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Abstract

Poultry infected with Salmonella mount an immune response initially, however the immune

responses eventually disappear leading the bird to be a carrier of Salmonella. The hypothe-

sis of this study is that Salmonella infection induces T regulatory cell numbers and cytokine

production and suppress host T cells locally in the gut to escape the host immune

responses. An experiment was conducted to comparatively analyze the effect of S. enterica

ser. Enteritidis (S. Enteritidis) and S. enterica ser. Heidelberg (S. Heidelberg) infection on

CD4+CD25+ T regulatory cell properties in chickens. A total of 144 broiler chicks were ran-

domly distributed into three experimental groups of non-infected control, S. Enteritidis

infected and S. Heidelberg infected groups. Chickens were orally inoculated with PBS (con-

trol) or 5x106 CFU/mL of either S. Enteritidis or S. Heidelberg at 3 d of age. Each group was

replicated in six pens with eight chickens per pen. Chickens infected with S. Enteritidis had

6.2, 5.4, and 3.8 log10 CFU/g, and chickens infected with S. Heidelberg had 7.1, 4.8, and 4.1

log10 CFU/g Salmonella in the cecal contents at 4, 11, and 32 dpi, respectively. Both S.

Enteritidis and S. Heidelberg were recovered from the liver and spleen 4 dpi. At 4, 11, and

32 dpi, chickens infected with S. Enteritidis and S. Heidelberg had increased CD4+CD25+

cell numbers as well as IL-10 mRNA transcription of CD4+CD25+ cells compared to that in

the control group. CD4+CD25+ cells from S. Enteritidis- and S. Heidelberg-infected chickens

and restimulated with 1 μg antigen in vitro, had higher (P < 0.05) IL-10 mRNA transcription

than the CD4+CD25+ cells from the non-infected controls Though at 4dpi, chickens infected

with S. Enteritidis and S. Heidelberg had a significant (P < 0.05) increase in CD4+CD25- IL-

2, IL-1β, and IFNγ mRNA transcription, the CD4+CD25- IL-2, IL-1β, and IFNγ mRNA tran-

scription, were comparable to that in the control group at 11 and 32dpi identifying that the

host inflammatory response against Salmonella disappears at 11 dpi. It can be concluded

that S. Enteritidis and S. Heidelberg infection at 3 d of age induces a persistent infection

through inducing CD4+CD25+ cells and altering the IL-10 mRNA transcription of

CD4+CD25+ cell numbers and cytokine production in chickens between 3 to 32 dpi allowing

chickens to become asymptomatic carriers of Salmonella after 18 dpi.
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Introduction

Among the foodborne pathogens of poultry, Salmonella is the most important foodborne path-

ogen of concern to the poultry industry [1]. Salmonella infection is caused by S. enterica colo-

nizing poultry intestines at a very early age and the chickens infected with Salmonella after 3

days of age results in persistent infection of poultry with Salmonella [2]. Salmonella is a faculta-

tive intracellular bacterium and induces the host innate inflammatory response, characterized

by pro-inflammatory cytokines and granulocyte influx [3]. Inflammatory cytokines increase

during the early phase of Salmonella infection, and IFNγ is upregulated during a later phase

[4]. However, the induced host inflammatory response is ultimately downregulated, leading to

Salmonella continued survival and persistence in poultry gut for even up to 10 weeks of age

[5]. Though Salmonella infection induces low levels of mucosal IgA and gut-associated T cell

response [6] the induced humoral response does not always translate into protective immune

responses in infected chickens [7].

One of the pathways through which Salmonella escapes the host immune responses is

through inducing T regulatory cell activity, which act to suppress host immune responses

directed against commensal bacteria [8]. Gut immune responses facilitate the survival of com-

mensal bacteria by inducing anergy in host immune cells that are directed towards commensal

microbes through T regulatory cells. Though Salmonella infection causes severe symptoms in

humans, chickens infected with S. enterica do not mount efficient immune responses and are

asymptomatic [9], suggesting that S. enterica is a commensal bacteria in the chicken gut [10].

We earlier identified that S. enterica serovar Enteritidis (S. Enteritidis) infection increases T

regulatory cell numbers in the chicken gut until 14 dpi [11] to suppress the host immune

responses locally in the gut. Identifying if this suppression of host immune responses post-Sal-
monella infection is a local or systemic effect will identify how to address the persistent infec-

tion of Salmonella in poultry.

