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Background: Mild cognitive impairment (MCI) is known as the prodromal stage of the
Alzheimer’s disease (AD) spectrum. The recent studies have advised that functional
alterations in the dorsal attention network (DAN) could be used as a sensitive marker to
forecast the progression from MCI to AD. Therefore, our aim was to investigate specific
functional alterations in the DAN in MCI.

Methods: We systematically searched PubMed, EMBASE, and Web of Science and
chose relevant articles based on the three functional indicators, the amplitude of low-
frequency fluctuation (ALFF), regional homogeneity (ReHo), and functional connectivity
(FC) in the DAN in MCI. Based on the activation likelihood estimation, we accomplished
the aggregation of specific coordinates and the analysis of functional alterations.

Results: A total of 38 studies were involved in our meta-analysis. By summing up
included articles, we acquired specific brain region alterations in the DAN mainly in
the superior temporal gyrus (STG), middle temporal gyrus (MTG), superior frontal gyrus
(SFG), middle frontal gyrus (MFG), inferior frontal gyrus (IFG), precentral gyrus (preCG),
inferior parietal lobule (IPL), superior parietal lobule (SPL). At the same time, the key
area that shows anti-interaction with default mode network included the IPL in the DAN.
The one showing interactions with executive control network was mainly in the MFG.
Finally, the frontoparietal network showed a close connection with DAN especially in
the IPL and IFG.

Conclusion: This study demonstrated abnormal functional markers in the DAN and its
interactions with other networks in MCI group, respectively. It provided the foundation
for future targeted interventions in preventing the progression of AD.

Systematic Review Registration: [https://www.crd.york.ac.uk/PROSPERO/],
identifier [CRD42021287958].

Keywords: mild cognitive impairment, amplitude of low-frequency fluctuation, regional homogeneity, functional
connectivity, activation likelihood estimation, dorsal attention network
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INTRODUCTION

Alzheimer’s disease (AD) is one of the most common causes
of dementia, which causes degeneration of the cells in the
brain. The decline of reflection and independence in personal
daily living ability is evident in the progress of the disease
(Vaz and Silvestre, 2020). Unfortunately, there are no effective
treatment options for AD with massive research (Yiannopoulou
and Papageorgiou, 2020). Mild cognitive impairment (MCI) is
known as the prodromal stage of the AD spectrum. People with
MCI can show cognitive function not normal for age and decline
in cognition, essentially normal functional activities, and without
dementia (Kantarci et al., 2009). We further discussed specific
functional changes of MCI groups, which can provide targets for
the early intervention in the progression of AD.

The resting-state functional magnetic resonance imaging (rs-
fMRI) is an essential auxiliary diagnostic method to detect some
changes in functional brain networks (Liang et al., 2020). One
such advance is the amplitude of low-frequency fluctuation
(ALFF), which is thought to reflect the spontaneous activity of
neurons. A high value indicates that the neurons in this brain
area are active (Cai et al., 2017). Another measure is regional
homogeneity (ReHo), which reflects the consistency of neuronal
activity in local brain areas (Cha et al., 2015). The increased value
indicates that the neuronal activity in the local brain area tends
to increase. The third measure is functional connectivity (FC),
which represents the neurophysiological activity with a certain
distance in space (Qian et al., 2015). Thus, the three indicators
such as ALFF, ReHo, and FC can locally reveal the consistency of
neuronal activity and comprehensively show the connections of
brain regions and networks.

Recently, some studies have shown specific functional
alternations in the default mode network (DMN; Yuan et al.,
2021), salience network (SN; Song et al., 2021), and executive
control network (ECN; Xu et al., 2020) in the patients with MCI.
Dorsal attention network (DAN) has been related to working
memory and episodic memory which play an essential role in
cognitive function. It is mainly responsible for the “top-down”
attention process and keeps us focused (Zhan et al., 2016). The
recent studies have advised that functional alterations in the DAN
could be used as a sensitive marker to forecast the progression
from MCI to AD (Qian et al., 2015). However, adequate image
data are lacking to find specific functional changes in the DAN.
DAN mainly employed in the intraparietal sulcus (IPS) and
superior or middle frontal gyrus or precentral gyrus (FEF area),
which contributes to the process of goal and selection of stimuli
(Fox et al., 2006). In addition, multiple studies have examined
the relationships between DAN and other networks. Prior studies
have reported a decreased anticorrelation between the DMN
and the DAN in MCI (Wang J. et al., 2019). However, there
was insufficient data to find reliable specific imaging markers
in the DAN to reflect the relationship between DAN and other

