SUPPLEMENTARY METHODS

Pcdh19 floxed mice

Pcdh19 floxed mice were generated at InGenious Targeting Laboratories, Inc. (USA) by inserting two loxP sites located 174 bp upstream and 225 bp downstream of exon 3, respectively. To this end, a targeting vector was constructed by using a fosmid clone. The targeting vector (15.4 kb) was composed by: 5' homology arm (6.8 kb), loxP site, the target region containing exon 3 (target region, 727 bp), loxP/FRT flanked Neomycin (Neo) selection cassette (2808 bp), 3' homology arm (5.1 kb). The targeting construct was subcloned from the fosmid and purified prior to electroporation into iTL BF1 (C57BL/6 FLP) embryonic stem (ES) cells, which express FLP recombinase vector to remove the selection cassette. Correctly targeted ES cells were microinjected into Balb/c blastocysts. Resulting chimeras were mated to C57BL/6 WT mice to generate germline Neo deleted mice.

ICV injection of AAVs

Pedh19 floxed pups (P0) were anesthetized via cryo-anaesthesia and their head was disinfected with 70% ethanol. Sterilized glass micropipettes were prepared with a puller (Sutter Instrument, USA) and attached to a 3ml syringe through a silicon tube. Micropipettes loaded with the AAVs were inserted 2-3 mm deep into the skull of the anesthetized pups in order to reach the ventricles (0.25 mm lateral to the sagittal suture and 0.50-0.75 mm rostral to the neonatal coronary suture). 1 μl of AAV solution containing 5.5 x 109 GFP-Cre AAV9 particles (AAV9.hSyn.HI.eGFP-Cre.WPRE.SV40, Penn Vector, USA) (Fig. 3; Supplementary Fig. 1) or 3.4 x 109 GFP-2A-Cre AAV9 particles (AAV9-hSYN1-eGFP-2A-iCre-WPRE, Vector Biolabs) (Supplementary Fig. 4), 0.05% w/v trypan blue, and sterile PBS (mM: 137 NaCl, 2.7 KCl, 8 Na₂HPO₄ x 2H₂O, 2.3 NaH₂PO₄, pH 7.4) was slowly injected in each ventricle. The micropipette stayed in position for 15 sec to prevent backflow. Pups were placed under a warming light until full recovery and finally returned to their home cage with the mother.

Behavioral tests

Adult (> P90) female mice, *Pcdh19* cKO (*Pcdh19*^{fl/x} Syn1-Cre) and control littermates (*Pcdh19*^{fl/x}), were used for behavioral experiments.

Spontaneous motor activity: Mice locomotion was evaluated by recording animals in an automated activity cage (43 x 43 x 32 cm) (Ugo Basile). Beam breaks were counted for 30 min to extrapolate horizontal and vertical movements.

Self-grooming: Mice were habituated to a transparent cylinder (46 x 23.5 x 20 cm) for 10 min and self-grooming events in the following 10 min were recorded and analyzed manually.

Novel object recognition: After 10 min of habituation in the test cage, two different objects were placed at the center of the cage and mice were free to explore them for 20 min (familiarization phase) before returning to their home cage. After 5 min, 120 min, and 24 hours mice returned to the test cage, in which one of the two familiar objects had been replaced by a novel one, for 20 min (recognition phase). The discrimination index (I) was calculated as the difference between the exploration time of the novel object (N) and the exploration time of the familiar one (F) on the total time of exploration: I = (N-F) / (N+F). Exploration was achieved when mice stayed within 0.5 cm from the object with the nose toward the object.

