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A mouse model for a partially inactive
obesity-associated human MC3R variant
Bonggi Lee1,w, Jashin Koo1,w, Joo Yun Jun1, Oksana Gavrilova2, Yongjun Lee3, Arnold Y. Seo4,

Dezmond C. Taylor-Douglas1, Diane C. Adler-Wailes1,w, Faye Chen1, Ryan Gardner1, Dimitri Koutzoumis1,

Roya Sherafat Kazemzadeh1, Robin B. Roberson1 & Jack A. Yanovski1

We previously reported children homozygous for two MC3R sequence variants

(C17AþG241A) have greater fat mass than controls. Here we show, using homozygous

knock-in mouse models in which we replace murine Mc3r with wild-type human

(MC3RhWT/hWT) and double-mutant (C17AþG241A) human (MC3RhDM/hDM) MC3R, that

MC3RhDM/hDM have greater weight and fat mass, increased energy intake and feeding

efficiency, but reduced length and fat-free mass compared with MC3RhWT/hWT.

MC3RhDM/hDM mice do not have increased adipose tissue inflammatory cell infiltration or

greater expression of inflammatory markers despite their greater fat mass. Serum

adiponectin levels are increased in MC3RhDM/hDM mice and MC3RhDM/hDM human subjects.

MC3RhDM/hDM bone- and adipose tissue-derived mesenchymal stem cells (MSCs)

differentiate into adipocytes that accumulate more triglyceride than MC3RhWT/hWT MSCs.

MC3RhDM/hDM impacts nutrient partitioning to generate increased adipose tissue that

appears metabolically healthy. These data confirm the importance of MC3R signalling in

human metabolism and suggest a previously-unrecognized role for the MC3R in adipose

tissue development.
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T
he murine melanocortin 3 receptor (Mc3r) plays an
important role in regulating energy homeostasis1.
Homozygous Mc3r knockout mice have a phenotype

distinct from those of ob/ob or Mc4r knockouts2 because Mc3r
knockout mice exhibit greater fat mass with reduced fat-free
mass, so that total body weight is not notably increased. Mc3r
knockout mice show greater feeding efficiency (the ratio of weight
gain to energy intake); they are described as hypophagic or
normophagic relative to controls and appear to maintain normal
metabolic rate1. Recent studies have also reported impaired
fasting-induced lipolysis and corticosterone secretion3 as well as
potential dysregulation of mesolimbic dopaminergic reward
systems4 in Mc3r knockout mice.

Linkage studies indicate that the human MC3R locus is
associated with body weight5. Coding sequence variants that may
be associated with obesity have also been reported in human
MC3R6–10. A heterozygous missense sequence variant Ile183Asn
(I183N) that inactivates MC3R function11,12 was identified in two
individuals7. Other variants, including C17A (Thr6Lys) and
G241A (Val81Ile) have not been found individually to affect
signal transduction12 or be associated with body weight6,8–10. We
and others have reported that homozygosity for the
C17AþG241A MC3R haplotype is associated with childhood
obesity and higher fat mass than observed for wild type or
heterozygous children13–15, although this result has not been
replicated among adults16 and some in vitro data suggest that the
major start site for translation for MC3R may begin at a second
in-frame ATG that is downstream of C17A, placing C17A in the
50 untranslated region17,18. However, some in vitro studies have
found translation is possible from the first ATG19 and have
suggested that the C17AþG241A hMC3R may be partially
inactive, with significantly fewer surface receptor binding sites,
decreased signal transduction and less protein expression13,15. It
remains unclear whether C17AþG241A MC3R affects energy
homeostasis, given the genetic heterogeneity of humans in the
extant studies. To characterize the potential effects of these gene
variants on body weight, energy balance and metabolism, we
therefore generated and compared two novel homozygous knock-
in mouse models, replacing the murine Mc3r with either
wild-type human MC3R (MC3RhWT/hWT) or the double-mutant
C17AþG241A human MC3R (MC3RhDM/hDM), finding greater
adiposity but without marked metabolic derangements in
MC3RhDM/hDM.

Results
Validation of replacement of Mc3r in knock-in mice. The
strategy and targeting vector used to replace murine Mc3r with
human MC3R are shown in Supplementary Fig. 1. Direct
sequencing after PCR amplification of genomic DNA of
homozygous mice confirmed that murine Mc3r genes
were replaced with human wild-type or double-mutant
(C17AþG241A) MC3R and that there were no other genomic
sequence differences introduced in the 6.17-kB targeted region.
Only human MC3R messenger RNA (mRNA) expression in the
hypothalamus was found for homozygous knock-in mice by
quantitative RT–PCR performed using mouse- and human-spe-
cific primers (Fig. 1a–d). Western analysis confirmed MC3R was
expressed in total hypothalamic protein lysates from both
homozygous knock-in models (Fig. 1e,f).

Body composition. To examine the effects of double-mutant
human MC3R on body composition, we compared body weight
and body composition of littermate female and male C57BL/6
mice without human gene insertion (MC3Rþ /þ , n¼ 16) with
female and male knock-in mice that were heterozygous

(MC3RhWT/þ ) or homozygous (MC3RhWT/hWT) for the
wild-type human MC3R and with female and male mice that were
heterozygous (MC3RhDM/þ ) or homozygous (MC3RhDM/hDM)
for the double-mutant human MC3R. On chow diets, female and
male MC3RhDM/hDM mice had significantly greater body
weight compared with MC3RhWT/hWT or MC3Rþ /þ mice
(Supplementary Fig. 2). No differences in body weight were
observed among MC3Rþ /þ , MC3RhWT/þ , MC3RhWT/hWT or
MC3RhDM/þ mice (Supplementary Fig. 2). On a 45% high-fat
diet, female and male MC3RhDM/hDM mice also had significantly
greater body weight compared with MC3RhWT/hWT mice
(Supplementary Fig. 3). Body composition was notably affected
by MC3RhDM/hDM. On both chow and high-fat diets, both female
(Fig. 2a–e) and male (Supplementary Fig. 4a–e) MC3RhDM/hDM

mice had significantly greater body fat mass, but reduced fat-free
mass, compared with MC3RhWT/hWT mice. The increased fat
mass in high-fat-fed MC3RhDM/hDM appeared not to be fat-depot
specific, as evidenced by increased epididymal fat, subcutaneous
flank fat and interscapular brown fat depots (Supplementary
Fig. 5a–c). Although haematoxylin and eosin (H&E) staining
showed that lipid accumulation appeared to be increased in
brown adipose tissue of MC3RhDM/hDM, UCP1 protein expression
was maintained in MC3RhDM/hDM mice (Supplementary
Fig. 6a–d). There was no significant difference in liver weight
between high-fat-diet-treated mice (Supplementary Fig. 5d).
H&E staining and liver triglyceride measurements after an
overnight fast showed no significant differences in triglyceride
accumulation between groups in the high-fat-fed condition
(Supplementary Fig. 7a–c), suggesting that liver steatosis
is not markedly exacerbated despite the greater fat mass of
MC3RhDM/hDM mice.