Abbreviations: MCI, mild cognitive impairment; HCs, healthy controls; ALFF,
the amplitude of low frequency fluctuation; ReHo, regional homogeneity; MFG,
middle frontal gyrus; STG, superior temporal gyrus; SFG, superior frontal gyrus;
IPL, inferior parietal lobule; MTG, middle temporal gyrus; PreCG, precentral
gyrus; SPL, superior parietal lobule; IFG, inferior frontal gyrus; R, right; L, left.

networks. Thus, summarizing specific functional changes of
the DAN and exploring its interactions with other networks
can be essential.

One of the most commonly used algorithms for coordinate-
based meta-analysis is activation likelihood estimation (ALE;
Eickhoff et al., 2012). Instead of treating activation points
in neuroimaging studies as single activation points, ALE
treats each equilibrium activation peak as having a three-
dimensional Gaussian probability density function centered at
given coordinates and draws an ALE map (Laird et al., 2005).
ALE determines whether there are anatomical or functional
differences and convergence between human brain imaging
studies based on the multiple coordinates. It has been widely
used in rs-fMRI studies (Zhang et al., 2012). The advantage
of the ALE technique is that it uses the coordinates of the
abnormal anatomical site rather than the labels, thereby avoiding
the drawbacks. Another benefit of this technique is excluding
negative data from the results (Murphy et al., 2003). Therefore,
we use ALE to output the results by inputting aggregated DAN
coordinates from independent experiments. A study by Gu and
Zhang (2019) obtained key regions related to gray matter atrophy
in MCI using ALE and suggested that regional alternations might
act as the diagnostic biomarkers. However, this study was the
first one to access functional specific changes in the DAN in
patients with MCI.

Hence, the study aims to explain (1) comprehensively
abnormal markers in the DAN in patients with MCI
(2) the interactions of specific brain regions in the DAN
with other networks.

MATERIALS AND METHODS

Search Strategy
We systematically and comprehensively searched EMBASE,
PubMed, and Web of Science. The search terms were as follows:
(1) (“functional magnetic resonance imaging” [MeSH] OR
(resting state)) AND (“mild cognitive impairment” [MeSH])
AND [(DAN) OR (attention network)] AND [(functional
connectivity) OR (FC)]. (2) (“functional magnetic resonance
imaging” [MeSH] OR (resting state)) AND (“mild cognitive
impairment” [MeSH]) AND [(regional homogeneity) OR
(ReHo)]. (3) (“functional magnetic resonance imaging” [MeSH]
OR (resting state)) AND (“mild cognitive impairment” [MeSH])
AND [(amplitude of low frequency fluctuation) OR (ALFF)].

Inclusion and Exclusion Criteria
Our entry criteria were included (1) reported significant
alterations of ALFF, ReHo, or FC in the DAN, (2) made
comparisons between MCI and healthy control (HC), (3)
reported information about the space in Talairach or Montreal
Neurological Institute (MNI) coordinates, and (4) were published
in English in peer-reviewed journals.

The patients with MCI met the following criteria: (a) attention
to cognitive change, (b) impairment of one or more cognitive
domains, (c) maintain functional independence in daily life, and
(d) not demented (Albert et al., 2011).
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Exclusion criteria were as follows: (1) patients were diagnosed
with other disease such as Parkinson’s disease, (2) meta-analysis,
review, and case report, (3) a lack of regular control group or
comparison related coordinates.

A total of 691 publications were initially retrieved. After
careful screening, a total of 38 publications were included in the
final analysis (Figure 1). The included studies met the criteria of
38 MCI (17 ALFF, 14 ReHo, and 7 FC).

