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Abstract: The etiology and pathophysiology of type 1 diabetes remain largely elusive with no
established concepts for a causal therapy. Efforts to clarify genetic susceptibility and screening
for environmental factors have identified the vitamin D system as a contributory pathway that is
potentially correctable. This review aims at compiling all genetic studies addressing the vitamin D
system in type 1 diabetes. Herein, association studies with case control cohorts are presented as well
as family investigations with transmission tests, meta-analyses and intervention trials. Additionally,
rare examples of inborn errors of vitamin D metabolism manifesting with type 1 diabetes and their
immune status are discussed. We find a majority of association studies confirming a predisposing role
for vitamin D receptor (VDR) polymorphisms and those of the vitamin D metabolism, particularly
the CYP27B1 gene encoding the main enzyme for vitamin D activation. Associations, however, are
tenuous in relation to the ethnic background of the studied populations. Intervention trials identify
the specific requirements of adequate vitamin D doses to achieve vitamin D sufficiency. Preliminary
evidence suggests that doses may need to be individualized in order to achieve target effects due to
pharmacogenomic variation.
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1. Introduction

The growing incidence of type 1 diabetes (T1D) is understood to result from an interplay of several
factors including environment, nutrition and genetics. One of the environmental and nutritional factors
may be a vitamin D deficiency that is highly prevalent and increases the risk for T1D as well as other
autoimmune disorders [1,2]. In vitro studies could show a protective effect of active vitamin D
for cytokine treated human pancreatic islets [3]. This field of research is of continuing interest with
a steady increase in publications over recent years. Due to the lack of a causal therapy in T1D, vitamin D
research intended to pave the way for novel immune modulatory concepts both for prevention as well
as therapy.

Vitamin D is structurally related to the steroid hormones and its mechanism of action also involves
a nuclear receptor similar to thyroid, gonadal and adrenal hormones. The physiological effects extend
from the classical bone and calcium/phosphate regulation to muscle, vasculature, immunity, skin, gut
and brain which explains that the vitamin D receptor (VDR) is expressed on a vast number of cells
which respond to vitamin D. The immune effects of vitamin D on dendritic cells, macrophages and T
lymphocytes have attracted major attention since they hold promise for novel therapies [4,5].

2. Vitamin D Pathways

There are two major forms of vitamin D: vitamin D2 and vitamin D3. While D2 (ergocalciferol) is
of exogenous origin via food intake, vitamin D3 (cholecalciferol) comes primarily from skin production
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through photochemical reaction of precursors and thereby reflects endogenous synthesis. This is
initiated upon cutaneous exposure to ultraviolet (UV) B radiation, resulting in the conversion
of 7-dehydrocholesterol (7DHC, present in the skin) to previtamin D3 followed by the thermal
isomerization to vitamin D3 [6]. The subsequent hydroxylation of vitamin D3 occurs in the liver
mediated by the 25-hydroxylase (CYP2R1) which forms 25-hydroxyvitamin D3 (25(OH)D3, calcidiol),
the major circulating human vitamin D metabolite. A further hydroxylation of 25(OH)D3 by
1-α-hydrolase (CYP27B1) in the kidney—or in extrarenal tissues such as macrophages—leads to
the biologic active 1,25-dihydroxyvitamin D3 (1,25(OH)2D3, calcitriol) [7]. The 1,25(OH)2D3 binds
with high-affinity to the VDR, which heterodimerises with the retinoid X receptor alpha (RXRα).
The VDR-RXRα complex translocates into the nucleus and binds to a vitamin D response elements
(VDRE) in the regulatory element region of the vitamin D target genes. Vitamin D exerts its
genomic effects through the recruitment of transcriptional cofactors to this region regulating a wide
variety of biological processes including calcium and phosphate absorption, cell proliferation and
differentiation [8]. Approximately 2700 VDR-binding sites exist in the genome [9], explaining the
wide-ranging physiologic actions of 1,25(OH)2D3. Enzymes regulate the abundance of metabolites:
24-hydroxylase (CYP24A1) limits the excess concentrations of both metabolites, [25(OH)D3 and
1,25(OH)2D3] by metabolic degradation. In the circulation, most vitamin D metabolites are transported
to various target organs (tissues/cells) bound to a carrier protein, the vitamin D binding protein (DBP).
Megalin and cubilin, two multiligand endocytic receptors, are responsible for the internalization of
25(OH)D3 complexed with the DBP into cells [10] (Figure 1).
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Figure 1. Vitamin D pathway: The vitamin D synthesis goes through a series of hydroxylation steps
in which the 25-hydroxylase (CYP2R1) and 1-α-hydroxylase (CYP27B1) are involved. The resulting
25(OH)D3 and 1,25(OH)2D3 are transported into the circulation bound to the vitamin D binding
protein (DBP). The 25(OH)D3 enters into the cells via the megalin/cubilin complex. Intracellularly,
1,25(OH)2D3 binds to the vitamin D receptor (VDR) and exerts its genomic effects. In this manner,
vitamin D can (1) suppress PTH synthesis in parathyroid glands; (2) increase bone mineralization;
(3) increase absorption of calcium and phosphate in the intestine; (4) induce the differentiation of
immune cells; and (5) improve the haematopoiesis of red blood cells. Finally, the degradation of
vitamin D occurs via 24-hydroxylase (CYP24A1).
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The coexpression of the vitamin D system genes (e.g., VDR and CYP27B1) in multiple cell
types including lymphocytes, antigen-presenting cells and pancreatic islet cells [11–13] highlights the
importance of the vitamin D pathway in T1D.

