cell pool secretes immunoglobulin that
protects the host from infection. In SLE patients the ISC
B cell pool secretes pathogenic autoantibodies that con-
tribute to disease activity.

There are two subsets of ISCs, long-lived plasma cells
and short-lived plasmablasts/plasmacytes, which are gen-
erated in normal immune responses and that are found to
secrete autoantibodies in SLE [23]. Long-lived plasma
cells are generated during TD humoral immune responses,
arise in GC reactions, and home to the bone marrow
where they produce antibodies for protracted periods of
time in the absence of T cells and antigenic stimulation. In
contrast, plasmablasts/plasmacytes often arise during TI
humoral responses, and under normal circumstances they
remain in the lymphoid tissue in which they are generated.

Long-lived plasma cells are generated in response to TD
stimulation in GCs and home to the bone marrow, where
they survive for long periods of time. They secrete antibod-
ies constitutively, which accounts for the majority of serum
immunoglobulin and long-lived immunity to many antigens
[23]. The lifespan of long-lived plasma cells has been
observed to be months to years. In addition, long-lived
plasma cells are nondividing cells in the G0/G1 phase of
the cell cycle that have downregulated many mature B cell
markers including CD40, CD19, surface immunoglobulin,
and CD20 [23]. As a result, they are not responsive to
either T cells or antigens. Moreover, they are not affected
by therapy with rituximab, which deletes CD20+ B cells.
Moreover, when cultured in vitro, long-lived plasma cells
have the capacity to secrete immunoglobulin in the pres-
ence of antiproliferative agents such as hydroxyurea
[24–26]. Finally, long-lived plasma cells largely derive from
conventional (B2) B cells, are the products of TD GC
reactions, and their immunoglobulin genes bear the
impact of somatic hypermutation and selection [22]. Of
interest, the ISCs that secrete immunoglobulin specific for
cardiolipin, antinuclear antibodies, Ro, La, and Sm that are
found in SLE patients are likely to be long-lived plasma
cells because treatment with antiproliferative reagents has
minimal effect on plasma levels of these autoantibodies
[27,28]. In addition, autologous stem cell transplantation
may not eliminate long-lived plasma cells producing these
particular autoantibodies because plasma titers are not
diminished [29].

The second group of ISCs is termed the short-lived
plasmablasts or plasmacytes. Plasmablasts are generated
as products of the TI humoral immune response. Alterna-
tively, plasmablasts can be derived from TD responses
and are the GC derived precursors of the long-lived
plasma cells that undergo a round of cell division before
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final differentiation [23]. Plasmablasts can be generated
from either the B1 subset of B cells or from conventional
(B2) B cells. TI immune responses occur in extrafollicular
regions of secondary lymphoid tissues. These include spe-
cialized regions of a number of tissues, including the
subepithelial region of the tonsil, the medullary cords of
lymph nodes, and the marginal zone in the spleen. TI anti-
gens are subdivided into two subsets. TI-1 antigens are
polyclonal B cell activators such as bacterial lipopolysac-
charide that bind Toll-like receptors. TI-2 antigens have
repeating antigenic epitopes and cross-link surface
immunoglobulin to initiate the immune response. Plasma-
blasts have lifespans of days to weeks, and in normal
individuals they remain in the tissue in which they were
generated. In contrast to the situation in normal individu-
als, plasmablasts are found in the bloodstream of SLE
patients [8] and in kidneys of lupus prone mice [30].

Plasmablasts can be found in all phases of the cell cycle
and still express the mature B cell markers CD19, CD20,
and CD40 [8,23]. As a result, their functional activity can
be regulated by exogenous influences. Moreover, when
cultured in vitro, plasmablasts are not able to secrete
immunoglobulin in the presence of antiproliferative agents
such as hydroxyurea [24–26]. Of interest, the ISCs that
secrete immunoglobulin specific for dsDNA that are found
in SLE patients are likely to be plasmablasts because
treatment with antiproliferative reagents decreases plasma
levels of anti-dsDNA antibodies [31].