Crown-rump length of MC3RhDM/hDM mice was slightly,
but significantly, shorter than that of MC3RhWT/hWT mice
(Supplementary Fig. 8a,b). We used dual-energy X-ray
absorptiometry (DXA) to further characterize body composition.
Body fat mass was significantly increased without apparent
differences in lean mass (Supplementary Fig. 9a–c), although
percentage lean mass was significantly reduced in both female
and male MC3RhDM/hDM mice (Supplementary Fig. 9d). By DXA,
we found no differences in total mouse bone mineral density
(BMD; Supplementary Fig. 9e), although, in accord with their
decreased length, total bone mineral content and bone area were
significantly reduced in MC3RhDM/hDM mice (Supplementary
Fig. 9f,g). No skeletal malformations were identified in
MC3RhDM/hDM mice. To study bone microarchitecture
more precisely, we performed micro computed tomography
(CT) analysis using femurs from MC3RhWT/hWTand
MC3RhDM/hDM mice. Femurs from MC3RhDM/hDM mice had
reduced length (Supplementary Fig. 8c–e) as well as lower BMD
in whole bone and trabecular bone without significant
differences in cortical BMD (Supplementary Fig. 8f).
Furthermore, MC3RhDM/hDM mice exhibited a trend towards
lower trabecular number and significantly decreased trabecular
bone-volume fraction, trabecular bone thickness, cortical
area fraction and average cortical thickness, compared
with MC3RhWT/hWT mice (Fig. 3a–e,g,h). Analysis of femurs
(Fig. 3f) found the medullary cavity area in cortical regions was
also significantly increased in MC3RhDM/hDM mice, suggesting
there might be increased marrow fat. We therefore isolated bone
marrow from femurs, finding significantly greater marrow
triglycerides in MC3RhDM/hDM mice (Supplementary Fig. 10).
These data indicate reduced bone mass and increased
bone marrow fat in MC3RhDM/hDMcompared to MC3RhWT/hWT

mice. Reduced bone size and increased marrow fat thus
contribute to the decreased fat-free mass and increased fat
mass of MC3RhDM/hDM mice.
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Energy intake, feeding efficiency and energy expenditure. In
both chow and high-fat diet-fed conditions, energy intake,
assessed over 2 weeks and adjusted for fat-free mass, was
significantly increased (P¼ 0.044 and 0.048 for chow and high-fat
diet-fed conditions, respectively) in female MC3RhDM/hDM versus
MC3RhWT/hWT mice (Supplementary Table. 1a,b). Similar
results were found in chow-fed male MC3RhDM/hDM mice
(data not shown). After adjusting for total body weight, energy
intake was still significantly increased in high-fat-fed, but not
chow-fed MC3RhDM/hDM mice (Supplementary Table 1a,b). In
both chow and high-fat diet-fed conditions, food intake was not
different between groups after adjusting separately for both fat
and fat-free mass (Supplementary Table 1a,b).

Because increased feeding efficiency has been observed in Mc3r
knockout mice1, we examined feeding efficiency in both female
and male MC3RhWT/hWT and MC3RhDM/hDM mice fed ad
libitum. Feeding efficiency (weight gain relative to energy
intake) was markedly higher in female MC3RhDM/hDM mice

versus MC3RhWT/hWT in both chow and high-fat-fed conditions
(Fig. 4a,b). Similar results were found in male MC3RhDM/hDM

mice (data not shown). To examine feeding efficiency separately
from energy intake, we pair-fed mice given a high-fat diet for 5
weeks. Body weight did not differ during pair feeding; however,
fat mass was still increased, while fat-free mass was reduced in
pair-fed MC3RhDM/hDM mice versus MC3RhWT/hWT (Fig. 4c–e).
After switching from pair feeding to ad libitum diet, body weight
significantly increased in MC3RhDM/hDM mice compared with
MC3RhWT/hWT (Fig. 4c). These data indicate that alterations in
both nutrient partitioning and energy intake contribute
to the altered body composition and energy balance of
MC3RhDM/hDM mice.

To examine whether differences in energy expenditure
contribute to the altered energy balance, we performed indirect
calorimetry at 22 and 30 �C during chow and high-fat feeding
using female MC3RhWT/hWT and MC3RhDM/hDM mice. During
chow-feeding, total energy expenditure was significantly reduced

43 kDa

N8

36 kDa

1.5
a b

d

fe

c

Human MC3R primers

Mouse MC3R primers Mouse MC3R primers

MC3R protein quantitation
MC3R protein expression

Human MC3R primers

c

c

M
C3R

hW
T/h

W
T

M
C3R

hD
M

/h
DM

M
C3R

hW
T/h

W
T

MC3RhWT/hWT

MC3RhWT/hWT

MC3RhDM/hDM

MC3RhDM/hDM

M
C3R

hD
M

/h
DM

M
C3R

hD
M

/+

M
C3R

+/
+

M
C3R

hW
T/+

M
C3R

+/
+

M
C3R

hD
M

/+

M
C3R

+/
+

M
C3R

hW
T/+

M
C3R

+/
+

b

b

a

a

c

b

a

c

b

a

1.0

0.5

0.0

1.5

1.0

0.5

0.0
R

el
at

iv
e 

hM
C

3R
m

R
N

A
 e

xp
re

ss
io

n

R
el

at
iv

e 
hM

C
3R

m
R

N
A

 e
xp

re
ss

io
n

1.5

1.0

0.5

0.0

R
el

at
iv

e 
m

M
C

3R
m

R
N

A
 e

xp
re

ss
io

n

1.5

1.0

0.5

0.0

R
el

at
iv

e 
M

C
3R

pr
ot

ei
n 

ex
pr

es
si

on

1.5

1.0

0.5

0.0

R
el

at
iv

e 
m

M
C

3R
m

R
N

A
 e

xp
re

ss
io

n

MC3R

GAPDH

Figure 1 | Validation of mouse MC3R replacement by human MC3R. Quantitative real-time PCR for relative hypothalamic mRNA expression normalized

by b-actin expression by the 2–DDCt method (n¼ 3/group) in 4-month-old female C57BL/6 mice (MC3Rþ /þ ) or knock-in mice that were homozygous

(MC3RhWT/hWT) or heterozygous (MC3RhWT/þ ) for the common alleles for the human MC3R or homozygous (MC3RhDM/hDM) or heterozygous

(MC3RhDM/þ ) for the human MC3R sequence variants C17AþG241A. Expression was determined using human-specific MC3R primers (a,b) and mouse-

specific MC3R primers (c,d). MC3R protein expression (e) was measured by western blotting (for MC3RhWT/hWT n¼ 5; for MC3RhDM/hDM n¼4) in

homozygous mice and in the hypothalamic N8 murine cell line, which does not express MC3R mRNA. MC3R protein expression adjusted for GAPDH was

quantified using Image J (f). Data are represented as mean±s.e.m. A different letter represents significant differences at Po0.05 compared with the other

groups. Similar results were found for male mice (data not shown). Groups were compared by one-way analysis of variance followed by Bonferroni post-

tests (a–d) and Student’s t-test (two-tailed) (f).
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in chow-fed MC3RhDM/hDM mice at thermoneutrality after
adjusting for body weight (Supplementary Table 2a). However,
total energy expenditure was not significantly different among
chow-fed mice after adjusting for fat-free mass or fat-free mass
and fat mass at 22 or 30 �C (Supplementary Table 2a). During
high-fat feeding (Supplementary Table 2b), MC3RhDM/hDM mice,
who exhibited no difference in total body weight compared with
MC3RhWT/hWT, showed no significant change in total energy
expenditure. Locomotor activity was also similar between groups
during both chow and high-fat feeding (Supplementary
Table 2a,b).