Recently, several serovars of S. enterica, including Heidelberg, Kentucky, Enteritidis, Typhi-

murium, Montevideo, Senftenberg, and Thompson [12–16] were involved in causing Salmo-
nella outbreaks in poultry. The multistate outbreak of multidrug-resistant S. enterica serovar

Heidelberg (S. Heidelberg) [17] highlights the importance of studying multiple Salmonella ser-

ovar infections of chickens. Tight junction proteins like Claudin and Zona occludens are criti-

cal components to maintain intestinal barrier function in poultry. S. Typhimurium infection

decreases tight junction protein mRNA [18] and thereby allowing the pathogen to cross the

intestinal lumen and reach blood circulation [19] and spread to the liver, spleen, ovary, and

oviduct [20]. T regulatory cell upregulation has been identified to promote gut integrity in

experimental cirrhosis model of mice [21]. Therefore, it will be interesting to identify if Salmo-
nella—induced T regulatory cells can act to maintain the gut integrity in poultry.

Despite the importance of Salmonella as a human pathogen, relatively little is known about

how Salmonella manages to escape the poultry immune response especially when the birds

come into production at 35 d of age. The study hypothesizes that Salmonella infection induces

CD4+CD25+ T regulatory cells and suppresses host T cells locally in the gut to escape the host

immune responses. The objective of this study is to comparatively analyze the effect of S.

Enteritidis and S. Heidelberg infection on CD4+CD25+ T regulatory cell properties and

CD4+CD25- T cells in chickens between 4 to 32 dpi to identify if infection with two different

serovars of Salmonella can induce host immune cells properties in an antigen-specific path-

way. We also studied CD4+CD25+ T regulatory cell and T cell cytokine profiles (IL-10, TGF-β,

IL-1β, LITAF, and IL-2 mRNA) to determine whether the oral infection of Salmonella can

translocate the intestinal barrier to reach internal organs like the liver and the spleen and

induce systemic effect.
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Materials and methods

Ethics statement

All animal protocols were approved by the Institutional Animal Care and Use Committee at

the University of Georgia (AUP: A2017 07-004-Y3-A0). Researchers involved in the in vivo
trial were trained by the University of Georgia on animal care and handling (UGA IACUC 101

course). Chickens were monitored at least once a day for lethargy, loss of body weight, ruffled

feathers, diarrhea, and dehydration during the in vivo experiment. Chickens that could not

move or refused to eat were immediately humanely euthanized by cervical dislocation. None

of the chickens were found dead during this trial no chickens were euthanized for humane

reasons. Chickens were euthanized during sampling time points and the last day of the study

(day 35).

Chickens and S. Enteritidis and S. Heidelberg infection

Wild type S. Enteritidis (gift from Dr. G. Rajashekara, The Ohio State University) and Wild

type S. Heidelberg (gift from Dr. D. Jones, USDA/ARS) were selected on XLT-4 agar for Nali-

dixic acid resistance at 500 mg L−1 of nalidixic acid (Sigma-Aldrich, St. Louis, MO). The nali-

dixic acid-resistant colonies were grown at 37˚C overnight on Muller-Hinton broth

containing 500 mg L−1 nalidixic acid and further used in experimental studies. Inoculum for

infection was prepared from 18 to 24 h cultures. The bacterial concentration was determined

spectrophotometrically using a standard curve at a reference wavelength of 600 nm. A stock

solution (1x109 CFU/mL) was prepared by diluting the culture in sterile phosphate-buffered

saline (pH 7.2).

A total of 144 broiler chicks (Cobb 500, Cobb hatcheries, Cleveland, GA) were randomly

distributed into three experimental groups of non-infected control, S. Enteritidis infected and

S. Heidelberg infected groups. All chickens were screened for Salmonella by cloacal swab at 0 d

of age. Chickens in the infected groups were orally inoculated with 5x106 CFU/mL in 250 μL

of either S. Enteritidis or S. Heidelberg and chickens in the control groups were inoculated

with 250 μL of sterile PBS at 3 d of age. Each group was replicated in six pens with eight chick-

ens per pen. At d 7, 14, 21, 28, and 35 d of age (4, 11, 18, 25, and 32 dpi), one bird per pen

(n = 6) from each group was randomly selected and killed by cervical dislocation, and samples

were collected.

Effect of S. Enteritidis and S. Heidelberg infections on S. Enteritidis and

S. Heidelberg load in the ceca, spleen, and liver

On 4, 11, 18, 25, and 32 dpi, cecal content, spleen, and liver were collected aseptically from six

chickens (n = 6) per treatment into stomacher bags, placed on ice, and transported to the labo-

ratory. One g of either cecal content or spleen or liver samples were taken in the stomacher

bags and macerated with a pestle. The stomacher bags with macerated samples were mixed

with 1X (wt./vol.) of buffered peptone water and the bags were stomached for 90 s. A volume

of 10 μl of homogenates was either directly plated or serially diluted in 10−1 to 10−5 dilutions

using the micro dilutions method as described earlier [22]. From every dilution, a volume of

10μl was spotted in triplicate on XLT-4 agar plates. Plates were then incubated for 48 h at