Morris water maze: The Morris water maze test was performed in a circular pool (154 cm in diameter x 38 cm in height). A circular hidden platform with a diameter of 13.5 cm was inside the pool, 0.5 cm below the surface of the water. The swimming pool was filled with water at a constant temperature $(22^{\circ}C \pm 2^{\circ}C)$ and made opaque with the addition of non-toxic white tempera paint to hide the platform. First, mice were habituated to the water maze (60 sec) and to the platform (60 sec). Next, in the acquisition phase, mice performed 4 trials/day (with 1 hour inter-trial interval) for 4 consecutive days: each mouse was placed in the pool with the platform in a fixed position, but changing the mouse starting position on each trial. Mice unable to find the platform within 60 sec (cut-off) were guided to the platform and remained on it for 60 sec. The 5th day the probe test (duration, 60 sec) was performed, in which the platform was removed. Finally, in the reversal phase, starting 2 days after

the probe test, mice performed 4 trials/day (trial cut-off, 60 sec; 1 hour inter-trial interval) for 4 consecutive days: each mouse was placed in the pool, in which the platform had been moved to the opposite quadrant, changing the mouse starting position on each trial. The 5th day, a second probe test (duration, 60 sec) was performed, in which the platform was removed. To assess visual acuity, mice performed a single-trial test in which the platform was moved to a different quadrant and made visible by a flag on top. After each trial, mice were placed on a paper towel for drying and then put back into their home cages. Mice were recorded during each trial and latency to reach the platform was analyzed through Ethovision XT software (Noldus Information Technology).

Fear conditioning: The fear conditioning apparatus (26 x 26 x 27 cm) consisted in a ventilated and sound-attenuated chamber connected to a PC (Panlab Harvard Apparatus). The chamber was provided with a floor composed by 19 steel rods through which a scrambled shock can be delivered, black stainless steel sidewalls and a Plexiglas door. The day of conditioning (Day 1), each mouse, after 2 min of exploration, received 5 consecutive tone-shock pairings at 30 sec inter-trial intervals. The 85-dB tone (conditioned stimulus, CS) lasts 28 sec and was followed by a 0.5 mA shock (unconditioned stimulus, US) for 2 sec. Acetic acid (5%) was used for cleaning in between training sessions. 24 h after (Day 2, context test) mice were re-exposed to the same chamber for 5 min without receiving any stimulus. 24 h later (Day 3, cued test) mice were habituated for 2 min to a different context, i.e. a cylinder with a smooth floor cleaned with ethanol 4%, to provide a different odor. Subsequently, they received 3 tone-shock pairings. Stimuli delivery, data acquisition and analysis were performed automatically using Packwin software (Panlab Harvard Apparatus). The percentage of freezing during sessions was evaluated and was defined as percentage of time the animal was immobile except for breathing.

Preparation of Prime MEA chips with cultured mouse neurons

The external surface of Prime HD-MEA system chips (3Brain, Switzerland) was cleaned with ethanol, and chips were placed into a sterile 10 cm-diameter Petri dish (Corning). Chips plating area was then filled with 70% ethanol for 20 min, rinsed 2-3 times with sterile double-distilled water (DDW), and dried under a laminar hood. Afterwards, chips were coated with a drop of laminin (0.1 mg/ml in DDW; Sigma Aldrich) mixed with a drop of poly-d-lysine (0.1 mg/ml in borate buffer: 100 mM boric acid, 25 mM sodium tetraborate, pH 8.4; Sigma Aldrich), Petri dishes were sealed with parafilm to prevent evaporation, and Petri with chips were incubated overnight at 37 °C and 5% CO₂. The next day, MEA chips were rinsed 4 times with sterile DDW and left to dry under the hood before cell seeding. Dissociated neurons (80 µl, 70000 neurons) were plated on the recording area of chips. After incubation (1h, 37 °C, 5% CO₂), 1.5 mL of complete medium (Neurobasal A, Gibco) supplemented with 1% L-glutamine (Gibco), 4% B27 (Gibco), 1% Glucose, 1% Penicillin-Streptomycin (Gibco) was added. One-third of the medium was replaced with fresh medium twice a week, according to the manufacturer's instructions. Spontaneous extracellular activity of neurons cultured on HD-MEAs was recorded at DIV16-21. On the day of the recordings, MEA chips were moved out of the incubator. After acclimation of 10 min, spontaneous activity was monitored for 20-25 min at RT to allow activity stabilization and recorded during the following 5 min.