Respiratory exchange ratio (RER) was significantly lower at
22 �C in chow-fed MC3RhDM/hDM mice (Supplementary
Table 2a), but appeared to show a trend towards higher total
RER (P¼ 0.07) at 30 �C in high-fat-fed MC3RhDM/hDM mice
(Supplementary Table 2b), suggesting that altered substrate
preference for generating energy does not appear to be a
consistently applicable mechanism underlying the altered energy
balance, since increased fat mass and reduced fat-free mass are
found in both chow and high-fat-fed MC3RhDM/hDM mice.

Leptin action. Leptin resistance is observed in mice with high-
fat-diet-induced obesity and many other mouse obesity models.
Serum leptin concentrations increase in obese states and are
accompanied by decreased responsiveness to exogenous leptin
administration20. Because the MC3R is believed to be a

downstream target of leptin signalling21, we examined leptin
responsiveness using female MC3RhWT/hWT and MC3RhDM/hDM

mice. We found increased serum leptin concentrations under
both fasting and fed conditions in MC3RhDM/hDM mice (Fig. 5a).
However, these differences were entirely accounted for by their
increased fat mass (Fig. 5b). To examine whether decreased leptin
responsiveness might explain the altered energy homeostasis of
MC3RhDM/hDM mice, we injected body-weight-matched
MC3RhDM/hDM and MC3RhWT/hWT mice (7–8 weeks old) with
leptin. At this age, MC3RhDM/hDM mice already have greater fat
mass than MC3RhWT/hWT mice (Fig. 5e,f). The leptin-induced
decreases in body weight and energy intake were not significantly
different between groups (Fig. 5c,d), indicating maintained leptin
sensitivity in MC3RhDM/hDM despite their greater fat mass. These
results suggest that inadequate leptin responsiveness does not
explain why MC3RhDM/hDM mice exhibit alterations in energy
intake behaviour.

Insulin sensitivity, serum lipid and hormone profiles. Obesity is
generally accompanied by a dysmetabolic syndrome that involves
alterations in the hormones and substrates associated with insulin
resistance22,23. We examined whether obese MC3RhDM/hDM mice
have alterations in blood profile related to insulin sensitivity using
female mice and found that serum triglycerides and cholesterol
were, surprisingly, not significantly different in MC3RhWT/hWT

versus significantly more adipose MC3RhDM/hDM mice examined
under either chow-fed or fasted conditions (Fig. 6a,b). The serum
concentrations of glucose and insulin were not significantly
different between groups (Fig. 6c,d). Glucose and insulin-
tolerance tests after high-fat diet feeding showed comparable
responses for MC3RhDM/hDM mice versus MC3RhWT/hWT

(Fig. 6g,h), suggesting that insulin sensitivity is relatively
maintained in MC3RhDM/hDM mice despite their greatly
increased adiposity (Fig. 6i,j). Similarly, no significant
differences in serum triglycerides, free fatty acids (FFA) and
insulin-tolerance test results were found in male MC3RhDM/hDM

versus MC3RhWT/hWT mice (data not shown).
It has been reported that a mechanism through which MC3R

knockout mice increase fat mass and reduce lean mass is
impaired fasting response, evidenced by lower fasting-induced
adipose tissue lipolysis, higher basal corticosterone concentrations
and diminished fasting-induced corticosterone3. However, basal
FFA levels were not significantly different in the chow-fed
condition, and fasting markedly increased serum FFA in both
MC3RhWT/hWT and MC3RhDM/hDM mice (Fig. 6e). Similarly,
fasting FFA concentrations were also not different between
groups on a high-fat diet (Supplementary Fig. 11a). In addition,
serum corticosterone was not different between groups in fasted
and chow-fed conditions; fasting increased serum corti-
costerone in both MC3RhWT/hWT and MC3RhDM/hDM mice
(Fig. 6f), indicating fasting-induced corticosterone response was
maintained in MC3RhDM/hDM mice.

Adiponectin. Adiponectin is an adipocyte-derived hormone
whose gene expression and blood concentrations are usually
inversely associated with adiposity and insulin resistance24–26.
Unexpectedly, both female and male MC3RhDM/hDM mice had
significantly greater circulating adiponectin concentrations versus
MC3RhWT/hWT under both fasted and chow-fed conditions
(Fig. 7a; Supplementary Fig. 11c) despite their notable increase
in fat mass. On a high-fat diet, fat-mass-adjusted or non-adjusted
fasting adiponectin was also significantly higher in female
and male MC3RhDM/hDM mice, respectively (Supplementary
Fig. 11b,d). These data indicate that MC3R sequence variants
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(C17AþG241A) paradoxically increase circulating adiponectin
regardless of sex or nutritional state.

These findings led us to measure serum adiponectin in a cohort
(Supplementary Table 4) of age- and body-fat-matched children
with homozygous wild type (MC3RhWT/hWT, n¼ 13) or homo-
zygous double-mutant (MC3RhDM/hDM, n¼ 13) MC3R. Human
subjects with MC3RhDM/hDM also had significantly greater serum
adiponectin than those with MC3RhWT/hWT after adjusting for fat
mass, sex and age (Po0.01, Fig. 7b).

White adipose tissue adiponectin, PPARc and phospho-AMPK.
Adiponectin is primarily secreted from white adipose tissues
(WAT)27 and WAT adiponectin expression is usually reduced in
obesity26. To investigate the mechanism underlying the
paradoxically increased adiponectin in MC3RhDM/hDM mice, we
measured WAT adiponectin expression. WAT adiponectin
mRNA (Fig. 8a) and protein (Fig. 8c) expression were not
decreased in MC3RhDM/hDM mice despite their greater fat mass.
Maintained adiponectin expression and secretion from the
markedly increased adipose tissue mass of MC3RhDM/hDM mice
may thus explain their increased circulating adiponectin.

The mRNA and protein levels of PPARg, which is an essential
factor for adipocyte differentiation, were significantly increased in
WAT of MC3RhDM/hDM mice (Fig. 8a,b). Furthermore, the

protein level of phosphorylated AMPK, which induces fatty acid
oxidation, was significantly increased in WAT of MC3RhDM/hDM

mice (Fig. 8d).