37.5˚C. After incubation, colonies were counted and confirmed by SyBr green qPCR using

primers described in Table as described earlier [23]. Enumeration data were recorded as CFU/

g and then transformed to log10 CFU/g for statistical analysis.
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Effect of S. Enteritidis and S. Heidelberg infection on CD+CD25+ cell

percentage in the cecal tonsils and spleen

Spleen and cecal tonsils were teased over a 40 μm cell strainer (Sigma-Aldrich, St. Louis, MO)

with approximately 5 ml of RPMI to obtain a single-cell suspension. Single-cell suspensions of

spleen and cecal tonsils from six chickens per treatment on 4, 11, 18, 25, and 32 dpi (n = 6)

were concentrated for lymphocyte isolation by density centrifugation utilizing Histopaque

(1.077 g/mL; Sigma-Aldrich, St. Louis, MO). Anti-chicken CD25 antibody production was ear-

lier described [24]. Anti-chicken CD25 was labeled with PE using the Lighting-link PE kit

(Novus Biologicals, LLC Littleton CO). Cells (1 × 106) were incubated with 10 μg/mL PE

linked mouse anti-chicken CD25, 1:200 APC-conjugated mouse anti-chicken CD4 (Southern

Biotechnology Associates, Birmingham, AL), and 1:200 dilution of unlabeled mouse IgG for

45 min. The unbound primary antibodies were removed by centrifugation. The percentage of

CD4+CD25+ cells in different organs was analyzed in a flow cytometer (Guava Eascyte; Milli-

pore, Billerica, MA). A total of 50,000 events were collected. CD4+CD25+ cell percentage was

analyzed after gating cells based on forward scatter and side scatter plots for lymphocytes.

CD4+ and CD4+CD25+ cell percentage was expressed as a percentage of CD4+ cells.

Effect of S. Enteritidis and S. Heidelberg infection on immune-related

mRNA transcription in CD4+CD25+ and CD4+CD25- cells from cecal

tonsils and spleen

Single-cell suspension of cecal tonsils and spleen were labeled for CD4 and CD25 as described

above and flow-sorted for CD4+CD25+ and CD4+CD25- cells using an iCyt reflection cell

sorter, Champaign, IL (~99% pure) after gating on cells based on forward scatter and side scat-

ter plot for lymphocytes. Total RNA from CD4+CD25+ and CD4+CD25- cells at 4, 11, and 32

dpi were extracted and reverse transcribed into cDNA as described earlier [25] and analyzed

for the relative expression of IL-10, TGF-β, IL-1β, LITAF, and IL-2 mRNA transcription, after

normalizing for β-actin mRNA transcription, using the primers listed in Table 1. Relative

mRNA expression was calculated using the 2-ΔΔCt method described earlier [26], where Ct is

the threshold cycle.

Effect of S. Enteritidis and S. Heidelberg infections on tight junction

protein mRNA transcription in the jejunum and ceca

On 4, 11, and 32 dpi, approximately 1 cm of jejunum or ceca samples were collected in 2 ml of

RNAlater (Qiagen, Germantown, MD) Excess RNAlater was removed from tubes, and samples

were stored at -80˚C until analyzed. Total RNA was extracted from cecal tonsils and reverse

transcribed into cDNA [25] and analyzed for the relative expression of Claudin-1 and Zona

occludens-1 mRNA transcription, after normalizing for β-actin mRNA transcription, using

the primers listed in Table 1. Relative mRNA expression was calculated using the 2-ΔΔCt

method described earlier [26], where Ct is the threshold cycle.

Effect of S. Enteritidis and S. Heidelberg infections on antigen-specific in
vitro recall response of cecal tonsil CD4+CD25+ and CD4+CD25-cells

Heat-killed S. Enteritidis and S. Heidelberg antigen were prepared by heating 1 mL of 1.25 X

108 S. Enteritidis at 65˚C for 1 h [35]. Whole cecal tonsils were passed over a 0.4 μm cell

strainer to obtain a single-cell suspension. Cecal tonsil cells (1 X 108) were stimulated in vitro
with 0 or 1 μg of heat-killed S. Enteritidis antigen in 1000 μl of RPMI medium supplemented

with 5% fetal bovine serum, 1% penicillin plus streptomycin for 48 h. CD4+CD25+ and
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CD4+CD25- cells from the 48 h culture were flow sorted as described above. The CD4+CD25+

and CD4+CD25- cells cell purities were at least 90% as determined in a flow cytometer. Total

RNA was extracted and analyzed for the relative expression of IL-10, IL-2, IFNγ, and IL-17

mRNA as described above.

Statistical analysis

A one-way ANOVA (JMP software, Cary, NC) was used to examine the effect of different

parameters studied on dependent variables. When the effects were significant (P< 0.05), dif-

ferences between means were analyzed by Tukey’s least-square means comparison.

Results

Effect of S. Enteritidis and S. Heidelberg infections on S. Enteritidis and S.