Preparation of Arena MEA chips with acute brain slices

Pcdh19 cKO mice (Pcdh19^{fl/x} Syn1-Cre) and control littermates (Pcdh19^{fl/x}) were sacrificed by cervical dislocation and their brain was rapidly removed and placed in an ice-cold cutting solution at pH 7.3, equilibrated with 95% O₂ and 5% CO₂ (cutting solution: mM, 220 sucrose, 2 KCl, 1.3 NaH₂PO₄, 12 MgSO₄, 0.2 CaCl₂, 10 glucose, 2.6 NaHCO₃, 3 kynurenic acid). After removing cerebellum and prefrontal cortex, 400 μm-thick coronal brain slices containing the hippocampus (central region along the antero-posterior axis) were cut using a vibratome (Leica VT1000S). Slices

were incubated at 35°C for 40 min and then at RT for 1 hour in standard aCSF before recordings. Slices were transferred to Arena HD-MEA chips (3Brain, Switzerland).

A square-shaped platinum mesh anchor (custom-made by 3Brain) was placed over the slices to prevent displacement and to ensure uniform contact with the electrodes. Slices were perfused at a rate of ~4.5 mL/min with oxygenated aCSF at RT (22-24°C) for 10 min. Subsequently, Mg²⁺-free aCSF solution supplemented with 4-Aminopyridine (100 μM, Sigma Aldrich) was used in order to evoke epileptic-like activity. Recordings were performed at RT and slices were continuously perfused at a rate of 4.5 ml/min with aCSF.

Surgery for in vivo MEA implant

After 3 days of acclimatization at animal facility, wireless MEAs were implanted in P34-37 mouse brains, in correspondence of limbic system core regions, i.e. the amygdala (Amy), the CA1 hippocampal region, the perirhinal cortex (PRC) and the entorhinal cortex (ERC). To prevent infections, tetracycline was administered with water (50 mg/500 ml) 2 days before the surgery and instruments, working areas, and the stereotaxic apparatus were sterilized. Stereotaxic coordinates were -3.0 mm anterior-posterior and 3.0 mm medial-lateral from bregma, which identify an area on the parietal and interparietal bones overlying the primary and secondary visual cortices. Mice were anesthetized by a gaseous mixture of oxygen (95%) and isoflurane (5%) in the induction chamber for few minutes. The level of anesthesia was checked by testing the mouse response to opportune sensory stimuli usually provoking limb retraction. After induction, anesthesia was maintained throughout the surgical procedure by continuously administering isoflurane through a face mask. The mouse head was shaved down to the level of the descending trapezium and the skin was disinfected. The mouse was placed on a sterilized surgical desk in prone position. The mouse skin was incised from the nasal bones to the occipital bone. The surgical incision was then enlarged over the skull vault. The periosteum was then accurately removed from the bone vault to clear the access to the frontal and parietal left bones. A sterile dressing soaked with physiological solution was placed on the surgical field and fixed with surgical clips. The mouse, but the head, was then inserted within a plastic multi-perforated sack to avoid contaminations from fur and placed on a warmed surgical bed with temperature regulation at 37.5 °C within the frame of the stereotaxic apparatus. After fixing the mouse head to the apparatus, the bone surface was again cleaned and dried. If serous or bleeding sources were evident, they were dried out by pressing cotton blobs or burned by cauterization. Under surgical microscope control, a bone window for each hemisphere (mm²: 2x4, medial-lateral x anterior-posterior) was created to expose the meningeal dura mater surface. Bone powders springing off during the drilling procedure were conveniently removed by a pipette connected to a void-pump. One small pilot hole was made to aid for the insertion of a micro-screw (ground electrode). After, the cortical surface was maintained well hydrated and in correct osmotical environment by warmed aCSF. The microelectrodes matrix, previously cleaned by ethanol solution (70%) rinsing and then by immersion in sterile distilled water, was fixed to a sterile clamp mounted on a micro-stepper electronic motor (M228 Stepper-Mike Linear Actuators) on the stereotaxic frame. The motor was initially placed by manual control over the insertion area, in orthogonal position respect to the cortical surface, and slowly lowered toward the cortical surface. Next, the programmable motor was remotely controlled to guide the microelectrode matrix to touch the cortical surface. Finally, an electronically controlled descent step was made to reach the brain areas of interest (2-2.65 mm for PRC and CA1 electrodes, 4-5mm for Amy and ERC electrodes) and the electrode ground wire was fixed to the previously implanted micro-screw. The exposed cortical surface was gently covered with polyethylene glycol 4000, removing the excesses from the bone around. The whole surgical operation area was then covered by dental cement, molded around the plastic basis of the electrodes. The mouse was extracted from the protecting sack, removed from the stereotactic frame and placed in its cage in a warm environment. Gentamycin was spread around the surgical region. Electrophysiological recordings started 3 days after the surgery (recovery period).