White adipose tissue markers of inflammation. Macro-
phages28,29 and neutrophils30,31 infiltrate into WAT in obesity,
and this infiltration is associated with the development of insulin
resistance. To examine WAT inflammation, we performed
fluorescence-activated cell sorting on stromal vascular fractions
isolated from WAT as well as WAT quantitative gene expression
analysis. Measures of macrophage- (F4/80-positive cells) and
neutrophil- (Gr-1 and CD11b double-positive cells) infiltration
were not different in WAT of high-fat-fed MC3RhWT/hWTand
MC3RhDM/hDM mice (Fig. 8e–l), despite the greater adiposity of
MC3RhDM/hDM mice. In addition, the expression levels of
macrophage markers (F4/80 and CD 68) and inflammatory
genes (tumour necrosis factor a, interleukin-6 and MCP1) were
not significantly changed in WAT of MC3RhDM/hDM versus
MC3RhWT/hWT mice (Fig. 8a). H&E staining also showed no
apparent differences in adipocyte morphology between groups
(Fig. 8m,n). After collagenase digestion and isolation,
however, adipocytes from the WAT of MC3RhDM/hDM had
clearly increased lipid droplet size and cell diameter versus
MC3RhWT/hWT (182±20 versus 132±20 mM, P¼ 0.0002).
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Figure 3 | Micro-CT shows decreased bone in femurs of MC3RhDM/hDM mice. (a) Trabecular number (per mm) of chow-fed female (12-week old)

MC3RhDM/hDM and MC3RhWT/hWT mice. (b) Trabecular bone-volume fraction: Trabecular Bone Volume/Total Volume (BV/TV), (c) Trabecular thickness,

(d) average cortical thickness, and (e) Cortical area per Total area fraction were reduced in MC3RhDM/hDM; (f) Medullary (marrow) area was increased in

MC3RhDM/hDM; (g) representative reconstructed 3D images of femur trabecular bones; (h) representative cross-sectional cortical bones (h). Data are

represented as mean±s.e.m.; MC3RhWT/hWT n¼ 7; MC3RhDM/hDM n¼ 8. *Po0.05 MC3RhDM/hDM versus MC3RhWT/hWT mice. Groups were compared by

Student’s t-tests (two-tailed) (a–f).
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Differentiation of mesenchymal stem cells. MSCs are multi-
potent progenitor cells that can be differentiated to lineages of
mesenchymal tissues including bone, fat and muscle32. Because
MC3RhDM/hDM mice showed increased fat mass and decreased
fat-free mass including a reduction in bone parameters including
BMD and bone thickness, we hypothesized that MC3RhDM/hDM

mice have altered MSC differentiation capacity, with a bias
towards adipocytic lipid storing cells, instead of osteoblastic bone-
forming cells. We therefore studied MSC differentiation capacity
in MC3RhDM/hDM and MC3RhWT/hWT mice. To avoid potential
contamination with haematopoietic stem cells, we isolated MSCs
from compact bone including tibiae and femora of mice and
confirmed the purity of MSCs by flow cytometry (Supplementary
Fig. 12). Western blotting showed that MC3R protein is expressed
in MSCs (Fig. 9a). To investigate altered differentiation capacity,
isolated MSCs were differentiated into osteoblasts or adipocytes
and stained with Alizarin Red S (for calcium) and Oil Red O
(for triglycerides). Differentiation into bone-forming osteoblasts
was reduced (Fig. 9b–f) while differentiation into triglyceride-
depositing adipocytes was significantly increased in MSCs of both
male and female MC3RhDM/hDM mice compared with their
wild-type counterparts (Fig. 10a–c, data not shown for males). In
addition, the mRNA expression of genes related to osteoblast
differentiation such as BMP4, RUNX2 and collagen-a2 was
significantly decreased (Fig. 9k) and the mRNA expression of
genes related to adipocyte differentiation such as PPARg, C/EBPa

and FAS was markedly increased (Fig. 10h). Confocal imaging
analysis further revealed that MSCs from MC3RhDM/hDM mice
produced significantly less extracellular calcium deposits
compared with their wild-type counterparts during osteoblast
differentiation, although the levels of intracellular osteocalcin
(osteoblast marker) were not significantly different among the
groups (Fig. 9g,j). In contrast, during adipocyte differentiation,
markedly increased lipid droplet formation was observed in
MSCs obtained from the compact bone of MC3RhDM/hDM mice
compared with MSCs from wild-type controls (Fig. 10d–f).
Furthermore, the percentage of cells containing lipid droplets
410 mm in diameter was higher in cells derived from the MSCs
of MC3RhDM/hDM during adipocyte differentiation (Fig. 10g).
To further confirm the increased adipogenic capacity of
MC3RhDM/hDM, we studied triglyceride accumulation in cells
derived from the stromal vascular fraction (SVF) of adipose
tissue, which is a rich source of preadipocytes, MSCs, endothelial
progenitor cells and immune cells33. To minimize effects from
other cell populations, we used an MSC differentiation medium
believed to specifically differentiate adipogenic precursor cells
into adipocytes. Cells from MC3RhDM/hDM SVF produced more
lipid droplets after adipogenic stimulation compared to cells from
MC3RhWT/hWT mice (Supplementary Fig. 13a–e). This result is
consistent with the increase in PPARg expression we found in
MC3RhDM/hDM adipose tissue, since PPARg is an essential factor
for adipocyte differentiation from MSCs. These data further
suggest there is increased adipogenic capacity in MC3RhDM/hDM

compared with MC3RhWT/hWT mice.
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Discussion
To validate previous human studies that have suggested children
with double-mutant (C17AþG241A) MC3R have greater fat
mass13–15, we developed two humanized mouse models
expressing human wild-type and double-mutant MC3R. We
found that mice with MC3RhDM/hDM had altered nutrient
partitioning, with increased body fat in adipose tissue and the
bone marrow, along with decreased crown-rump length and
reduced fat-free mass that was at least partially due to an

alteration of MSC fate towards lipid accumulation instead of bone
formation. Compared with the WAT of MC3RhWT/hWT, the
WAT of MC3RhDM/hDM mice had increased protein expression of
PPARg and p-AMPK. Energy homeostasis was altered such that
MC3RhDM/hDM mice demonstrated somewhat greater energy
intake but also greater feeding efficiency, as is observed in Mc3r
knockout mice. Finally, despite their greater adiposity, and unlike
most obese mouse models, MC3RhDM/hDM mice had a
reduction in expected obesity-associated metabolic dysfunction.
MC3RhDM/hDM mice had greater circulating adiponectin,
well-maintained insulin sensitivity, liver triglycerides and blood
levels of metabolites and hormones that were similar to those of
considerably less adipose MC3RhWT/hWT mice. In addition, the
much larger WAT of MC3RhDM/hDM mice did not show greater
immune cell infiltration or inflammation versus the WAT of
MC3RhWT/hWT mice. These results suggest that the
C17AþG241A human MC3R appears to stimulate an
expansion of adipose tissue that is relatively metabolically healthy.