Data Extraction and Quality Assessment
The two researchers in our group extracted data from the
literature. First, we included patients with MCI with the
specific criteria. Second, we read each study to determine
whether it had healthy control group or comparison related
coordinates. Then, whether it was a study of ALFF, ReHo,

or FC in the DAN. Finally, we extracted coordinates of the
DAN in the literature and worked with the method in the
form of MNI coordinates. If two current researchers disagree
on the adoption of the article, the third researcher will vote
on the decision.

Data Analysis Procedures
We divided MCI subjects into increased and decreased groups
on three indexes (ALFF, ReHo, and FC): (1) increased ALFF
(321 subjects, 22 foci, and 13 experiments); decreased ALFF
(201 subjects, 26 foci, and 9 experiments); (2) increased ReHo
(216 subjects, 13 foci, and 7 experiments); decreased ReHo (344
subjects, 29 foci, and 12 experiments); (3) increased FC (115
subjects, 12 foci, and 5 experiments); decreased FC (77 subjects,
7 foci, and 3 experiments).

FIGURE 1 | Flow chart showing study selection process.
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This study used Java-based version of Ginger ALE 2.3.61

to assess the junction of the difference between MCI and HC
group in terms of foci across the studies (Eickhoff et al., 2012).
We format the collected foci which were performed in MNI
coordinates into six text files. We imported them into the
software by setting a threshold at p < 0.05. The ALE map
was performed with a cluster-level family-wise error (FWE)
correction at p < 0.05 and 1,000 threshold permutations. The
FWE correction threshold is set to an ALE value that does not
exceed this value for the specified portion of the distribution.
FWE thresholds are conservative, so a 5% randomized study or
p < 0.05 is recommended (Eickhoff et al., 2012). The maps were
covered into MNI152 and visualized with the BrainNet Viewer2

(Xia et al., 2013) in the Matlab R2013b. The results are shown
in Figure 2. The meta-analysis was registered in advance on
PROSPERO (registration number: CRD42021287958).3

RESULTS

Search Results
The study characteristics and results are summarized in Table 1.

The brain areas of the DAN were summarized as follows:
(1) use independent component analysis (ICA): inferior
occipital gyrus, superior occipital gyrus, superior parietal
lobule (SPL), inferior temporal gyrus (Zhang et al., 2020), right
superior/middle frontal gyrus (S/MFG), right inferior parietal
lobule (IPL), left precentral gyrus (preCG), left IPL/angular gyrus
(Qian et al., 2015), dorsolateral prefrontal cortex (dlPFC) and
SPL (Avelar-Pereira et al., 2017), IPS, middle temporal gyrus
(MTG; Ding et al., 2019), inferior precentral sulcus (Baggio et al.,
2015), and ventral IPS (Lei et al., 2014); (2) use seed ROI: MTG,
SPL (Liang et al., 2014), dorsal anterior cingulate cortex (dACC;
Esposito et al., 2018).

Meta-Analysis Results
Compared to HCs, patients with MCI showed increased ALFF
in the left MFG (BA 9), right SFG (BA 6), left superior temporal
gyrus (STG) (BA 39), and right STG (BA 41). Patients with MCI
showed decreased ALFF in the left IPL (BA 40) and right MTG
(BA 22, 21). Patients with MCI showed increased ReHo in the left
preCG (BA 4), left SPL (BA 7), and right preCG (BA 44). Patients
with MCI showed decreased ReHo in the left IPL (BA 39, 40).
Patients with MCI showed increased FC in the left, right preCG
(BA 6) and left, right MFG (BA 9). Patients with MCI showed
decreased FC in the left inferior frontal gyrus (IFG) (BA 9) and
right IPL (BA 40) (Figure 2).

More details about clusters from the ALE analysis are
summarized in Table 2.

DISCUSSION

This was the first meta-analysis to conduct a comprehensive
analysis of all three factors (ALFF, ReHo, and FC) of the DAN

1http://www.brainmap.org/ale
2http://www.nitrc.org/projects/bnv/
3https://mstracker.com

in patients with MCI. In our meta-analysis, compared with
the healthy group, the specific abnormal brain regions in MCI
group were mainly located in the STG, MTG, SFG, MFG, IFG,
PreCG, IPL, and SPL.