SUPPLEMENTARY FIGURES LEGENDS

Supplementary Fig. 1 Pcdh19 exon 3 excision by Cre recombinase prevents Pcdh19 expression.

a Pcdh19 transcripts were assayed by RT-PCR with probes targeting upstream (exon, E 1-2) and downstream (E 4-5, E 5-6) regions of exon 3 in primary neurons prepared from P0 Pcdh19 floxed mice ($Pcdh19^{flf}$ and $Pcdh19^{flf}$). Neurons were infected at DIV0 with GFP-Cre AAVs. Infected and uninfected (Ctrl) neurons were lysed at DIV10. Pcdh19 mRNA expression was quantified by $2^{-\Delta\Delta Ct}$ method and normalized on actin mRNA levels. Data are shown as means \pm SEM (N = 3; Student's ttest, ** p < 0.01, *** p < 0.001). See also Supplementary Table 7.

b IF on primary neurons as in **a**. Neurons were stained at DIV7 with MAP2 and PCDH19. Scale bar, 20 μm.

c Western blot on primary neurons as in a. Neurons were lysed at DIV10. GAPDH was used as loading control.

Supplementary Fig. 2 PCDH19 is expressed in both excitatory and inhibitory neurons and localizes at excitatory and inhibitory synapses.

a Representative IF images of coronal cortical and hippocampal slices from a P23 *Pcdh19* floxed mouse (*Pcdh19*^{fl/x}) stained for PCDH19, NeuN, GAD and DAPI, as indicated. The inserts show higher magnification images. Scale bars, 100 μm.

b Representative IF images of primary neurons from P0 *Pcdh19* floxed mice (*Pcdh19*^{fl/l} and *Pcdh19*^{fl/y}) (left) and colocalization analysis (right). Neurons were stained at DIV11 with PCDH19 and the markers of excitatory synapses VGLUT and PSD95. The fluorescence intensity profiles plot refers to the dendrite in the higher magnification images. Scale bars, 10 μm.

Van Steensel's cross correlation function (Pearson's, R, as a function of pixelshift), R and Manders' coefficients (M1, fraction of PCDH19 overlapping with the indicated synaptic markers and M2,

fraction of each synaptic marker overlapping with PCDH19) are shown. N=13 neurons from 3 independent cultures.

c Representative IF images of primary neurons from mice as in **b** (left) and colocalization analysis (right). Neurons were stained at DIV11 with PCDH19 and the proteins of inhibitory synapses VGAT and GABA_AR beta 3 subunit. The fluorescence intensity profiles plot refers to the dendrite in the higher magnification images. Scale bars, 10 μm. Van Steensel's cross correlation function, R, and M1, M2 coefficients are shown. N=15 neurons from 3 independent cultures.