The 25(OH)D3 concentration as a marker of the vitamin D status is influenced by environmental
and genetic factors. Both sunlight exposure and variants in vitamin D pathway genes affect circulating
25(OH)D3 levels. Low 25(OH)D3 levels as well as specific vitamin D system gene polymorphisms
enhance T1D susceptibility. Since vitamin D biosynthesis is regulated by genes, their polymorphisms
(e.g., VDR, CYP2R1, CYP27B1, CYP24A1, DBP and cubilin) may alter the bioavailability as well as
target effects of vitamin D metabolites.

2.1. Vitamin D Receptor Gene

The VDR belongs to the nuclear receptor family of transcription factors composed of three
domains: a modulating N-terminal dual zinc finger DNA-binding domain, a C-terminal ligand-binding
domain and an unstructured region that links the two functional domains [14]. The human VDR
gene spans over 100 kilobases (kb) of genomic DNA, located at chromosome 12q13.11, contains eight
protein-coding exons 2–9, six untranslated exons 1a–1f, introns and 3′ UTR 1 exons [15]. Exon 1
encodes the 5′ untranslated region; exons 2 and 3 encode the DNA-binding domain, important for the
interaction with the VDRE in target genes. The exons 5–9 encode the ligand-binding region responsible
for 1,25(OH)2D3 binding.

Several single nucleotide polymorphisms (=SNPs; more than 5000) have been described for the
human VDR gene (https://www.ncbi.nlm.nih.gov/snp/) and four of them have been intensively
studied in relation to T1D susceptibility (Table 1).

These SNPs were identified by their restriction endonuclease cleavage sites comprising rs10735810,
also known as rs2228570 (FokI) T → C change in exon 2, rs1544410 G → A change (BsmI, G = b),
rs7975232 T→ G change (ApaI, G = a), both in intron 8, and rs731236 T→ C change in exon 9 (TaqI,
T = T) [16].

The rs10735810 (FokI) SNP consists of a T to C substitution eliminating the first start codon (ATG)
by generation of an alternative start site (ACG) leading to a differently sized protein. The shorter form
(424 aa; C allele or F allele, methionine at the fourth position) is considered to be more active than the
long form (427 aa; T allele or f allele, methionine at first position) [17,18]. The SNPs rs1544410 (BsmI),
rs7975232 (ApaI) and rs731236 (TaqI) are located at the 3′ untranslated region (UTR) of the gene and are
without consequences for the VDR protein structure, however, they are strongly linked to a poly(A)
microsatellite repeat in the 3′ UTR. The poly(A) sequence in the 3′ UTR region of genes regulates gene
expression, especially through the modulation of mRNA stability.

To date, there are 65 publications [19–83] on the association of VDR gene SNPs in T1D:
these include case-control datasets [20,22,23,25–36,39–45,47–50,52,53,55–66,68–70,72–74], family
studies [19,21,24,31,32,36,38,46,51,54,57,67,71] and meta-analyses [75–83] derived from several
populations of different genetic background. A total of 39 publications support an association
between VDR SNPs rs7975232 (ApaI), rs1544410 (BsmI), rs731236 (TaqI) and rs10735810 (FokI)
alone or in combination with each other, (rs757343 Tru9I, rs1540339 and rs4760648) and
T1D [19,21–24,26–30,34–38,40–44,46,48–50,52,53,55,56,59–63,65,68–71,73] (Table 2) in comparison with
16 studies that refute it [20,25,31,32,39,45,47,51,54,57,58,64,66,67,72,74].

https://www.ncbi.nlm.nih.gov/snp/


Genes 2017, 8, 125 4 of 19

Table 1. Type 1 diabetes (T1D) and vitamin D pathway associated single nucleotide polymorphisms (SNPs).