Energy homeostasis is determined by the balance between
energy intake and expenditure. Only total energy expenditure at
thermoneutrality (30 �C) was significantly reduced in chow-fed
MC3RhDM/hDM versus MC3RhWT/hWT mice after adjusting for
body weight, but the differences between groups were not
significant after adjusting for fat-free mass or when animals were
studied in the high-fat-fed condition, indicating that the
contribution of lower energy expenditure to the altered energy
homeostasis, if any, may be subtle. This result is also similar to
our prior human study14 that found no differences in resting
energy expenditure, total daily energy expenditure or RER among
children with MC3RhWT/hWT and MC3RhDM/hDM.
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On the other hand, we found that energy intake was increased
in MC3RhDM/hDM mice during both chow and high-fat feeding.
Furthermore, we found no differences in body weight versus
MC3RhWT/hWT mice during pair feeding, but an increase in body
weight in MC3RhDM/hDM mice after switching from pair feeding
to ad libitum intake, indicating that energy intake contributes to
the altered energy balance. These data are also concordant with
our previous human findings, that energy intake at a buffet meal
was significantly higher in children with MC3RhDM/hDM

compared with children who were heterozygous or homozygous
for wild-type MC3R14. However, increased food intake is not the
only mechanism underlying the altered energy metabolism in
MC3RhDM/hDM mice because body composition was already
changed during pair feeding before there were differences in total
body weight. These data suggested changes in peripheral energy
partitioning might contribute to the altered energy metabolism of
MC3RhDM/hDM mice. In support of this hypothesis, it has been
reported that increased feeding efficiency primarily contributes to
the altered energy balance in MC3R knockout mice because
energy intake is not consistently increased and energy
expenditure is not altered in MC3R knockout mice1. In
addition, when Mc3r is recovered only in the central nervous

system of Mc3r knockout mice, such mice continue to
demonstrate greater fat mass and less fat-free mass than
controls34, indicating the potential importance of peripheral
Mc3r signalling for altered nutrient partitioning. It is thus likely
that changes in peripheral MC3R action contribute to the altered
body composition of MC3RhDM/hDM mice. We hypothesized
that altered Mc3r signalling could direct pluripotent MSC
differentiation away from lean tissues and towards adipose
tissue formation. Indeed, osteogenesis was notably reduced and
lipogenesis was increased in MSCs of MC3RhDM/hDM mice.
In addition, micro-CT analysis showed that femurs from
MC3RhDM/hDM mice were shorter and had significantly reduced
trabecular BMD and trabecular/cortical bone area in comparison
to MC3RhWT/hWT mice. These data suggest that biasing MSC fate
towards adipocytes instead of osteoblasts at least partially
explains the increased fat mass and reduced bone mass of
MC3RhDM/hDM mice.

Multiple tissues may be used to isolate MSCs, including
adipose tissue, bone and bone marrow. Our study showed that
MSCs isolated from compact bone from MC3RhDM/hDM mice
differentiated more readily into adipocytes rather than osteo-
blasts, but it is still unclear whether MSCs from bone contribute
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independent experiments were performed (n¼ 6/group). Isolated MSCs were cultured in 25-cm cell culture dishes for 4 passages (see methods for

detailed information). MSCs were used (a) for western blotting to examine MC3R protein expression or (b–f) MSCs were differentiated into

osteoblasts for 14 days to examine differentiation capacity. (b–c) Cultured MSCs differentiated into osteoblasts after Alizarin red S staining.

(d–e) Microscopic images (10X) of osteoblasts after Alizarin red S staining. Scale bar, 100 mm. (f) Stained Alizarin red S was extracted from

osteoblast and quantified at 450 nm. (g–j) Confocal microscopic images of osteoblasts stained with Alizarin red S (red) (g,h) or osteocalcin (red)

(i,j). Nuclei were stained with DAPI (blue). Representative maximum intensity projection images are shown. Scale bar, 25 mm. (k) qPCR analysis

of genes related to osteoblast differentiation (7 days after differentiation). Similar results were found for male mice (data not shown). Data are

represented as mean±s.e.m. for f and k. Groups were compared by Student’s t-tests (two-tailed) (f,k).
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to the increase in adipose tissue mass in MC3RhDM/hDM mice. A
human study indicates that bone marrow transplant can supply
adipogenic progenitor cells to adipose tissue of the recipient35.
Other studies indicate that MSCs can be mobilized and secreted
into circulation36–38. These studies show the possibility that
adipocyte precursor cells may be supplied through the circulation
into adipose tissue. Furthermore, it has been reported that
adiponectin stimulates MSC mobilization and secretion into
circulation39. It is possible that increased adiponectin may
stimulate MSC mobilization and provide new sources of
adipocytes in adipose tissue of MC3RhDM/hDM mice. Adipocyte
differentiation was also increased in cells derived from the SVF of
MC3RhDM/hDM adipose tissue, showing the possibility that MSC
characteristics in adipose tissue may also be changed in a manner
similar to what we described for bone-derived MSCs.

The specific alterations in MC3R function induced by
MC3RhDM/hDM remain somewhat unclear. In vitro studies have

suggested there is decreased MC3R protein expression and
therefore partial inactivation of the MC3R after transient
transfections of C17AþG241A MC3R13,15. However, other
in vitro data suggest that C17A may actually reside in the
50-UTR of the major MC3R transcript17,18. It is conceivable that
C17AþG241A may change the balance of translation from the
first and second in-frame ATGs and potentially interfere with
MC3R function, for instance by altering its membrane
localization18. Regardless, if the only change caused by
MC3RhDM/hDM were decreased, but not absent, MC3R
signalling, one might expect a phenotype similar to
heterozygous MC3R knockout mice, which are not described as
having marked changes in body composition. MC3RhDM/hDM

does not appear to induce a functional knockout of MC3R;
despite some phenotypic similarities, total Mc3r deficiency and
MC3RhDM/hDM regulate tissue metabolism uniquely. For
example, unlike Mc3r knockout mice, MC3RhDM/hDM mice, do
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not exhibit hyperglycaemia in low fat-fed conditions or increased
inflammation in WAT in high-fat-fed conditions compared with
wild-type mice40. Further studies are necessary to understand
how the mutations studied may affect tissue-specific receptor
expression, receptor stability, receptor trafficking and
downstream signalling in both the central nervous system and
peripheral tissues in vivo, but these results suggest a hitherto
unrecognized role of MC3R signalling in adipocyte development.

Obesity is generally associated with an impaired metabolic
profile that includes changes in the hormones and substrates
associated with insulin resistance22,23. However, MC3RhDM/hDM

mice maintained serum lipid concentrations and insulin
sensitivity comparable to those of MC3RhWT/hWT mice despite
their increased fat mass and reduced fat-free mass. Our previous
human study reported that the much more obese subjects we
studied with MC3RhDM/hDM had serum glucose, triglycerides,
total cholesterol and low-density lipoprotein cholesterol levels
that were not significantly different from those of considerably
less obese MC3RhWT/hWT children, although leptin and insulin
were increased in proportion to fat mass among those with
MC3RhDM/hDM13. The mechanisms through which obese
MC3RhDM/hDM humans and mice avoid obesity-related
metabolic dysfunction remain to be further established.
The MSC-fate-driven expansion of metabolically healthy
adipose tissue due to greater differentiation of stem cells
into young adipocytes may contribute to this phenomenon,
because it has been shown that the recruitment of
adipogenic stem cells provides healthy adipose tissue expansion
that is not involved in inflammation and systemic insulin
resistance41.