Heidelberg load in the ceca, spleen, and liver

There were no detectable amounts of Salmonella in the cecal content, liver, and spleen of con-

trol group chickens at any of the time points studied (Fig 1). Chickens infected with S. Enteriti-

dis had 6.2, 5.4, and 3.8 log10 CFU/g, and chickens infected with S. Heidelberg had 7.1, 4.8, and

4.1 log10 CFU/g Salmonella in the cecal contents at 4, 11, and 32 dpi, respectively. Both S. Enter-

itidis and S. Heidelberg had crossed the intestinal barrier and were recovered from the liver at 4

Table 1. Primers and PCR conditions for RT qPCR.

Target gene Sequence (5’-3’) Annealing Temperature Reference

IL-10-F CATGCTGCTGGGCCTGAA 58.0˚C [27]

IL-10-R CGTCTCCTTGATCTGCTTGATG

TGF-β4 –F GACAGCCATCCGCATCTTCT 58.0˚C [28]

TGF-β4 –R CATACTCCTGGGTCTGGTTGGT

TLR-4-F ACCTACCCATCGGACACTTG 60.0˚C [29]

TLR-4-R TGCCTGAGAGGTCAGGTT

IL-1β-F GCATCAAGGGCTACAAGCTC 58.0˚C [30]

IL-1β-R CAGGCGGTAGAAGATGAAGC

LITAF-F ATCCTCACCCCTACCCTGTC 58.0˚C [31]

LITAF-R GGCGGTCATAGAACAGCACT

IL-2-F CTGGGAGAAGTGGTTACTCTGA 59.0˚C [31]

IL-2-R ACCCGTAAGACTCTTGAGGTTC

IL-17-F GCAGATGCTGGATGCCTAAC 55.5˚C

IL-17-R ATGGAGCCAGTGAGCGTTT

IFNγ-F GGCGTGAAGAAGGTGAAAGA 55.4˚C

IFNγ-R CCTCTGAGACTGGCTCCTTTT

Claudin-1-F CATACTCCTGGGTCTGGTTGGT 55.0˚C [32]

Claudin-1-R GACAGCCATCCGCATCTTCT

Zona occludens-1-F TGTAGCCACAGCAAGAGGTG 55.0˚C [33]

Zona occludens-1-R CTGGAATGGCTCCTTGTGGT

β-actin–F ACCGGACTGTTACCAACACC 57.0˚C

β-actin -R GACTGCTGCTGACACCTTCA

S. Enteritidis-F GCCGAGCTTGATGACAAACCTG 60.0˚C [34]

S. Enteritidis-R GCGCTTCGCTTTTCCAACTGCC

S. Heidelberg-F GCCGAGCTTGATGACAAACCTG 55.0˚C [34]

S. Heidelberg-R GCGCTTCGCTTTTCCAACTGCC

https://doi.org/10.1371/journal.pone.0260280.t001
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and 11 dpi. Both S. Enteritidis and S. Heidelberg were recovered from the spleen at 4 dpi, after

which there were no detectable amounts of S. Enteritidis and S. Heidelberg in the spleen.

Effect of S. Enteritidis and S. Heidelberg infections on CD4+CD25+ cell

percentage in the cecal tonsils and spleen

Approximately 10% of the cecal tonsil CD4+ cells were CD4+CD25+ cells in the control group

(Fig 2). Chickens infected with S. Enteritidis and S. Heidelberg had a significant (P< 0.05)

Fig 1. Effect of S. Enteritidis and S. Heidelberg infections on S. Enteritidis and S. Heidelberg load in the ceca,

spleen, and liver. Chickens (3 d-old) were orally infected with 0 (control) or 5x106 CFU of S. Enteritidis or S.

Heidelberg in six replications. At 4, 11, and 32 d post-infection, S. Enteritidis or S. Heidelberg loads in the cecal

content, liver, and spleen were estimated by a micro-dilution method (CFU/g) and then log-transformed to log10

CFU/g for statistical analysis. Means ± SEM. Bars without a common superscript differ significantly each measured

day post-infection (P< 0.05). n = 6.

https://doi.org/10.1371/journal.pone.0260280.g001

Fig 2. Effect of S. Enteritidis and S. Heidelberg infections on CD4+CD25+ cell percentage in the cecal tonsils.

Chickens (3 d-old) were orally infected with 0 (control) or 5x106 CFU of S. Enteritidis or S. Heidelberg in six

replications. At 4, 11, 18, 25, and 32 d post-infection, CD4+CD25+ regulatory T cell percentage in cecal tonsils were

analyzed by flow cytometry. CD4+CD25+ cell percentage was expressed as a percent of CD4+ cells to facilitate

comparison between samples. Means ± SEM. Bars without a common superscript differ significantly each measured

day post-infection (P< 0.05). n = 6.

https://doi.org/10.1371/journal.pone.0260280.g002
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increase in cecal tonsil CD4+CD25+ cell percentages at 4, 11, 18, 25, and 32 dpi, compared to

that in the control group. Chickens in the S. Enteritidis infected groups had further 3.1 to 8.4%

and chickens in the S. Heidelberg infected groups had a further 3.8 to 7.8% increase in cecal

tonsil CD4+CD25+ cell percentages compared to the control group between 4 to 32 dpi.