Acronym Full Name Protein Function Chr Position SNP locus Gene Function Amino Acid
Change

VDR vitamin D receptor
transcription factor

transcriptional control of
vitamin D target genes

12 12q13.11

rs7975232 intron 8 no
rs10735810 exon 2 missense Met→ Thr
rs1544410 intron 8 no
rs731236 exon 9 synonymous Ile→ Ile

CYP2R1
vitamin D

25-hydroxylase
transforming photo-synthesized and

dietary vitamin D into 25(OH)D3
11 11p15.2 rs10741657 5′ near gene 2 kb mRNA transcript

rs12794714 exon 1 synonymous Ser→ Ser

CYP27B1
25(OH)D

1-α-hydroxylase conversion of 25(OH)D3 to 1,25(OH)2D3 12 12q14.1 rs10877012 5′ near gene promoter (−1260)
rs4646536 intron 6 (+2838) no

DBP or GC
vitamin D binding protein or

group-specific component
transport of vitamin D metabolites 4 4q11.13 rs4588 exon 11 missense Thr→ Lys

rs7041 missense Asp→ Glu

CUBN cubilin
endocytotic receptors
capable to internalize

vitamin D into the cells
10 10p12.33-p13 rs3740165 synonymous Pro→ Pro

rs7975232 (=ApaI), rs10735810 (=FokI), rs1544410 (=BsmI) and rs731236 (=TaqI).

Table 2. T1D and summary of association studies for VDR SNPs. Diabetic retinopathy (DR); diabetic nephropathy (DN); Staphylococcus aureus carriage (SAC);
antibodies (Abs).

VDR Gene Susceptibility to T1D SNPs

Reference Author Year Population Total Case Control Comparison Groups

1 [19] McDermott et al. 1997 Indian 93 rs1544410, bt, bAT T1D families

2 [21] Pani et al. 2000 German 152 At, Bt, Bat T1D families

3 [22] Chang et al. 2000 Chinese (Taiwan) 405 157 248 rs7975232, rs1544410 T1D/control

4 [23] Ban et al. 2001 Japanese 360 110 250 rs10735810 T1D/control

5 [24] Guja et al. 2002 Romanian 204 rs10735810, rs731236 T1D families

6 [26] Gyorffy et al. 2002 Hungarian 210 107 103 bau T1D/control

7 [27] Fassbender et al. 2002 German 132 75 57 rs731236 T1D/control

8 [28] Taverna et al. 2002 French 200 101 99 rs731236 T1D with/without DR

9 [29] Skrabic et al. 2003 Croatian (Dalmatian) 266 134 132 BBAAtt T1D/control

10 [30] Motohashi et al. 2003 Japanese 425 203 222 rs1544410 T1D/control

11 [34] Audi et al. 2004
Spanish (Barcelona) 429 155 274 rs1544410, rs10735810, bbFF T1D/control

Spanish (Navarre) 205 89 116 rs1544410, rs10735810, bbff T1D/control

12 [35] Zemunik et al. 2005 Croatian (Dalmatian) 266 134 132 rs10735810, FbATU T1D/control
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Table 2. Cont.

VDR Gene Susceptibility to T1D SNPs

Reference Author Year Population Total Case Control Comparison Groups

13 [36] San Pedro et al. 2005 Spanish (Basque)
159 71 88

fBAt
T1D/control

136 119 T1D families

14 [37] Taverna et al. 2005 French 254 126 128 rs10735810 T1D with/without DR

15 [38] Ramos-Lopez et al. 2006 German 254 rs9729, rs731236, rs7975232, rs757343 T1D families

16 [40] Xiao et al. 2006 Chinese 54 82 rs1544410 T1D/control

17 [41] Capoluongo et al. 2006 Italian 246 246 rs10735810 T1D/control

18 [42] Mimbacas et al. 2007 Uruguayan 45 rs10735810 T1D families

19 [43] Garcia et al. 2007 Chilean 419 216 203 BAT T1D/control

20 [44] Shimada et al. 2008 Japanese 1373 774 599 rs1544410 T1D/control

21 [46] Boraska et al. 2008 Croatian 160 rs757343, rs757343-rs1544410 T1D families

22 [48] Mory et al. 2009 Brazilian 383 189 194 rs1544410 T1D/control

23 [49] Panierakis et al. 2009 Greece 93 29 64 rs7975232, rs731236 T1D with/without SAC

24 [50] Panierakis et al. 2009 Greece 196 100 96 rs7975232, rs731236, rs1544410, rs10735810 T1D/control

25 [52] Israni et al. 2009 Indian 424 233 191 FBAt, fBAT T1D/control

26 [53] Bucan et al. 2009 Croatian 120 66 54 rs1544410 T1D with/without DR

27 [55] Kocabas et al. 2010 Turkish 176 90 86 rs10735810 T1D/control

28 [56] Martin et al. 2010 UK, Irish 1329 655 674 AGT T1D with/without DN

29 [59] Sahin et al. 2012 Turkish 165 85 80 rs10735810 T1D/control

30 [60] Mohammadnejad et al. 2012 Iranian 187 87 100 rs731236, tAbf, tabF, tAbF T1D/control

31 [61] Bonakdaran et al. 2012 Iranian 114 69 45 rs7975232, rs1544410, rs10735810 T1D/control

32 [62] Vedralová et al. 2012 Czech
172 54 118 rs10735810 T1D/control

250 132 118 rs10735810, BBFFAATt DN/control

33 [63] Frederiksen et al. 2013 North American 38 84 rs1544410 T1D+IA/IA

34 [65] De Azevedo et al. 2013 Brazilian 421 204 217 rs1540339, rs4760648 T1D/control