The role of BAFF and its receptors in
immunoglobulin secreting cell generation
As stated above, BAFF (BlyS/TNFSF13B) stimulation of
B cells generates ISCs through two of its receptors –
BCMA and BAFF-R – in a TD manner [9], and through its
third receptor – TACI – in a TI manner [10–13]. Interest-
ingly, mice that over-express BAFF [32–34] exhibit an
autoantibody mediated, lupus like disease, and BAFF
(13q32-34) is encoded in human genetic regions [14–17]
that contain SLE susceptibility loci. Moreover, soluble, bio-
logically active BAFF has been found to be elevated in the
serum of a fraction of patients with active SLE [18,19].

BAFF interactions with two of its receptors, BCMA
(TNFRSF17) and BAFF-R (TNFRSF13C), enhance CD40-
mediated TD GC reactions [19]. Moreover, mice geneti-
cally deficient for BAFF-R [11] are not able to generate
long-lived plasma cells following immunization. Further-
more, although mice genetically deficient for BAFF-R [35]
are not able to generate GC derived long-lived plasma
cells, these mice exhibit no defect in generating IgM
secreting plasmablasts. These findings are particularly
notable because mice deficient in BAFF-R exhibit reduced
numbers of cells at a particular stage of conventional
B cell maturation, namely transitional B2 cells [10,36].
Therefore, the majority of IgM plasmablasts may be

derived from the B1 subset in BAFF-R deficient mice. In
humans, BAFF stimulation of splenic CD38–CD27+

memory B cells that express very high levels of BAFF-R,
but little or no BCMA or TACI, increases survival of this
memory B cell population and induces differentiation of
plasmablasts and plasma cells [11]. Whereas BAFF
increased the survival and amount of immunoglobulin
secreted from human plasmablasts, BAFF has no direct
effect on immunoglobulin secretion from fully differentiated
nondividing human CD20– plasma cells.

Mice genetically deficient for an alternative BAFF receptor,
TACI (TNFRSF13B), are not able to generate plasma-
blasts in response to TI antigens [37,38]. Moreover, mice
transgenic for APRIL/TALL2/TNFSF13, the TACI and
BCMA ligand, had an exaggerated serum IgM response to
TI antigens [39]. In mice transgenic for phosphorylcholine
specific immunoglobulin, soluble BAFF derived from
Streptococcus pneumoniae loaded splenic dendritic cells
or peritoneal macrophages, respectively, drove antigen
induced survival and IgM plasmablast differentiation from
marginal zone or B1 B cells in a TACI dependent manner.
Forced expression of bcl-2 in this system rescued antigen
induced B cell apoptosis that resulted with the TACI Ig
fusion protein [12]. Of note, BAFF stimulation of B cells
has been shown to induce expression of antiapoptotic
molecules in the bcl-2 family. Using dense human tonsillar
B cells containing the subepithelial marginal zone-like
CD5– memory subset, soluble BAFF derived from periph-
eral blood derived dendritic cells or macrophages co-
stimulated B cell proliferation induced by anti-IgM, but not
by recombinant CD154/CD40 ligand, in a manner that did
not require APRIL [13].

The role of CD154–CD40 interactions in
generation of immunoglobulin secreting cells
Examination of children or mice with defective expression
of CD40 or CD154 [5,40] has demonstrated that
CD154–CD40 interactions are essential for formation of
GCs and the differentiation of memory and plasma cell
effector populations. GCs have been shown to be initiated
when CD154 expressing T cells engage CD40 expressing
B cells in the extrafollicular regions of secondary lymphoid
tissues, thereby inducing them to express CD154 [7] and
to proliferate rapidly to form the dark zone of GC reac-
tions. Homotypic B cell interactions involving CD154 and
CD40 have been shown to be essential for differentiation
of GC B cells to memory B cells, and for the formation of
secondary GC structures that allow reactivated memory
B cells to differentiate into plasma cells secreting high
affinity antibodies [7]. The presence of blocking anti-
CD154 antibody inhibits the initiation of GC reactions and
causes ongoing GC reactions to disassemble in immu-
nized [41] and lupus prone mice [42]. Moreover, the pres-
ence of GC and GC derived memory and immunoglobulin
secreting plasma effector populations in the periphery of
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patients with active SLE is greatly diminished following
treatment with blocking anti-CD154 antibody (BG9588,
5c8) [8,43,44]. Importantly, CD154 has been found to be
hyper-expressed on lymphocytes in secondary lymphoid
tissues from lupus prone mice and from active SLE
patients [45,46], and mice transgenic for CD154 on all
cells [47], T cells alone [48], or B cells alone [49] sponta-
neously developed GC reactions that resulted in anti-
dsDNA secreting plasmablasts.