There were no significant differences (P> 0.05) in the spleen CD4+CD25+ cell percentages

at any of the time point studied.

Effect of S. Enteritidis and S. Heidelberg infections on IL-10, TGF-β, IL-1β,

LITAF, and IL-2 mRNA transcription in CD4+CD25+ cells from cecal

tonsils and spleen

Chickens infected with S. Enteritidis and S. Heidelberg had a significant (P < 0.05) increase in

the cecal tonsil CD4+CD25+ cell IL-10 mRNA transcription at 4, 11, and 32 dpi, compared to

that in the control group (Fig 3). At 4, 11, and 32 dpi, chickens in the S. Enteritidis infected

groups had 2.9-, 3.5-, and 4.5- fold, and chickens in the S. Heidelberg infected groups had 2.6-,

3.5-, and 3.6- fold increase in cecal tonsil CD4+CD25+ cell IL-10 mRNA compared to that in

the control group, respectively.

Chickens infected with S. Enteritidis and S. Heidelberg had comparable splenic

CD4+CD25+ cell IL-10 mRNA transcription to that in the control group at all time points

studied.

At 4dpi, chickens infected with S. Enteritidis and S. Heidelberg had a significant (P< 0.05)

increase of TGF-β mRNA in the cecal tonsil CD4+CD25+ cells compared to that in the control

group. At 4 dpi, chickens in the S. Enteritidis infected groups had 2.1- fold, and chickens in the

S. Heidelberg infected groups had 1.9- fold increase of TGF-β mRNA in the cecal tonsil

CD4+CD25+ cells compared to that in the control group. At 11 and 32 dpi, chickens infected

with S. Enteritidis and S. Heidelberg had comparable TGF-β mRNA transcription in the cecal

tonsil CD4+CD25+ cells to that in the control group.

Fig 3. Effect of S. Enteritidis and S. Heidelberg infections on IL-10, TGF-β, IL-1β, LITAF, and IL-2 mRNA amounts in CD4+CD25+ cells from cecal tonsils and

spleen. Chickens (3 d-old) were orally infected with 0 (control) or 5x106 CFU of S. Enteritidis or S. Heidelberg in six replications. At 4, 11, and 32 d post-infection,

CD4+CD25+ cells were flow-sorted and analyzed for IL-10, TGF-β, IL-1β, LITAF, and IL-2 mRNA after normalizing for β-actin mRNA. Relative amounts of mRNA were

expressed as fold change from the control. Means ± SEM. Bars without a common superscript differ significantly each measured day post-infection (P< 0.05). n = 6.

https://doi.org/10.1371/journal.pone.0260280.g003
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There were no significant differences in the cecal tonsil and splenic CD4+CD25+ cell IL-1β,

LITAF, and IL-2 mRNA transcription between the treatment groups at any of the time points

studied.

Effect of S. Enteritidis and S. Heidelberg infections on antigen-specific in
vitro recall response of cecal tonsil CD4+CD25+ and CD4+CD25-cells

CD4+CD25+ cells from S. Enteritidis- and S. Heidelberg-infected chickens and were re-stimu-

lated with 1 μg antigen in vitro, had higher IL-10 mRNA content than the CD4+CD25+ cells

from the non-infected controls (P < 0.05; Fig 4).

CD4+CD25- cells from S. Enteritidis- and S. Heidelberg-infected chickens and stimulated

with 1 μg antigen in vitro, had higher IL-2 and IFN-γ mRNA content than the CD4+CD25-

cells from the non-infected controls at 4dpi (P < 0.05; Fig 6). There were no significant differ-

ences between the IL-2 and IFN-γ mRNA transcription of CD4+CD25- cells collected at 11

and 32dpi.

There were no significant differences between the IL-17 mRNA transcription of

CD4+CD25+ cells and CD4+CD25- cells collected at 11 and 32dpi.