35 [68] Abd-Allah et al. 2014 Egyptian 240 120 120 rs1544410, rs10735810 T1D/control

36 [69] Kamel et al. 2014 Egyptian 102 74 28 rs7975232, rs731236 T1D/control

37 [70] Cheon et al. 2015 Korean 194 81 113 rs731236, rs1544410 T1D/control

38 [71] Miettinen et al. 2015 Finnish 2854 rs731236, rs1544410 T1D families

39 [73] Mory et al. 2016 Brazilian 180 rs10735810 T1D with/without Abs

rs7975232 (=ApaI), rs10735810 (=FokI), rs1544410 (=BsmI), rs731236 (=TaqI) and rs757343 (=Tru9I).
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The first study from South India examined the distribution of the VDR SNPs (rs7975232 ApaI,
rs731236 TaqI and rs1544410 BsmI). It found a preferential transmission of the VDR “b” allele of the
rs1544410 (BsmI) site and haplotypes “bT”, “bAT” to affected offspring [19]. In the same line, Abd-Allah
et al. (2014) [68] observed in children from Egypt a significantly different rs1544410 (BsmI) genotype
frequency between T1D and control subjects with the “b” allele the “bb” genotype conferring T1D
susceptibility. Moreover, significantly more heterozygote carriers of “Aa” and “Bb” were observed
in T1D patients, confirming the risk of the b allele as reported by Bonakdaran et al. (2012) [61] in
an Iranian population.

In contrast, Pani et al. (2000) [21] demonstrated other VDR haplotypes “At”, “Bt” and “BAt” to
confer T1D susceptibility in a German family study. Likewise, the same allele constellation “BBAAtt”
was found in a cohort from South Croatia as reported by Skrabic et al. 2003 [29]. Furthermore, the
association of T1D with the B allele—as risk enhancing—was confirmed in two case-control Chinese
studies (Taiwanese and Han population of Beijing) [22,40], two Japanese studies [30,44] and one
genetically heterogeneous Brazilian study [48]. Nevertheless, also the “AA” genotype in Taiwanese
and a “t” allele in Iranian populations have been suggested as risk conferring [22,60]. Accordingly,
Ramos-Lopez et al. (2006) demonstrated a higher frequency of alleles “A” and “t” within the haplotype
composed of the SNPs rs9729, rs731236 (TaqI), rs7975232 (ApaI) and rs757343 (Tru9I) in another family
study [38].

Recently, Miettinen et al. (2015) analyzed the genotype distributions of 13 VDR SNPs in a Finnish
population consisting of families whose offspring had T1D (cases) and families with healthy offspring
(controls) [71] where all VDR SNPs were associated with the 25(OH)D3 levels. Two VDR SNPs
(rs1544410 BsmI and rs731236 TaqI) differed in the genotype distributions: “Bb” and “Tt” genotypes
were more prevalent (corresponding to “B” and “t” allele) than in the control mothers. The investigators
suggest that maternal VDR SNPs enhance a child’s risk for T1D independent of the child’s genotype.
The maternal vitamin D status and VDR genotype may hereby regulate in utero development and
have an influence on the later T1D risk in conjunction with environmental factors.

In addition, in Chilean T1D patients where the population is characterized by a heterogeneous
admixture of people from European and South American Indian descent, a further haplotype
“BAT” [43] conferred susceptibility.

Fassbender et al. confirmed the study from Mcdermott et al. (1997) with “T” as risk allele for the
development of T1D [19] in a small German cohort [27], a finding later corroborated by Garcia et al.
(2007) [43].

Notably, the different haplotypes associated with T1D as reported by Mcdermott et al. (1997) [19]
(bAT), Pani et al. (2000) [21] (BAt) and Garcia et al. (2007) [43] (BAT) indicate a variable genetic
predisposition to T1D depending on the ethnic origin. This was also shown by Audi et al. (2004) [34] by
analyzing the SNP in the start codon of exon 2 (rs10735810 FokI) additional to the rs1544410 (BsmI) SNP
in two Spanish populations with different genetic backgrounds (Barcelona and Navarra). A combined
genotype showed that the homozygous “bbFF” genotype was more prevalent in T1D patients from
Barcelona whereas the homozygous “BBFF” genotype was more frequent in Navarra. Another study
conducted by San Pedro et al. (2005) included families of Basque origin where a risk-associated
four-locus haplotype (fBAt) was identified [36] confirming the same profile (“BAt”) as described by
Pani et al. (2000) [21]. Furthermore, haplotype analysis performed in North India showed that the
haplotypes “FBAt” and “fBAT” were significantly more frequent in T1D patients [52]. Moreover, those
haplotypes differed in comparison to those from South India (bAT) but were found in concordance
with the “BAT” haplotype present in Chile [19,43]. In an Iranian population, the haplotypes “tAbf”,
“tabF” and “tAbF” conferred an increased risk for T1D [60].