Specific Imaging Abnormal Changes in
Dorsal Attention Network
The increased ALFF changes showed in the left MFG, right SFG,
and STG. A study found that patients with MCI showed increased
functional connectivity between the seed regions including
bilateral IFG, bilateral MFG, and SFG (Shi et al., 2020). At the
same time, the increased changes in the MFG were associated
with reduced episodic memory in MCI (Zhao et al., 2019).
This can indicate that brain regions that include MFG and
SFG with increased ALFF might be closely related to memory
loss in the progression of MCI. STG is the key to extract the
meaningful language features from the speech input. A recent
study also showed increased activity in the STG in MCI, which
was consistent with our results (Agosta et al., 2012). To sum up,
the increased ALFF in the MFG, SFG, and STG has a certain
correlation with language impairment in MCI.

Both the increase and decrease of ALFF indicate the changes
in the spontaneous activity of neurons. We described the
relationship between the decreased changes of ALFF in specific
brain regions and symptoms of patients with MCI below. Right
MTG and left IPL demonstrated decreased ALFF changes. The
subregions of MTG are related to human episodic memory
(Berron et al., 2020). A study indicated that compared with the
healthy control group, the stimulation-related activation of MTG
in patients with MCI was lower, which is consistent with the
indicator’s decline. It is suggested that the attention and cognitive
control mechanism of patients with CI may be seriously damaged
and became the basis of cognitive defects in this clinical group
(Staffen et al., 2012). IPL has a close connection with episodic
memory. So, reduced IPL activity indicated impaired memory
functional system in patients with MCI which can be the critical
early marker for prodromal stages (Zhao et al., 2014). Above
all, early reduced ALFF in these brain regions in MCI could
be associated with early clinical symptoms, such as impaired
memory and attention.

Increased ReHo especially showed in the left, right PreCG,
and left SPL. The preCG is located at the primary motor
cortex. Its mechanism is to initiate the purposeful movement
by integrating the information sent by the sensory motor
cortex (Bahmani et al., 2019). An article proves that the
impairment in cognitive domains such as working memory
and behavioral flexibility can be associated with prefrontal
cortex (Parnaudeau et al., 2018). Some studies have shown
that blueberry-treated participants exhibited increased blood
oxygen level-dependent (BOLD) activation in the left preCG
during working memory load condition (Boespflug et al.,
2018). SPL has been also related to properties that deal with
visuospatial and spatial motion (Banaszkiewicz et al., 2021).
An rs-fMRI study also showed increased ReHo in part parietal
lobes in MCI, consistent with our findings (Min et al., 2019).
Thus, we may hypothesize that the elevation of increased
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Increased ALFF

B

Decreased ALFF

C

Increased ReHo

D

Decreased ReHo

E

Increased FC

F

Decreased FC

A

FIGURE 2 | Functional changes of patients with MCI compared with HCs. (A) Brain regions showing increased ALFF in patients with MCI compared with HCs.
(B) Brain regions showing decreased ALFF in patients with MCI compared with HCs. (C) Brain regions showing increased ReHo in patients with MCI compared with
HCs. (D) Brain regions showing decreased ReHo in patients with MCI compared with HCs. (E) Brain regions showing increased FC in patients with MCI compared
with HCs. (F) Brain regions showing decreased FC in patients with MCI compared with HCs. The blue parts indicate the decreased changes, and areas with
increased change are displayed in red.
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TABLE 1 | The characteristics and results are summarized in the meta-analysis.

References Sample size (n) Gender (M/F) Age (SD) MMSE (SD) Group contrasts Foci (n) Threshold

ALFF

Zhuang et al. (2020) MCI 43 0/17 60.71 (6.32) – MCI < HC 0 P < 0.05

18/8 64.50 (5.64)

HC 29 1/14 58.20 (4.92) MCI > HC 2

6/8 66.79 (3.68)