Adiponectin is an adipocyte-derived hormone that can
improve insulin sensitivity and decrease inflammation42,43,
whose gene expression and blood concentrations are normally
inversely associated with body fat25. Surprisingly, despite the
greater fat mass of MC3RhDM/hDM mice, we found increased
serum adiponectin. We confirmed the same finding in a cohort of
humans with MC3RhDM/hDM and MC3RhWT/hWT who were
matched for demographic and anthropometric variables
including body mass index and adiposity. It has been proposed
that high adiponectin may serve as a ‘starvation’ signal in the
hypothalamus that increases energy intake and reduces energy
expenditure, thereby, counteracting leptin-mediated inhibition of
energy intake44. Consistent with this view, a prior study has
suggested that energy intake is a main regulator of circulating
adiponectin45. The present study found that MC3RhDM/hDM mice
maintained consistently higher adiponectin concentrations than
MC3RhWT/hWT in both fasted and fed conditions. We also found
that MC3RhDM/hDM mice exhibited higher leptin in circulation,
but it was related to their enlarged adipose tissue rather than to
the presence of primary leptin resistance. Thus, proximal leptin
signalling pathway defects do not appear to contribute to the
altered energy intake behaviour of MC3RhDM/hDM mice. It
remains unclear why MC3RhDM/hDM mice have increased
energy intake. One intriguing possibility is that the increased
adiponectin of MC3RhDM/hDM mice may be mechanistically
related to their greater food consumption and may play a
role in maintaining their metabolic profile. Consistent with this
hypothesis, when adiponectin is overexpressed in leptin-deficient
mice, improvements in metabolic profile are accompanied by a
remarkable expansion of adipose tissue46. Ob/ob mice that
modestly overexpress adiponectin have increased PPARg
mRNA expression in WAT along with notable increases in
WAT mass compared to ob/ob mice without adiponectin
overexpression. The ob/ob mice with greater adiponectin also
have ameliorated glucose and lipid profiles and reduced liver
triglyceride and adipose tissue inflammation compared with

ob/ob mice without adiponectin overexpression46. Similarly, we
found that MC3RhDM/hDM mice showed increased PPARg mRNA
and protein expression in WAT, as well as WAT immune cell
infiltration and inflammatory cytokine expression that
were not exaggerated compared with that of less adipose
MC3RhWT/hWT mice.

The role of MC3R in regulating inflammation is not fully
understood. However, some studies suggest that inhibiting MC3R
signalling may potentially be beneficial to reduce inflammation. A
clinical study found that during resistance training, which has
been shown to reduce chronic inflammation, decreased MC3R
expression in monocytes was significantly correlated with reduced
C-reactive proteins levels, independent of changes in adiposity47.
In addition, delayed macrophage infiltration is observed in WAT
of high-fat-fed Mc3r knockout mice compared with Mc4r
knockout mice40,48. Whether MC3R directly regulates immune
cell function needs to be further elucidated.

In conclusion, knock-in mice homozygous for human MC3R
C17AþG241A have notably increased fat mass and reduced
fat-free mass including decreased bone formation due to both
greater energy intake and altered energy partitioning caused by
MSC differentiation that is biased towards lipid-accumulating
cells. These data help explain prior findings in humans of greater
adiposity and energy intake among those homozygous for MC3R
C17AþG241A. In mice, and at least in some respects among
humans, the obese phenotype of MC3RhDM/hDM is associated
with an amelioration of the metabolic dysfunction usually
associated with obesity. Our study confirms the importance of
MC3R signalling in human energy homeostasis and metabolism
and suggests a unique mechanism underlying the early increase in
fat mass observed in MC3RhDM/hDM mice and children with these
MC3R mutations.

Methods
Generation of human MC3R knock-in mice. Mouse Mc3r was replaced by human
wild-type or human double-mutant (C17AþG241A) MC3R (Supplementary
Fig. 1). The constructs for generating the two knock-in mouse lines were prepared
by recombineering49. In brief, a targeting vector was constructed in the vector PKO
Scrambler 916 (Stratagene, La Jolla CA). This vector contains a 50 diphtheria toxin
A negative selection cassette as well as a 30 neomycin positive selection cassette that
is flanked by loxP sites. At the ‘homology 1’ site (just 30 to the negative selection
cassette), we placed 2.978-kb genomic DNA (gDNA), comprising 1.895 kb of
50 murine SV129 gDNA sequence upstream of the murine Mc3r start codon and
1.083 kb of the human MC3R sequence (either wild-type or C17AþG241A
MC3R). At the ‘homology 2’ site (30 to the positive selection cassette), we placed
3.192 kb of 30 murine SV129 genomic DNA sequence starting immediately after the
mouse Mc3r stop codon. C57BL/6 ES cells were electroporated with the targeting
vector and selected using G418. Positive clones were injected into C57BL/6
blastocysts to produce chimeras. Chimeric male mice were then mated with
C57BL/6 female mice, and germline transmission was assessed by PCR. Mice
with germline transmission of the knock-in alleles were then mated with
C57BL/6- Gt(ROSA)26Sortm16(Cre)Arte mice (Taconic, Hudson, NY) to delete
the neomycin cassette, followed by further crossing with 410 generations of
C57BL/6 nontransgenic (MC3Rþ /þ ) mice, thereby creating heterozygous human
MC3R double-mutant and wild-type mice in the C57BL/6 background.
Heterozygous mice were crossed to obtain humanized homozygous, heterozygous
and no construct mice. Genome scans (The Jackson laboratories, Bar Harbor, ME)
with 155 single-nucleotide polymorphisms confirmed 499.5% identity with
C57BL/6 for both knock-in mouse lines. All mice were maintained on a 12-h light,
12-h dark cycle and studied at 21–25 �C unless noted otherwise. Mice were fed
either a chow diet (4.7% fat as calories, diet 7017, Harlan Laboratories, Frederick
MD) or 45% high-fat diet (diet D12451, Research Diets, New Brunswick, NJ).
All animal studies were conducted in accord with accepted standards of
humane animal care under protocols approved by the NICHD or NIDDK Animal
Care and Use Committees. There were no randomized or blinded experiments
conducted.

Identification of human plasma samples for adiponectin determination.
A cohort of 13 MC3RhDM/hDM and 13 MC3RhWT/hWT children was identified from
among participants of prior clinical research studies (http://www.clinicaltrials.gov/
ct/show/NCT00001522 and http://www.clinicaltrials.gov/ct/show/NCT00001723)
for whom a fasting plasma sample and body composition analysis by DXA were
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available for analysis. The human groups were selected to have similar age, race,
sex, body mass index and adiposity (Supplementary Table 4). All children gave
written assent and parents gave written consent. The studies were approved by the
Institutional Review Board of the Eunice Kennedy Shriver National Institute of
Child Health and Human Development.