The genotype and allele distribution of rs10735810 (FokI) VDR SNP differs between patients and
controls in many studies, however, the risk allele (F or f) also does so among the studies. The “FF”
genotype and/or “F” allele predispose to T1D in Japanese, Rumanian, Uruguayan, Turkish and Iranian
populations [23,24,42,55,59,61]. The “F” allele and the combination of vitamin D gene “BBFFAATt”
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are even considered to enhance the risk for diabetic complications, particularly diabetic nephropathy
(DN) [62]. In contrast, studies from Egypt, Italy and Croatia [35,41,68] observed an association
with the “ff” genotype and T1D risk. Mory et al. (2016) [73] found homozygous “ff” to be more
frequent in T1D subjects with thyroid antibodies (Abs) and thyroid dysfunction in Brazil. T1D patients
carrying the rs10735810 (FokI) SNP with thyroid peroxidase Abs showed an 18-fold risk to develop
thyroid dysfunction.

Additionally, the rarely analyzed SNP rs757343 (Tru9I) showed an overtransmission of the allele
G (corresponding to “U”) from parents to affected children as shown by Ramos-Lopez et al. 2006 and
Boraska et al. 2008 [38,46]. Furthermore, in the study from Gyorffy et al. (2002) the haplotype “bau”
was found more frequently in patients than in controls [26].

Furthermore, a variety of VDR allele combinations have been described as T1D
protective [21,24,38,48–50,63,69,70].

Interestingly, one of the lowest T1D incidence rates in Europe was described for the Greek island
Crete: here, two haplotypes of the four VDR SNPs confer the highest risk (aBFT and aBFt) for T1D [50].
This underscores that an interplay of genetic and environmental factors modulates T1D susceptibility.

2.2. Vitamin D Receptor and Meta-Analysis, Diabetes Complications and Monogenetic Vitamin D Disorders

On the basis of the diverging results of VDR SNPs and T1D susceptibility, nine meta-analyses
have been performed [75–83]. Eight out of nine meta-analyses on the VDR gene and T1D published
between 2006 and 2017 agree on the conclusion that rs10735810 (FokI) and/or rs1544410 (BsmI) SNPs
play an important role in the development of T1D [76–83] (Table 3).
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Table 3. Meta-analysis of VDR SNPs and T1D and diabetic nephropathy (DN).

VDR Gene and Meta-Analysis Susceptibility to T1D SNPs

Reference Author Year Population Total Case Control Comparison Groups

1 [76]
Ponsonby et al.

2008 Asian, European, Latinos 18,257 2549 15,708 rs1544410, rs10735810 T1D/control16 studies

2 [77]
Zhang et al.

2012 Asian, European, Latinos 11,591 5335 6256 rs1544410 T1D/control26 studies

3 [78]
Wang et al.

2012 East Asian 10,352 3854 6498 rs1544410 T1D/control25 studies

4 [79]
Wang et al.

2014 East Asian, West Asian 3959 1973 1986 rs1544410, rs10735810 T1D/control13 studies

5 [81]
Tizaoui et al.

2014 Asian, European, Latinos 8753 3332 5421 BAT, bAT T1D/control26 studies

6 [82]
Liu et al.

2014
French, Polish, Croatian, Irish,

Czech Iranian, Chinese 2734 1394 1340 rs10735810 diabetic + DN/control8 studies

7 [83]
Sahin et al.

2017 Asian, European, Latinos 2070 1053 1017 rs1544410, rs731236 T1D/control8 studies

The meta-analysis published by Qin et al. [80] (23 studies, Asian, Latino, African and Caucasian) is not included in the Table because only an abstract was available. “B” allele of the
rs154410 (=BsmI) SNP was associated with an increased risk for the development of T1D especially in Asians. rs10735810 (=FokI) and rs731236 (=TaqI).
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Ponsonby et al. (2008) [76] suggest that the association between the VDR SNPs and T1D should
be seen as depending on the environment and not being responsible for T1D by itself. Therefore, the
authors conducted a meta-analysis of 16 case-controlled studies from 19 regions and four additionally
analyzed SNPs (rs7975232 ApaI, rs731236 TaqI, rs1544410 BsmI, and rs10735810 FokI) under the aspect
of ambient winter UV radiation. The study centres were located across a range of latitudes from 33◦ S
to 65◦ N corresponding to a winter UV radiation range from 1.0 mW/m2 to 133.8 mW/m2. The authors
observed that the allele “B” of rs1544410 (BsmI) and the allele “F” of rs10735810 (FokI) were more
likely risk factors for T1D under high-winter-UV radiation exposures. Four years later, Zhang et al.
(2012) [77] published a meta-analysis based upon 23 case-control studies covering Asians, European
and Latino populations and evaluating the ethnic-specific effects for an association with T1D. The main
inclusion criteria for this meta-analysis were publications in English or Chinese; available data for
genotype distributions in cases and controls; the genotype distribution of the tested controls was in
Hardy–Weinberg equilibrium (HWE). Hereby, the “BB” genotype of the rs1544410 (BsmI) SNP was
associated with an increased risk for the development of T1D, especially in Asians. This finding was
also confirmed in the meta-analysis from Wang et al. 2012 [78], where 3854 cases and 6498 controls
were included and an increased T1D risk for the “B” allele a particularly in East Asian population
was found. In another meta-analysis, Wang et al. (2014) [79] selected 13 case-control studies (1973
T1D and 1986 controls) from the Asian region and evaluated two VDR SNPs (rs1544410 BsmI and
rs10735810 FokI). Interestingly, the regional stratification analysis indicates that the rs1544410 (BsmI)
“B” allele conferred an enhanced T1D risk in East Asia but the rs10735810 (FokI) allele “F” in the West
Asian population. An additional meta-analysis covering the four VDR SNPs in Asian, European and
Latino populations concluded that “BAT” was a significant T1D risk factor [81]. Furthermore, a recent
meta-analysis on the basis of nine studies comprising 1053 children with T1D (Asian, European and
Latino origin) confirmed the “BB”genotype of rs1544410 (BsmI) as risk marker for T1D and also for the
“tt” genotype of the rs731236 (TaqI) SNP [83].