Effect of S. Enteritidis and S. Heidelberg infections on IL-10, TGF-β, IL-1β,

LITAF, and IL-2 mRNA transcription in CD4+CD25- cells from cecal

tonsils and spleen

Chickens infected with S. Enteritidis and S. Heidelberg had a significant decrease in the cecal

tonsil CD4+CD25- cell IL-10 mRNA transcription at 4 dpi, compared to that in the control

group (P< 0.05; Fig 5). At 4 dpi, chickens in the S. Enteritidis infected groups had 50% and

Fig 4. Effect of S. Enteritidis and S. Heidelberg infections on antigen-specific in vitro recall response of cecal tonsil

CD4+CD25+ and CD4+CD25-cells. Chickens (3d-old) were orally infected with 0 (control) or 5x106 CFU of S. Enteritidis

or S. Heidelberg in six replications. At 4, 11, and 32 d post-infection, 1 X 108 cecal tonsil cells were stimulated in vitro
with 0 or 1 μg of heat-killed S. Enteritidis or S. Heidelberg antigens. Cecal tonsil cells were then incubated with killed

antigens from either S. Enteritidis or S. Heidelberg for 48h. CD4+CD25+ cells and CD4+CD25- cells were flow-sorted and

analyzed for IL-10, IL-2 IL-17 and IFN-γ mRNA after normalizing for β-actin mRNA. Relative amounts of mRNA were

expressed as fold change from that in the respective 0 μg antigen treated group. Means ± SEM. Bars without a common

superscript differ significantly each measured day post-infection (P< 0.05). n = 6.

https://doi.org/10.1371/journal.pone.0260280.g004
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chickens in the S. Heidelberg infected groups had a 70% decrease in cecal tonsil CD4+CD25-

cell IL-10 mRNA compared to that in the control group.

At 4 dpi, chickens infected with S. Enteritidis and S. Heidelberg had a significant increase

in the cecal tonsil CD4+CD25- cell IL-1β mRNA compared to that in the control group

(P< 0.05). At 4 dpi, chickens in the S. Enteritidis infected groups had 1.9- fold, and chickens

in the S. Heidelberg infected groups had a 1.8- fold increase in cecal tonsil CD4+CD25- cell IL-

1β mRNA compared to that in the control group. At 11 and 32 dpi, chickens infected with S.

Enteritidis and S. Heidelberg had comparable cecal tonsil CD4+CD25- cell IL-1β mRNA tran-

scription to that in the control group.

At 4dpi, chickens infected with S. Enteritidis and S. Heidelberg had a significant increase in

the cecal tonsil CD4+CD25- cell IL-2 mRNA compared to that in the control group (P< 0.05).

Fig 6. Effect of S. Enteritidis and S. Heidelberg infections on tight junction protein mRNA amounts in the

jejunum and ceca. Chickens (3 d-old) were orally infected with 0 (control) or 5x106 CFU of S. Enteritidis or S.

Heidelberg in six replications. At 4, 11, and 32 d post-infection, jejunal and ceca samples were analyzed for Claudin-1

and Zona occludens-1 mRNA after normalizing for β-actin mRNA. Relative amounts of mRNA were expressed as fold

change from the control. Means ± SEM. Bars without a common superscript differ significantly each measured day

post-infection (P< 0.05). n = 6.

https://doi.org/10.1371/journal.pone.0260280.g006

Fig 5. Effect of S. Enteritidis and S. Heidelberg infections on IL-10, TGF-β, IL-1β, LITAF, and IL-2 mRNA amounts in CD4+CD25- cells from cecal tonsils and

spleen. Chickens (3 d-old) were orally infected with 0 (control) or 5x106 CFU of S. Enteritidis or S. Heidelberg in six replications. At 4, 11, and 32 d post-infection,

CD4+CD25- cells were flow-sorted and analyzed for IL-10, TGF-β, IL-1β, LITAF, and IL-2 mRNA after normalizing for β-actin mRNA. Relative amounts of mRNA were

expressed as fold change from the control. Means ± SEM. Bars without a common superscript differ significantly each measured day post-infection (P< 0.05). n = 6.

https://doi.org/10.1371/journal.pone.0260280.g005
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At 4 dpi, chickens in the S. Enteritidis infected groups had 1.8- fold, and chickens in the S. Hei-

delberg infected groups had 2.1- fold increase in cecal tonsil CD4+CD25- cell IL-2 mRNA

compared to that in the control group. At 11 and 32 dpi, chickens infected with S. Enteritidis

and S. Heidelberg had comparable cecal tonsil CD4+CD25- cell IL-2 mRNA transcription to

that in the control group.

There were no significant differences between the cecal tonsil and splenic CD4+CD25- cell

TGF-β and LITAF mRNA transcription between the treatment groups at any of the time

points studied.

Effect of S. Enteritidis and S. Heidelberg infections on tight junction

protein mRNA transcription in the jejunum and ceca

At 4 dpi, chickens infected with S. Enteritidis had a significant 40% decrease and chickens

infected with S. Heidelberg had a significant 60% decrease in jejunal Claudin-1 mRNA tran-

scription compared to the control group (P < 0.05; Fig 6). At 11 and 32dpi, chickens infected

with S. Enteritidis and S. Heidelberg had comparable jejunal Claudin-1 mRNA transcription

with that of the control chickens.

At 4 dpi, chickens infected with S. Enteritidis had a 20% decrease, and chickens infected

with S. Heidelberg had a 30% decrease in jejunal Zona-occludens-1 mRNA transcription com-

pared to the control group (P> 0.05). At 11 and 32 dpi, chickens infected with S. Enteritidis

and S. Heidelberg had comparable jejunal Zona occludens-1 mRNA transcription with that of

the control chickens.