Ectopic germinal centers
Normally, in non-autoimmune situations, GC reactions and
GC generated effector cells are observed in secondary
lymphoid tissues (lymph nodes, spleen, and mucosal
tissues such as tonsil and Peyer’s patches). Recent
studies have observed that inflammation occurring in many
autoimmune/inflammatory conditions drives GC/follicle
formation in many ectopic sites, including the kidney in
lupus nephritis [50–52]. Ectopic GCs/follicle develop-
ment in autoimmune tissues with a large amount of
autoantigen, such as dsDNA in lupus nephritis kidneys,
may create an environment in which autoreactive B cells
undergo somatic hypermutation, IgH class switching, and
positive selection mediated by the autoantigen to the func-
tional memory and plasma cell effector pools.

Germinal centers in systemic lupus erythematosus
The dysregulation of mechanisms controlling normal or
ectopic TD GC reactions to exogenous or endogenous anti-
gens may contribute to the emergence of SLE. Normally,
immature polyreactive and mature B cells with specificity for
endogenous autoantigens are excluded from follicular GC
reactions that generate memory and immunoglobulin secret-
ing plasma effector cells. The elements that may contribute
to these events in humans have not been fully characterized,
but recruitment of autoreactive B cells into TD GC reactions
has been examined in lupus prone lpr/lpr [53,54] and
NZB/W [55] mice. Autoreactive B cells were able to
form/enter splenic follicles in lupus prone mice, but were
retained outside follicles in the T cell zone of non-autoim-
mune control mice. Furthermore, B cells from autoimmune
mice that produced pathogenic rheumatoid factor and anti-
dsDNA antibodies were localized in follicles [56]. Similar to
autoreactive B cells in non-autoimmune mice, anergic
autoreactive B cells that were generated in the classic
HEL/anti-HEL double transgenic murine system, in which
the mouse expresses both the autoantigen (HEL) and the
surface immunoglobulin specific for the HEL autoantigen,
were excluded from follicles until challenge with class II
directed allogeneic T cell help or stimulation with CD154
itself [57]. Notably, however, intense CD154 stimulation, as
is present in active SLE patients, could induce anergic,
autoreactive B cells to enter follicles where they could differ-
entiate to long-lived plasma cells secreting high affinity
autoantibodies [58,59]. Thus, CD40 stimulation could be
pivotal in redirecting autoantibody producing B cells into a

differentiation pathway leading to the production of long-
lived plasma cells.

In this regard, exposure of anergic, nonresponsive, auto-
reactive B cells to exogenous CD154 resulted in prolifera-
tion, antigen presentation, and immunoglobulin secretion
at levels comparable to that of normal B cells. This finding
indicates that ligation of CD40 on anergic B cells is a suf-
ficiently strong signal to reactivate them and redirect them
into the mature B cell pool that can differentiate to memory
or immunoglobulin secreting plasma effector cells.

Conclusion
SLE is a complex, polygenic, chronic multisystem disease
characterized by abnormal B cell activation and differentia-
tion to plasma cells or plasmablasts/plasmacytes. Current
research has begun to define the receptor–ligand interac-
tions and signals that are involved in activation and differ-
entiation of human B cells to plasma cells and
plasmablasts/plasmacytes. Many of these genes are
located within SLE susceptibility loci and their encoded
molecules may be effective targets of biologic therapies in
SLE patients. The exact cause of SLE is unclear but emer-
gence of active disease may depend upon environmental
factors that initiate and/or contribute to the development
of this systemic autoimmune disease in genetically prone
individuals. Notably, recent research has highlighted the
central and active role that B cells play in regulating many
aspects of the humoral immune response leading to differ-
entiation of autoreactive effector B cell populations. There-
fore, the possibility that ongoing B cell hyperreactivity in
SLE, mediated by a number of defined receptor–ligand
interactions, including signaling through CD40 or BAFF
receptors, could be specifically targeted and should be
considered as a novel approach to treat this systemic
autoimmune disease.
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