Liu et al. (2014) focused on the diabetes complications (diabetic nephropathy (DN) and diabetic
retinopathy (DR)) and studied four variants of the VDR [82]. Hereby, the rs10735810 (FokI) SNP was
associated with nephropathy risk in Caucasian diabetes patients, represented in a dominant model.

Apart from association studies, there are also informative case reports on genetic vitamin D
disorders in T1D. One case report describes the development of T1D in a child with pre-existing
hereditary vitamin D-resistent rickets (VDRR) due to a compound heterozygous mutation of the
VDR (L263R and R391S) that led to dissociated responses of the CYP24A1 and RELB promoters
to 1,25-Dihydroxyvitamin D3 action [84]. Another case of VDRR was reported from India, where
a 10-year-old girl had developed T1D [85]. An additional case report with an inborn error of
vitamin D metabolism was published recently. A new missense mutation of the PHEX gene has
been described in a T1D patient from a Han Chinese pedigree over four generations that caused
X-linked hypophosphatemic rickets manifesting with renal phosphate wasting, a bone mineralisation
and vitamin D metabolism defect [86].

These experiments of nature underline that a vitamin D defect syndrome may have the potential
for additional disease such as β-cell autoimmunity resulting in T1D. A systematic investigation of the
acquired and the innate immune system in fifteen patients with VDRR showed some impairments
of the innate immunity, particularly lower cathelicidin production and a proinflammatory cytokine
profile of lymphocytes [87]. This illustrates the enormous plasticity of the immune system adapting to
a genetic defect and that only few patients with hereditary vitamin D defect syndromes will develop
an autoimmune disease such as T1D.

2.3. Other Vitamin D Metabolism Components

Numerous studies focused on VDR SNPs but only few on other genes of the vitamin D
pathway [56,57,67,74,88–99]. Table 4 presents a summary of association studies for SNPs within
the genes CYP2R1 [57,88], CYP27B1 [57,90,91,93], DBP [96,97] as well as cubilin [99] and T1D.
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Table 4. T1D and a summary of association studies for SNPs within the genes CYP2R1, CYP27B1, DBP and cubilin.

Other Vitamin D System Components Susceptibility to T1D SNPs

Author Year Population Total Case Control Comparison Groups

CYP2R1 gene

Ramos-Lopez et al. [88] 2007 German
203 rs10741657 T1D families
578 284 294 rs10741657 T1D/control

Cooper et al. [57] 2011 British
1933 rs10741657, rs12794714 T1D families

18,955 8517 10,438 rs10741657, rs12794714 T1D/control

CYP27B1 gene

Ramos-Lopez et al. [90] 2004 German 572 252 320 rs10877012 T1D/control

Bailey et al. [91] 2007
Great Britain, Northern Ireland, 2774 rs10877012, rs4646536 T1D families

Finland, USA, Norway, Romania
Great Britain 16,612 7854 8758 rs10877012, rs4646536 T1D/control

Cooper et al. [57] 2011 British
1933 rs10877012 T1D families

18,955 8517 10,438 rs10877012 T1D/control

Hussei et al. [93] 2012 Egyptian 240 120 120 rs10877012 T1D/control

DBP (GC) gene

Ongagna et al. [96] 2001
Alsatian and North African origin

95 43 52 rs7041 T1D/control

Ongagna et al. [97] 2005 178 110 68 rs7041 T1D/control

Cubilin gene

Ramos-Lopez et al. [99] 2010 German 400 200 200 rs3740165 T1D/control
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The vitamin D metabolising enzymes are all members of the cytochrome P450 superfamily of
enzymes. These enzymes reside in mitochondria and contribute to the vitamin D synthesis (CYP2R1
and CYP27B1) and vitamin D degradation (CYP24A1). CYP27A1, CYP2D6, CYP2R1, CYP2C11,
CYP3A4, CYP2D25 and CYP2J3 all belong to the group of hepatic cytochrome P450 enzymes with
25-hydroxylase activity. The key enzyme for the synthesis of 25(OH)D3 is CYP2R1 [100]. A mutation
in exon 2 of the CYP2R1 gene can abolish the 25-hydroxylase activity resulting in severe vitamin D
deficiency and a rare form of rickets [101].