At 4 dpi, chickens infected with S. Enteritidis had a significant 80% decrease and chickens

infected with S. Heidelberg had a significant 70% decrease in cecal Claudin-1 mRNA tran-

scription compared to the control group (P < 0.05). At 11 and 32dpi, chickens infected with S.

Enteritidis and S. Heidelberg had comparable cecal Claudin-1 mRNA transcription with that

of the control chickens.

At 4 dpi, chickens infected with S. Enteritidis had a 80% decrease, and chickens infected

with S. Heidelberg had a 90% decrease in cecal Zona-occludens-1 mRNA transcription com-

pared to the control group (P< 0.05). At 11 and 32 dpi, chickens infected with S. Enteritidis

and S. Heidelberg had comparable cecal Zona occludens-1 mRNA transcription with that of

the control chickens.

Discussion

This study aimed to evaluate the properties of chicken regulatory T cells and T cells from a gut

lymphoid tissue and spleen during S. Enteritidis- and S. Heidelberg infection. Infecting broiler

chickens with S. Enteritidis and S. Heidelberg at 3 d of age caused S. Enteritidis and S. Heidel-

berg colonization of the gut, resulted in S. Enteritidis- and S. Heidelberg recovery in the liver

and spleen, decreased jejunal Claudin-1 and Zona occludens-1 mRNA transcription, increased

CD4+CD25- regulatory T cell percentages in the cecal tonsils, increased cecal tonsil

CD4+CD25+ regulatory T cell IL-10 mRNA content, decreased cecal tonsil CD4+CD25- T cell

IL-10 mRNA content and increased IL-10 mRNA production in CD4+CD25+ restimulated

with Salmonella antigen.

It has been observed that chickens infected with S. Typhimurium at 1-week of age have the

persistent infection until 6–7 weeks of age and the persistence has been attributed to the poorly

developed immune system of chickens at hatch [2]. This study observed that both S. Enteriti-

dis- and S. Heidelberg not only persisted in the chicken gut until 35 d of age but also crossed

the intestinal barrier and were recovered from both the spleen and the liver. This study also

observed that S. Enteritidis and S. Typhimurium decreases the tight junction protein
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expression in both the ceca and jejunum. Claudin proteins link adjacent enterocytes and S.

Typhimurium downregulates the Zona occludens-1 and Claudin-5 mRNA in the ceca of birds

to increase translocation of Salmonella to the systemic circulation [36]. It has been suggested

that the host toll-like receptor-flagellate interactions regulate the ability of Salmonella serovars

to cross the gut barrier. TLR5-flagellin interactions restrict flagellate serovars like Enteritidis

and Typhimurium to the intestine, while permitting non-flagellate Salmonella serovars like S.

Gallinarum and S.Pullorum to cross the gut barrier and colonize internal organs [37]. In addi-

tion, the Type III secretion system of Salmonella facilitates the host signal transduction path-

ways to decrease tight junction proteins like Zona occludens-1, occludin, and E-cadherin in

MDCK-1 cell lines [38] and facilitate Salmonella invading the internal organs. It has been sug-

gested that S. Typhimurium decreases the tight junction proteins in the jejunum [18] likely

contributing to the bacteria translocating from the blood circulation to the internal organs like

liver and spleen [19].

Salmonella lipopolysaccharide and flagella are pathogen-associated molecular patterns rec-

ognized by the host to initiate an immune response that is expected to clear the pathogen [39].

Upon infection with Salmonella, innate inflammatory response, characterized by pro-inflam-

matory cytokines and heterophils proliferation happens within hours [40,41]. This article

observed that there was an increase in IL-1β and IFNγ mRNA content of splenic CD4+CD25-

cells. The observed increase in the IL-1β and IFNγ mRNA of CD4+CD25- cells occurred only

in the internal organ but not in the cecal tonsils, suggesting that the systemic host immune

response to Salmonella infection differs from the mucosal immune response to Salmonella. IL-

17 was not upregulated at any point of the infection with S. Enteritidis and S. Heidelberg. S.

Enteritidis has been earlier shown to upregulate IL-17 in the cecal wall at 4 d post-infection,

though by 7d post-infection, IL-17 levels are back to normal [42]. This suggests that the effect

of S. Enteritidis on IL-17 is time dependent.

The interplay between regulatory T cells and other immune cells determines if the outcome

of an infection is a successful infection of the host by a pathogen or the successful clearance of

the pathogen by the host [43]. T regulatory cells facilitate the survival of commensal bacteria in

mammals [44] and intestinal bacteria have co-evolved within the host to stimulate T regulatory

cell activity to survive the host gut immune response [45]. Depleting Tregs in mice alters the

balance between Salmonella proliferation and host immune response and results in clearance

of Salmonella during a persistent Salmonella infection [46]. In this study, we observed that

both the numbers of cecal tonsil CD4+CD25+ cells and the IL-10 mRNA content of the cecal

tonsil CD4+CD25+ cells increased in chickens infected with S. Enteritidis- and S. Heidelberg.