Jia et al. (2015) MCI 7 – 74.1 (7.8) 27.0 (2.3) MCI < HC 1 P < 0.01

HC 15 70.2 (7.1) 29.2 (1.3) MCI > HC 1

Wang et al. (2011) MCI 16 7/9 69.38 (7.00) 26.50 (1.03) MCI < HC 5 P < 0.05

HC 22 7/15 66.55 (7.67) 28.59 (0.59) MCI > HC 2

Han et al. (2012) MCI 17 7/10 69.7 (7.6) 25.2 (3.5) MCI < HC 3 P < 0.01

HC 18 7/11 66.5 (6.2) 29.2 (0.7) MCI > HC 1

Cai et al. (2017) MCI 39 19/20 72.4 (5.01) 25.51 (2.88) MCI < HC 0 P < 0.05

HC 38 19/19 73.92 (3.90) 29.28 (0.88) MCI > HC 4

Cha et al. (2015) MCI 34 18/16 68.4 (7.9) 27.1 (2.1) MCI < HC 7 P < 0.05

HC 62 17/45 68.5 (8.0) 28.6 (1.9) MCI > HC 0

Zhao et al. (2014) MCI 20 8/12 65.11 (9.92) 25.21 (2.24) MCI < HC 4 P < 0.05

HC 18 8/10 66.81 (7.43) 29.31 (1.22) MCI > HC 2

Zhuang et al. (2012) MCI 47 28/19 71.957 (4.777) 26.979 (1.525) MCI < HC 1 P < 0.05

HC 33 18/15 72.848 (3.392) 28.182 (1.334) MCI > HC 0

Zhuang et al. (2019) MCI 35 16/8 70.42 (4.39) 27.04 (1.49) MCI < HC 0 P < 0.05

7/4 71.91 (4.39) 27.64 (1.36)

HC 26 11/5 70.06 (6.58) 28.31 (1.40) MCI > HC 1

5/5 67.80 (2.39) 27.90 (1.29)

Zhou et al. (2020) MCI 47 13/10 70.4 (8.3) 24.7 (3.7) MCI < HC 0 P < 0.05

10/14 69.8 (6.2) 23.9 (3.6) MCI > HC 3

HC 32 14/18 67.9 (6.4) 28.0 (1.9)

Xi et al. (2012) MCI 18 8/10 67.28 (7.87) 24.77 (3.84) MCI < HC 0 P < 0.01

HC 20 9/11 64.65 (5.59) 28.23 (1.77) MCI > HC 1

Hu et al. (2021) MCI 32 19/13 75.38 (7.91) 28.88 (1.36) MCI < HC 0 P < 0.05

HC 37 23/14 73.38 (7.00) 29.11 (0.97) MCI > HC 1

Wang P. et al. (2019) MCI 17 9/8 70.53 (4.54) 24.47 (3.88) MCI < HC 1 P < 0.001

HC 16 8/8 68.56 (5.76) 28.25 (1.39) MCI > HC 0

Mascali et al. (2015) MCI 10 6/4 70.7 (7.1) 25.8 (2.3) MCI < HC 0 P < 0.05

HC 10 7/3 66.0 (9.6) 29.30 (0.67) MCI > HC 2

Yin et al. (2014) MCI 11 2/9 66.6 (8.7) 24.6 (3.2) MCI < HC 2 P < 0.05

HC 22 12/10 62.1 (8.1) 29.2 (1.1) MCI > HC 1

Ni et al. (2016) MCI 26 12/14 71 (9) 25 (1.48) MCI < HC 0 P < 0.05

HC 28 17/11 70 (9) 29 (1.09) MCI > HC 1

Liu et al. (2013) MCI 32 16/16 74.91 (5.88) – MCI < HC 2 P < 0.05

HC 28 15/13 77.30 (7.33) MCI > HC 0

ReHo

Wang et al. (2015) MCI 30 18/12 69.1 (5.8) 26.2 (2.2) MCI < HC 3 P < 0.01

HC 32 15/17 70.1 (5.5) 28.1 (1.5) MCI > HC 0

Liu et al. (2014) MCI 12 1/11 59.3 (3.3) 26.4 (0.9) MCI < HC 1 P < 0.01

HC 12 4/8 60.6 (5.8) 29.8 (0.4) MCI > HC 5

Cai et al. (2018) MCI 50 24/26 72.3 (6.86) 24.3 (2.45) MCI < HC 1 P < 0.01

HC 53 29/24 76.08 (6.45) 28.2 (2.13) MCI > HC 0

Cha et al. (2015) MCI 34 18/16 68.4 (7.9) 27.1 (2.1) MCI < HC 4 P < 0.05

HC 62 17/45 68.5 (8.0) 28.6 (1.9) MCI > HC 0

Zhang et al. (2010) MCI 48 30/18 72.04 (4.42) 27 MCI < HC 4 P < 0.05

HC 36 17/19 71.64 (3.72) 29 MCI > HC 1

Min et al. (2019) MCI 10 5/5 69.80 (2.658) 25.90 (0.738) MCI < HC 3 P < 0.05

HC 10 5/5 69.90 (2.601) 29.30 (0.823) MCI > HC 3

(Continued)
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TABLE 1 | (Continued)