The CYP2R1 gene is located on chromosome 11p15.2 with a length of 15 kb and contains five
exons separated by four introns. Two SNPs (rs10741657 and rs12794714) were investigated in T1D [102].
The SNP rs10741657 (G/C) maps to a 2 kb mRNA transcript and rs12794714 (C→ T, Ser→ Ser) is
a synonymous SNP in exon 2. Our investigations revealed that the allele G of the CYP2R1 rs10741657
SNP is more often transmitted to T1D affected offspring. Additionally, the case-control analysis shows
a higher frequency of the GG genotype in T1D patients. The latter correlated with a lower 25(OH)D3

concentration [Ramos-Lopez et al. 2007] [88]. The subsequent analysis of a large number of samples
from case/control (n = 8517/10,438) and T1D families (n = 1933) in the British population revealed
an association between the two SNPs (rs10741657 and rs12794714) with T1D in a combined dataset [57].

The next enzyme in the vitamin D cascade, CYP27B1, is coded by a gene situated on chromosome
12p13.1-q13.3. The gene contains nine exons and eight introns and extends over 4.8 kb. Mutations
in the CYP27B1 gene can lead to an inactive protein unable to bind 25(OH)D3 as found in vitamin
D dependent rickets [103]. Two SNPs within the CYP27B1 were investigated in relation to T1D,
rs10877012 SNP (−1260 C/A) located in the promoter region and the rs4646536 SNP (+2838 C/T) in
intron 6.

We originally observed that allele “C” and genotype “CC” were more frequent in patients with
T1D than in controls [90]. Later studies, one from Egypt with 240 subjects and another one with a large
collective (population different countries: British, Finland, USA, Norway, Romania) confirmed these
findings [91,93]. Additionally, Bailey et al. (2007) showed also an association of T1D with the rs4646536
SNP. Cooper et al. (2011) confirmed the protective effect of the allele “A” of the rs10877012 SNP [57,91].

The last enzyme in the vitamin D cascade, CYP24A1 is capable of hydroxylating both metabolites
(25(OH)D3, and 1,25(OH)2D3). However, the preferred substrate is 1,25(OH)2D3. CYP24A1 catabolizes
1,25(OH)2D3 in a complex of steps resulting in the production of water-soluble calcitroic acid [104].
Major alterations in the enzymatic activity of CYP24A1 can be due to mutations of the CYP24A1 gene
located on chromosome 20p13 (20.5 kb, 12 exons) that cause idiopathic infantile hypercalcemia [105].
The CYP24A1 gene was investigated in relation to T1D susceptibility: sixteen tag SNPs for CYP24A1
that were analyzed by Bailey et al. (2007) [91] as well as two further SNPs (rs6013897 and rs2296241)
did not show any association with T1D [57,89]. This gene is of potential clinical relevance because an
undiagnosed CYP24A1 mutation may cause hypercalcemia also in adults if these are exposed to high
vitamin D dosages.

A further essential component of the vitamin D system is the DBP, also called group-specific
component (GC) that belongs to the proteins of the albumin family and transports vitamin D in the
circulation. DBP is a single chain glycoprotein with a molecular weight of 52 kDa, predominantly
synthesized in the liver. The DBP gene maps to chromosome 4q11-q13 and contains 13 exons and
12 introns and extends over 42.5 kb. Among the many characterized DBP variants, two known SNPs in
exon 11 were investigated for T1D susceptibility (rs7041 and rs4588). While the rs7041 SNP results in
a T to G substitution (Aps to Glu in codon 416), rs4588 SNP leads to a C to G substitution (threonine to
lysine in codon 420). The majority of the studies including the SNPs rs4588 and rs7041 and rs2282679
SNP failed to prove an association with T1D [57,67,89,94,95,98]. Two studies, however, originating
from the same laboratory showed an association with rs7041 SNP and T1D [96,97]. Nevertheless, it has
to be pointed out that several DBP/GC combinations of SNPs are conserved in the population forming
a diverse profile of haplotypes. Such DBP haplotypes give rise to low or high affinity DBP/GC protein
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structures with a different binding of the free vitamin D metabolite and also affecting the monocyte
production of cathelicidin [106].

Another molecule with a crucial role in vitamin D trafficking is cubilin. This 460-kDa long protein
is mainly localized in the proximal renal tubule, but has been identified in other tissues including
placenta, intestinal epithelium among others.