Since IL-10 is a regulatory cytokine that acts to reverse proinflammatory cytokine actions,

increased IL-10 transcription of CD4+CD25+ cells in the gut can be expected to neutralize the

increase in pro-inflammatory cytokine produced by other host T cells that will act to clear S.

Enteritidis- and S. Heidelberg infection. This study observed an increase in IL-1β transcription

in the spleen of birds infected with S. Enteritidis- and S. Heidelberg. Increased T regulatory

cell numbers and functions can be expected to dampen the immune response against Salmo-
nella in the gut leading to Salmonella persistence in the chicken gut. Interestingly S. Enteriti-

dis- and S. Heidelberg infection mediated an increase in the suppressive properties of

CD4+CD25+ cells only in the gut, but not in the spleen; suggesting that Salmonella-induced

host immune suppression is not systemic but only a localized mucosal response. Though Sal-
monella infection induces macrophage, B and T cell immune response against Salmonella,

these immune responses eventually wane [47], leading to persistent Salmonella infection. Reg-

ulatory cells are likely involved in suppressing the host immune response leading to persistent

infection of the chicken gut, but not the internal organs.
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T regulatory cells in mammalians are characterized by the presence of FoxP3 transcription

factor, but functional FoxP3 is yet to be identified in chickens [48]. In the absence of FoxP3,

chicken CD4+CD25+ have been characterized as T regulatory cells [24]. Because CD25 mark-

ers are not unique for T regulatory cells, IL-10 mRNA content and ability to suppress naïve T

cells using a naïve T cell proliferation suppression assay of CD4+CD25+ cells are typically used

as additional parameters to confirm the T regulatory properties of CD4+CD25+ cells [24,29].

Our earlier study with S. Enteritidis identified that CD4+CD25+ cells from cecal tonsils of S.

Enteritidis infected birds had increased IL-10 and suppressed naïve T cells [11]. Though this

study analyzed IL-10 mRNA amounts of CD4+CD25+ cells, but did not analyze the naïve T cell

proliferation suppression assay of CD4+CD25+ cells, the previous study with CD4+CD25+ cells

from S. Enteritidis birds, wherein naïve T cell proliferation study was conducted, suggest that

CD4+CD25+ cells are indeed T regulatory cells. It is possible that some of the CD4+CD25+

cells analyzed in this study are activated T cells or other immune cells.

S. Enteritidis- and S. Heidelberg mediated increase in CD4+CD25+ suppressive properties

are antigen-specific. Salmonella induces iNOS expression to inhibit the proliferation and dif-

ferentiation of T cells [49] through T regulatory cells as depletion of T regulatory cells abro-

gated the S. Typhimurium induced loss of Th1 response [50]. We observed that the Salmonella
antigen-induced IL-10 mRNA increase in CD4+CD25+ cells is antigen-specific as CD4+CD25+

cells from the control group when restimulated with Salmonella antigen did not increase IL-10

production. Earlier it has been observed that S. Typhi induces antigen-specific regulatory T

cells in humans and migration of antigen-specific regulatory cells to the gut plays an important

role in inducing typhoid fever through suppressing antigen-specific T effector cells [51].

This study utilized killed Salmonella antigens to stimulate CD4+CD25+ and CD4+CD25-

cells in vitro. Though recall responses evaluate the ability of the antigens to stimulate different

components of T cell signaling pathway, the assay is non-specific in that it cannot distinguish

the presence of cross-reactive T-cell responses. Earlier it has been shown that cross priming

where peptides from exogenous antigens were presented on class I MHC molecules leading to

CD8+ T cell stimulation [52]. Another possibility is that the heat-killed antigens used in this

study could have stimulated the TLR pathway in a non-antigenic pathway [53] or stimulated

the natural killer T cells which can be activated by different bacterial antigens and lipopolysac-

charide or flagellin [54].

It can be concluded that S. Enteritidis and S. Heidelberg infection at 3 d of age induces a

persistent infection through induction of T regulatory cells. Altering the IL-10 mRNA tran-

scription of T regulatory cells in chickens between 3 to 32 dpi and chickens become asymp-

tomatic carriers of Salmonella after 18 dpi. The upregulation of T regulatory cell IL-10

cytokine production by Salmonella was antigen-specific and the immune response was

observed only in the gut where Salmonella had colonized until 32 dpi. Salmonella infection of

chickens induced T cell IL-2 and IL-1β transcription at 3 dpi, however there were no differ-

ences in the studied cytokine transcription of T cells between the control group and Salmonella
infected groups after 11 dpi.
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