References Sample size (n) Gender (M/F) Age (SD) MMSE (SD) Group contrasts Foci (n) Threshold

Yuan et al. (2016) MCI 36 17/19 66.8 (9.5) 24.9 (3.4) MCI < HC 1 P < 0.001

HC 46 19/27 64.3 (7.8) 28.5 (2.0) MCI > HC 1

Zhang et al. (2021) MCI 28 13/15 65.71 (6.895) 27 MCI < HC 2 P < 0.05

HC 37 15/22 63.86 (8.250) 29 MCI > HC 0

Ni et al. (2016) MCI 26 12/14 71 (9) 25 (1.48) MCI < HC 0 P < 0.05

HC 28 17/11 70 (9) 29 (1.09) MCI > HC 1

Liu et al. (2021) MCI 28 14/14 68.39 (4.65) – MCI < HC 2 P < 0.05

HC 38 18/20 68.66 (5.09) MCI > HC 0

Zhang et al. (2012) MCI 19 10/9 76 (8) 27 (2) MCI < HC 6 P < 0.01

HC 21 12/9 70 (7) 29 (1) MCI > HC 0

Long et al. (2016) MCI 29 13/16 66.55 (8.36) 23.38 (3.03) MCI < HC 1 P < 0.01

HC 33 12/21 62.91 (8.08) 27.94 (1.60) MCI > HC 0

Luo et al. (2018) MCI 64 17/15 72.43 (4.25) 28.34 (1.68) MCI < HC 0 P < 0.05

17/15 74.90 (5.27) 27.16 (1.71) MCI > HC 1

HC 49 18/31 73.33 (4.60) 29.02 (1.20)

Bai et al. (2008) MCI 20 10/10 71.3 (3.8) 27.2 (1.6) MCI < HC 1 P < 0.05

HC 20 11/9 69.4 (3.8) 28.3 (1.4) MCI > HC 1

FC

Lin et al. (2014) MCI 30 17/13 70.80 (8.26) 28.23 (1.10) MCI < HC 0 P < 0.05

HC 30 16/14 69.81 (5.79) 29.29 (0.69) MCI > HC 1

Bi et al. (2018) MCI 38 23/15 72.99 (7.79) 27.11 (2.44) MCI < HC 2 P < 0.05

HC 32 13/19 76.25 (6.51) 29.13 (1.31) MCI > HC 0

Cera et al. (2019) MCI 16 – 65.2 – MCI < HC 4 P < 0.05

HC 19 73.6 MCI > HC 2

Zhu et al. (2016) MCI 19 7/12 65.7 (10.7) 26.7 (1.6) MCI < HC 0 P < 0.05

HC 28 11/17 63.8 (6.7) 29.0 (0.8) MCI > HC 3

Wang J. et al. (2019) MCI 51 12/10 71.09 (8.41) 24.45 (4.04) MCI < HC 2 P < 0.05

15/14 71.21 (6.48) 24.07 (3.47) MCI > HC 0

HC 23 10/13 64.61 (9.32) 28.61 (1.50)

Qian et al. (2015) MCI 12 7/5 69.3 (6.7) 23.8 (3.4) MCI < HC 0 P < 0.05

HC 15 8/7 67.8 (7.4) 28.7 (1.2) MCI > HC 4

Dannhauser et al. (2005) MCI 10 5/5 72 (7.7) 24.5 (1.5) MCI < HC 1 P < 0.05

HC 10 4/6 68 (13.5) 28.3 (1.6) MCI > HC 0

ReHo value in the SPL also plays an essential role in the
transition process of AD.