A crucial role of cubilin is the formation of an endocytic receptor complex with megalin.
That complex is capable of binding DBP/25(OH)D3 with high affinity, mediating its uptake into
the cells. The loss of functional cubilin in patients leads to loss of the 25(OH)D3 in urine and
subsequent decrease in vitamin D metabolites plasma levels. Hence, our group examined SNPs within
the cubilin gene as potential risk markers for T1D [99]. The cubilin gene is located on chromosome
10p12.33-p13. We analysed five cubilin SNPs (rs3740168, rs3740165, rs1801233, rs1801229 and rs2796835)
in a case-control study (200 T1D and 200 controls). Out of these, the rs3740165 SNP was found to
be associated with increased T1D risk. The genotype “AA” of the rs3740165 was more prevalent in
T1D patients than in control but without correlation neither with 25(OH)D3, nor with 1,25(OH)2D3

concentration. It has to be pointed out that the SNP does not change the coding sequence in this
position (Pro→ Pro). Therefore, functional susceptibility may develop by a linked gene variant or
a regulatory SNP.

2.4. Major Susceptibility to Type 1 Diabetes by HLA and Other Immune Genes: Vitamin D

The strongest susceptibility to type 1 diabetes is conferred by high risk HLA DR-DQ alleles
present as hetero- or homozygous combinations most patients. There are up to 40 additional risk loci
identified and some of them have been shown to affect lymphoid enhancer sequence in T and B cells,
thymus and CD34+ stem cells [107]. Vitamin D regulates several immune genes as identified through
genome wide studies by VDR chromatin immunoprecipitation followed by mass DNA sequencing
(CHIP-seq) [108,109] where VDR binding to autoimmune susceptibility loci was identified amongst
them type 1 diabetes sites. Hereby, the VDR-enhanced susceptibility to T1D may form a genetically
determined proinflammatory cytokine pattern [110].

2.5. Vitamin D Intervention in Type 1 Diabetes and Pharmacogenomics

Vitamin D deficiency is a worldwide problem [111]. It enhances the risk for various conditions
including T1D [112] and provides the rationale for many intervention trials (clincaltrials.gov
currently—as of 11 April 2017—3122 trials listed). The potential to modify the development of T1D was
reported in a case-control study and a birth cohort follow-up study from Finland: it strongly indicated
that vitamin D supplementation in infancy decreases the risk of T1D [113,114]. The therapeutic benefit
of vitamin D onT1D was tested in some clinical trials [2] but only few studies examined the effect
of the vitamin D SNPs in the context of vitamin D supplementation for T1D [115–117]. We recently
performed a randomized, double-blind, placebo-controlled trial with cross-over design in which
thirty-nine patients with T1D received 4000 IU/day cholecalciferol for three months followed by
placebo or in reverse sequence. Hereby, besides an improvement of the vitamin D status (median
25(OH)D3 increased to 38 ng/mL), the regulatory T cells (Treg) demonstrated a differential response to
vitamin D to three months’ treatment according to VDR SNPs. Furthermore, this trial also showed
an improvement of glycemic parameters under vitamin D treatment. Patients carrying the genotypes
aa, TT and bb (rs7975232 ApaI, rs731236 TaqI and rs1544410 BsmI) were capable of raising their Treg
cell number [115]. A further study tested in vitro the functional role of the VDR rs10735810 (FokI)
SNP in T-helper (CD3+CD4+) from twenty patients with T1D. The stimulation of CD3+CD4+ cells
with 25(OH)D3 [62.4 nM] and 1,25(OH)2D3 [1 × 10−8 M] for 72 h revealed a reduced percentage
of CD4+ cells isolated from T1D patient carrying “FF”, suggesting a beneficial balance in the T cell
compartment [116].

In a prior in vitro study, Mauf et al. (2015) [117] had explored the immunomodulatory effects
of vitamin D supplementation on 25(OH)D3 levels, on dendritic cells in twelve patients with T1D
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and the role of the vitamin D SNPs. Remarkably, the 25(OH)D3 treatment (50 ng/mL) for seven days
inhibited the differentiation of monocytes into dendritic cells, promoting the formation of intermediate
cells (IC). The increase of IC under supplementation with 25(OH)D3 was related to the genotypes
of two VDR SNPs (rs731236 TaqI and rs1544410 BsmI) and one SNP of the CYP24A1 gene (rs927650),
illustrating that the immune effects of vitamin D supplementation can depend on genetic variants of
the vitamin D system.

3. Conclusions

Vitamin D deficiency is a risk factor for T1D and genes of the vitamin D system show robust
associations with T1D. The vitamin D system appears to affect the immune regulatory pathways,
leading to the final β-cell destruction. Several experimental lines of evidence suggest islet protection by
vitamin D. Exploiting this potential will be a challenge for future studies, including larger controlled
trials with different doses of vitamin D and functional studies to elucidate mechanistic actions in the
immune system and also for metabolic end points.
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