Mouse body composition, indirect calorimetry and locomotor activity.
Body composition was determined using an EchoMRI mouse scanner
(EchoMRI, Houston, TX) or using a PIXImus dual-energy X-ray absorptiometer
(Lunar, Madison, WI), as indicated. Energy expenditure was measured at 22
and 30 �C using a four-chamber Oxymax system (Columbus Instruments,
Columbus, OH) as previously described, with one mouse per chamber50. On
day 1 to day 2, mice were acclimated in the metabolic chamber at room
temperature. On day 3, metabolic parameters were measured at 22 �C for 24 h.
On day 4, the temperature in the chamber was raised to 30 �C in the morning,
and measurements were begun 1 h later. Locomotor activity was determined
at the same time that energy expenditure was measured using infrared beam
interruption50.

Micro-CT scanning. To determine bone microarchitecture, the femurs from
12-week-old female MC3RhWT/hWT and MC3RhDM/hDM mice were isolated and
scanned. Micro-CT was performed with the assistance of the NIH Mouse Imaging
Facility using a Bruker MicroCT SkyScan 1172 Micro X-ray CT scanner
(Micro Photonics, Inc. Allentown PA, USA, and Bruker MicroCT, Kontich,
Belgium) with the X-ray source (focal spot size, 4 mm, energy range 20–100 kV)
biased at 44 kV/267 mA and with a 0.5 mm Aluminium filter to reduce sample
induced beam hardening. The images were acquired with a pixel size of 4.97 mm.
Projections were acquired with an angular resolution of 0.5� through (180� or
360�) degrees rotation. Eight frames were averaged for each projection radiograph
with an exposure time of 2,600 ms per frame. The scan duration was B2 h.
Tomographic images were reconstructed filtered back projection using vendor-
supplied software based on the Feldkamp cone beam algorithm. The data were
calculated from the region of interest, which was defined as 0.503 mm offset from
the growth plate; 2.753 mm height for trabecular bone, and 5.485 mm offset from
growth plate; 0.418 mm height for cortical bone. The trabecular bone data include
BMD, bone-volume fraction (BV/TV), trabecular number, trabecular thickness and
trabecular separation. For cortical bone, data include total bone area (Tt.Ar),
cortical area (Ct.Ar) and cortical area fraction (Ct.Ar/Tt.Ar) and mean cortical
thickness.

Immunoblots and quantitative real-time PCR. For immunoblotting,
mechanically homogenized tissue samples were separated using 4–12% NuPAGE
gels (Invitrogen, Carlsbad, CA). Protein was blotted with antibodies for MC3R
(SC 8990, Santa Cruz Biotechnology, Dallas, TX), PPARg (SC 7273, Santa Cruz),
GAPDH (SC 25778, Santa Cruz), p-AMPK (2535, Cell Signaling Technology,
Danvers, MA) and adiponectin (MAB 1119, R&D Systems, Minneapolis, MN).
Primary antibodies were diluted to 1:1000 concentration. Protein levels were
semiquantified by image density scanning using Image J analysis (NIH, Bethesda,
MD). The values were adjusted for GAPDH expression. For measuring MC3R
protein expression, the hypothalamic N8 murine cell line, which does not express
MC3R was used as a negative control51.

Total RNA was prepared from gonadal fat and hypothalamus and homogenized
with Trizol (Invitrogen, Carlsbad, CA). Genomic DNA was removed using
RNAqueous kit (Ambion, Austin, TX) and complementary DNA was synthesized
using SuperScript III first-strand (Invitrogen). Quantitative real-time PCR was
performed using a 7900HT fast real-time PCR system (Applied Biosystems, Foster
City, CA). For MC3R, BMP2, BMP4, RUNX2 and collagen-a2 gene expression, the
Taqman gene expression system was used (HS 00252036 for Human MC3R, Mm
00434876 for mouse Mc3r, Mm 01340178 for BMP2, Mm 00432087 for BMP4, Mm
00501584 for RUNX2 and Mm 00483888 for collagen-a2, Life Technologies, Grand
Island, NY). For other gene expression studies, SYBR qPCR (4367659, Life
Technologies, Grand Island, NY) was performed using the primers listed in
Supplementary Table 3.

Flow cytometry. Mouse gonadal fat pads (B2 g) were minced and digested
for 50 min at 37 �C with collagenase D (1 mg ml� 1; Roche Applied Science,
Indianapolis, IN) in DMEM containing 10% fetal bovine serum (pH 7.4) and 1%
bovine serum albumin. After filtration of the digested fat through a nylon mesh
(100 mM), the filtrate was centrifuged at 1,000 r.p.m. for 5 min. The SVF was
obtained from the resulting pellet. SVF counts were determined with the Guava
Viacount reagent in a Guava EasyCyte Mini System (Millipore, Billerica, MA).
A gating strategy was used to enrich samples from MC3RhWT/hWT and
MC3RhDM/hDM mice for adipose tissue macrophages by selecting cells in the
gate 1 area (see Fig. 8e,g)52. The proportion of macrophages was detected using
mouse F4/80 antibody conjugated with fluorescein isothiocyanate (eBioscience, San
Diego, CA) and the proportion of neutrophils was detected using mouse Gr-1
conjugated with fluorescein isothiocyanate, and mouse CD11b conjugated with
phycoerythrin (eBioscience). Flow cytometry was conducted with a Guava

EasyCyte Mini System (Millipore) using Guava CytoSoft Version 4.2.1 (Millipore)
and FlowJo, Version 7 (TreeStar, Ashland, OR).

Analysis of circulating metabolites and hormones. Blood was collected from
mouse tail veins cut with a scalpel blade in the fed or overnight-fasted (from 1800
hours to 0800 hours) condition and serum samples were prepared by centrifuga-
tion (4 �C) for 1,000–2,000g for 10 min. Glucose was measured using a Glucometer
Elite (Bayer, Elkhart, IN). Other metabolites or hormones were measured using the
indicated kits; Insulin (SRI-13K, Linco Research, St Charles, MO), corticosterone
(ADI-900-097; Enzo Life science, Farmingdale, NY), IGF-1 (22-IGF-R21, ALPCO,
Salem, NH), Adiponectin (DRP 300 for human plasma samples obtained by
venipuncture and MRP300 for mouse serum, R&D SYSTEMS, Minneapolis, MN),
Leptin (MOB00, R&D SYSTEMS), triglycerides (337-B; Sigma), and non-esterified
fatty acids (13831175; Roche Molecular Biochemicals, Indianapolis, IN).

Triglyceride measurement. Small pieces of liver were taken (B0.3 g) for
triglyceride measurement. For determination of bone marrow triglyceride content,
both intact femurs were collected. The tips of the bones were cut to allow insertion
of a 20-G needle at one end. Using a syringe, 20 ml of PBS was injected to flush
bone marrow cells out of the marrow cavity and into a 50-ml conical tube. Cells
were centrifuged at 1,200 r.p.m. for 5 min at room temperature. Eighten volumes of
Hexane/2-propanol (3:2) solvent was added to each sample (liver and flushed bone
marrow) followed by homogenization with tissue grinder. The lipid-containing
layer was transferred to a new tube. After evaporation, the dried extract was
reconstituted with 2-propanol. Triglycerides were measured using L-type TG M
Microtiter Procedure (Wako Diagnostics, Richmond, VA, reagents 461-08992,
461-09092, 464-01601).