Decreased ReHo especially showed in the left IPL. ReHo
mainly explored the consistency of neuronal activity in the local
brain area. At the same time, there is both decreasing change in
the IPL in MCI. A study demonstrated that M50 sensory gating
(SG) deficits in the IPL were related to the poorer performance in
the immediate recall of logic memory (LM). Obviously, patients
with MCI showed lower auditory short-term memory function
with the deficit in the IPL in clinical manifestations (Cheng et al.,
2020). It can be concluded that decreased ReHo can be related to
the clinical manifestations of patients with MCI.

As to the FC, the increased changes in the MFG were
associated with reduced episodic memory in MCI which were
the same as increased ALFF (Zhao et al., 2019). The increased
FC changes in the preCG were the same as the increased
ReHo. A study showed that ReHo focused on the consistency of
neuronal activity in local brain areas while FC focused on the
connective relationship of two brain regions (Zuo et al., 2018).

Thus, the increased FC meant that the connectivity between
MFG, preCG, and other regions was higher, making up for
deficits in MCI. The decreased FC of the IPL and IFG showed the
dysfunction of DAN connectivity, which could be a biomarker
to suggest the occurrence of MCI. The activation of IFG was
essential for residual language function. At the same time, some
task-related functional neuroimaging studies indicated MCI-
related low activation in the left IFG (Winhuisen et al., 2005). In
a word, with the development of the disease, the brain’s normal
function was affected, and partial compensation of functional
connectivity was necessary.

According to the specific imaging abnormal changes in
DAN, transcranial magnetic stimulation (TMS) and other timely
interventions can be carried out. During working memory load
conditions, blueberry-treated participants exhibited increased
BOLD activation in the left preCG and left IPL (Boespflug
et al., 2018). At the same time, the effects of exercise and
fitness seem to mainly affect brain structures sensitive to
neurodegeneration, especially including frontal and parietal
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TABLE 2 | Regions with functional changes (ALFF, ReHo, and FC) between MCI and HC.

Cluster Volume (mm3) MIN Maximum ALE value Z value Side Anatomical regions BA

X Y Z

ALFF

MCI > HC

1 20136 −26 40 16 0.007188175 3.471825 L Middle frontal gyrus 9

2 16336 −20 12 52 0.007414909 3.6231763 L Middle frontal gyrus 9

2 16336 4 22 66 0.004700623 2.996591 R Superior frontal gyrus 6

3 14272 −54 −54 28 0.008169615 3.851295 L Superior temporal gyrus 39

4 14272 50 −34 10 0.008036611 3.8309553 R Superior temporal gyrus 41

MCI < HC

1 12840 −42 −58 38 0.009380546 3.9003599 L Inferior parietal lobule 40

2 11080 60 −42 0 0.008404313 3.7520359 R Middle temporal gyrus 22

2 11080 62 −48 6 0.00813587 3.4511428 R Middle temporal gyrus 21

ReHo

MCI > HC

1 11792 −30 −18 69 0.00021037474 1.8419702 L Precentral gyrus 4

2 7928 −24 −63 57 0.0067398977 3.4334188 L Superior parietal lobule 7

3 7216 54 18 0 0.0066276384 3.3993435 R Precentral gyrus 44

MCI < HC

1 19680 −52 −44 44 0.012283053 4.350583 L Inferior parietal lobule 40

1 19680 −48 −64 42 0.008291758 3.4740293 L Inferior parietal lobule 39

FC

MCI > HC

1 31088 40 −8 40 0.009056705 4.099734 R Precentral gyrus 6

1 31088 50 2 34 0.008900939 4.051711 R Precentral gyrus 6

1 31088 −40 −10 46 0.008636258 3.861686 L Precentral gyrus 6

2 8792 −33 48 30 0.009058468 4.099734 L Middle frontal gyrus 9

2 8792 36 51 27 0.008747488 3.9038239 R Middle frontal gyrus 9

MCI < HC

1 27352 −40 8 26 0.006447163 3.4636831 L Inferior frontal gyrus 9

2 7568 46 −52 58 0.007144281 3.702397 R Inferior parietal lobule 40

BA, Brodmann area; MNI, Montreal Neurological Institute; ALE, activation likelihood estimation; L, left; R, right; MCI, mild cognitive impairment; HC, healthy control.

regions (Haeger et al., 2019). To carry out early intervention
treatment for patients with MCI, we can carry out a practical
course of blueberry taking, exercise, and fitness, which can draw
from the above schemes.

Dorsal Attention Network Interactions
With Other Networks
Reviewing the results of ALE analysis of the FC in the DAN,
interactions of the DAN with DMN, ECN, and frontoparietal
network (FPN) had been observed in MCI group. The main
functions of the four networks are different, but they all have
overlapping regions and co-activation. The key area that shows
anti-interaction with DMN included the IPL in the DAN. At the
same time, the one that shows interactions with ECN was mainly
in the MFG. Finally, the FPN showed a close connection with
DAN, especially in the IPL and IFG.

The DMN is a task-negative network associated with
deactivating arduous tasks during attention execution
(Weiler et al., 2014). The DAN is also called the task-positive
network because its central regions are commonly activated
when attention and mind control are required. A study

suggested that a reduced anticorrelated activity between DMN
and DAN was a part of the normal aging process, and that
MCI status was associated with more evident inter-network
functional connectivity changes (Esposito et al., 2018). So,
the decreased FC of the IPL in the DAN in MCI might be
interpreted as a compensation mechanism by impairments of
IPL. The interaction among networks may be associated with the
structural location.

The ECN has an executive function, which includes problem-
solving and working memory, and plays a key role in cognitive
regulation and sensory information integration (Xu et al., 2020).
The ECN, especially the dlPFC, is structurally connected with
the frontal cortices. Therefore, the network is well located and
can support a wide range of cognitive processes (Chand et al.,
2018). A study highlighted the increased resting-state functional
connectivity (rsFC) in the ECN and DAN as neuroimaging
indications of disease progression in AD (Joshi et al., 2019). At
the same time, the DAN in the MFG showing increased FC
also supported this conclusion. Apparently, the increased FC was
predictive of impaired episodic memory in MCI and may reflect a
dysfunctional change within the episodic memory-related neural
network (Zhang et al., 2016).
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The FPN is involved in top-down attentional control and
allocation of available neural resources to important cognitive
processes and motor planning and motor execution (Hsu et al.,
2019). The FPN comprises of multiple regions spanning the
frontal and parietal cortices, which includes IPL, dlPFC, and
preCG (Agosta et al., 2012; Liang et al., 2014). In this study, FPN
showed that reduced connectivity in IPL and IFG may lead to the
dysfunction of logic, regulating behavior, complex planning, and
learning, which patients with MCI can exist (Zhao et al., 2019).
This further supported the abnormality of FC as a biomarker for
monitoring disease progression.

The interactions related to FC between DAN and other
networks, such as DMN, ECN, and FPN, were mainly present in
the IPL, IFG, MFG, and PreCG. A study showed for the first time
that theta and alpha frequency repetitive transcranial magnetic
stimulations (rTMSs) were able to modulate FC in DAN. With
theta frequency band in left dlPFC, the memory performs better
in a sustained attention task (Kazemi et al., 2020). Thus, changes
in the interactions with these networks provided targets for early
intervention treatment, which delayed the occurrence of MCI.

Limitations
Although we have acquired valuable outcomes, some details still
need improvement. First of all, the subjects’ age, sex, years of
education, and other factors are heterogeneous. However, these
factors have no practical impact on the results. What is more,
given the limited number of studies included in the analysis,
the findings from our meta-analysis should be confirmed in the
future research. Last but not least, the selection of seed points of
DAN is affected by the subjective idea of the operator, and the
selection of different seed points will affect the results to a certain
extent. The literature on the coordinates of such seed points can
enrich our results in some ways.

CONCLUSION

By performing the meta-analysis in patients with MCI to identify
the functional changes of DAN, we conclude the evidence of

particular functional imaging biomarkers and interactions with
other networks such as DMN, ECN, and FPN. These findings
offer a further understanding of prospective brain alterations and
some interventions for prodromal AD in the MCI group. These
meaningful interaction networks supply new insight for selecting
brain regions to delay the procession of dementia in the future.
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