Pair feeding, leptin treatment and glucose and insulin-tolerance tests.
A 5-week high-fat pair-feeding study was performed by supplying the daily energy
intake (11.83 Kcal per day) of 7- to 8-week-old female high-fat-fed MC3RhWT/hWT

mice to 7- to 8-week-old female high-fat-fed MC3RhDM/hDM mice. To study leptin
sensitivity, mice were injected twice daily with mouse leptin (R&D Systems,
Minneapolis, MN, 1 mg g� 1 body weight, at 0730 hours and 1800 hours) for 3 days.
To examine glucose homeostasis, glucose (2 g kg� 1) or insulin (0.75 U kg� 1) was
injected intraperitoneally into fasted (from 1800 hours to 0800 hours for glucose)
or fed (for insulin) female mice. Glucose was measured with a glucometer
(Glucometer Elite, Bayer, Elkhart, IN).

Mesenchymal stem cell isolation from mouse compact bone. Mouse compact
bones including tibiae and femurs were used to isolate MSCs rather than bone
marrow tissues because hematopoietic cells still exist in bone-marrow-derived MSC
cultures even after the preparation has been passaged nine times53. To obtain
MSCs, 7- to 8-week-old mice were killed and soaked with 100 ml of 70% (vol/vol)
ethanol for 5 min. Tibiae and femurs were isolated from both legs. The muscles and
tendons were removed from tibiae and femurs using microdissecting scissors. Bone
marrow was flushed out of the bones and the bones were minced with heavy-duty
scissors (18054-11, Fine Science Tools, Foster City, CA) and digested with
collagenase D (Roche Diagnostics, Indianapolis, IN). The digested bone fragments
were cultured in 25-cm cell culture flasks with MSC basal media (Stem Cell
Technologies, Vancouver, Canada) supplemented with MSC stimulatory
supplement (Stem Cell Technologies, Vancouver, Canada) until it was passaged
four times. Passaged MSCs underwent evaluation of purity by flow cytometry using
CD29 (12-0291-83, ebioscience, San Diego, CA), CD106 (561613, ebioscience),
CD44 (15-0441-83, ebioscience) and CD105 (12-1051-81, ebioscience) to detect
pure MSCs and CD34 (primitive haematopoietic progenitor and endothelial cell
marker) and CD45 (pan-leukocyte marker) for negative MSC markers (11-0341-85
and 15-0451-81, ebioscience) (Supplementary Fig. 12). MSCs were differentiated
into osteoblasts with osteogenic media (CCM 009, R&D system, Minneapolis, MN)
for 14 days and into adipocytes with adipogenic media for 18 days (CCM 011, R&D
system, Minneapolis, MN). Differentiated osteoblasts and adipocytes were stained
with Alizarin Red S and Oil Red O respectively. Alizarin Red S and Oil Red O were
then extracted from the cells using an osteogenesis quantitation kit (ECM 815,
Millipore, Billerica, MA) and isopropanol respectively and quantified at 450 nm for
Alizarin Red S and 520 nm for Oil Red O.

Confocal microscopy. Isolated MSCs (6� 104cells per well) were plated in
Nunc Lab-Tek 1.5 Chambered 4 well Coverglass (Thermo Fisher Scientific Inc.,
Waltham, MA) and differentiated into adipocytes or osteoblasts as described
earlier. At differentiation day 0, day 5 and day 10, cells were incubated with
0.00001% (vol/vol) Nile Red (Life Technologies, Grand Island, NY) and 1 mg ml� 1

Hoechst 33342 (Life Technologies, Grand Island, NY) at 37 �C for 20 min to stain
lipid droplets and nuclei, respectively. Afterwards, the cells were rapidly washed
three times with prewarmed culture media. For osteoblast imaging, cells were fixed
by using 4% paraformaldehyde in PBS at 37 �C for 15 min. After washing three
times in PBS, cells were stained with Alizarin Red S as described earlier, or were
blocked with PBS containing 3% bovine serum albumin and 0.3% TritonX100
(PBS-T) for 1 h at room temperature. Then, cells were incubated with 1/50 diluted

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10522

12 NATURE COMMUNICATIONS | 7:10522 | DOI: 10.1038/ncomms10522 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


osteocalcin antibody (SC 30045, Santa Cruz Biotechnology, Dallas, TX) in PBS-T at
4 �C for overnight. After washing three times in PBS for 5 min, the cells were
treated with 1/500 diluted Alexa Fluor-conjugated secondary antibody (A 11060,
Life Technologies) at 37 �C for 1 h. Then, the cells were incubated with 1 mg ml� 1

DAPI (Life Technologies, Grand Island, NY) in PBS and were rinsed three times in
PBS for 5 min. Images were acquired using Leica TCS SP5 (Leica Microsystems
Inc., Buffalo Grove, IL). For imaging Nile Red and Hoechst 33342 (or DAPI),
561 nm white-light laser and 405-nm diode laser were used for excitation, and the
emission signals were collected between 635–700 and 480–500 nm, respectively.
For imaging Alizarin Red and endogenous osteocalcin, 546 nm white-light laser
were used for excitation, and the emission signals were collected between 580 and
700 nm. ImageJ54 was used to process and analyse images.

Primary preadipocyte culture and adipocyte differentiation. Epididymal
adipose tissue was collected from 4- to 5-month-old female mice. Tissue was
minced and incubated in DMEM with type I collagenase (30 mg per 4 g of tissue) at
37 �C for 1 h with gentle shaking. Samples were diluted 1:1 ratio into 10% FBS/
DMEM after digestion, followed by filtration with 100 and 40 mM cell strainers to
remove undigested tissues. Cells were centrifuged at 600 g for 7 min and the upper
lipid layer and supernatant were discarded. Pellets were resuspended in 10 ml of
10% FBS/DMEM media, and 3–4� 105 cells were plated into collagen pre-coated
six-well plates. Media was changed on the next day and every 3 days until cells were
differentiated into adipocytes. After 2 weeks, a special adipogenic medium
(CCM 011, R&D system, Minneapolis, MN) was added for 2 weeks until Oil Red O
staining.

Statistical analysis. Sample sizes were based on prior animal studies suggesting
meaningful results from 5–15 animals per group. Data are expressed as
mean±s.e.m. unless otherwise indicated. GraphPad Prism 5.0 software (GraphPad
Software, San Diego, CA) was used for Student’s t-tests (two-tailed) and two-way
analysis of variance followed by Bonferroni post-tests. IBM SPSS 18 software
(Armonk, New York) was used for performing analysis of covariance for human
adiponectin adjusted for age, sex and percentage fat mass and for adjusted energy
intake and expenditure models for mice. Differences were considered significant at
Po0.05. Data met assumptions of the statistical tests including requirements for
similar variance across groups. Data are represented as mean±s.e.m. unless
otherwise indicated.
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