All data (**b**, **c**) are shown as means \pm SEM. See also Supplementary Table 8.

Supplementary Fig. 3 Genotyping strategy and expression of the *Pcdh19* floxed allele.

a Schematic representation of PCR primers annealing on *Pcdh19* WT, floxed and cKO alleles and amplification products length (base pairs, bp: WT 1053, floxed 1224, cKO 379). E = exon.

b Representative results of PCR-based genotyping for *Pcdh19* WT, cKO female (*Pcdh19*^{fl/x} Syn1-Cre) and cKO male (*Pcdh19*^{fl/y} Syn1-Cre) mice, as indicated. Genomic DNA was extracted from the tail (left panel) or from the cortex (right panel). The *Pcdh19* floxed allele (1224 bp) is converted in the cKO allele (379 bp) selectivity in brain tissue.

c Representative Western blot and relative quantification showing PCDH19 protein expression in the hippocampus of three different groups of female mice: WT, heterozygous Pcdh19 floxed mice $(Pcdh19^{fl/x})$ and homozygous Pcdh19 floxed mice $(Pcdh19^{fl/y})$. PCDH19 was normalized on GAPDH. Data are shown as means \pm SEM (N mice = 5/genotype; one-way ANOVA, n.s.). See also Supplementary Table 9.

Supplementary Fig. 4 Analysis of synapse ultrastructure in *Pcdh19* mosaic mice obtained by Cre AAV injection

a Representative Western blots and relative quantification of PCDH19 expression in the hippocampus of > P90 *Pcdh19* mosaic mice obtained via GFP-2A-Cre AAVs injection of *Pcdh19* floxed mice

($Pcdh19^{fl/fl}$ and $Pcdh19^{fl/y}$) (Mosaic) and uninjected WT (Ctrl) mice. PCDH19 expression was normalized on tubulin (N, Ctrl 3, Mosaic 3; Student's t-test, * p < 0.05).

b Representative electron micrographs of excitatory synapses on apical dendrites of hippocampal CA1 pyramidal neurons from P50 mice as in **a** (top panel; scale bar, 200 nm)

c Quantification of synapse density and structural features from neurons as in **b** (N mice, Ctrl 3, Mosaic 2; N synapses > 100/genotype. Synapse density was evaluated on 369.0 μ m² (Ctrl) and 328.0 μ m² (Mosaic). Mann-Whitney test or Student's t-test, * p < 0.05, *** p < 0.001, see Supplementary Table 10).

d PSD thickness and vesicle density distribution in excitatory synapses as in **b** (N mice, Ctrl 3, Mosaic 2).

All data (\mathbf{a}, \mathbf{c}) are shown as means \pm SEM. See also Supplementary Table 10.

Supplementary Fig. 5 Hippocampal slices from *Pcdh19* mosaic mice at P8-10 and P60-90 display altered network activity.

a Top left panel, representative images of MEA activity maps in pseudocolors, showing firing activity of hippocampal slices from *Pcdh19* mosaic mice (*Pcdh19*^{fl/x} Syn1-Cre, Mosaic) and controls (*Pcdh19*^{fl/x}, Ctrl) at P8-10. Top middle panel, representative raster plots showing electrophysiological activity recorded from 100 active channels over 5 min in Ctrl and Mosaic mice. Top right panel, representative traces recorded form a single electrode over 5 min in Ctrl and Mosaic mice. Bottom panels, quantification of MFR (total and by area: CA1, CA3, DG), MBR, MBD, PSB, and SI in Ctrl and Mosaic mice (N slices, Ctrl 8, Mosaic 6, from 6 Ctrl and 3 Mosaic mice; Student's t-test, * p <0.05, *** p <0.001).

b Panels as in **a**, showing data from Pcdh19 mosaic mice ($Pcdh19^{fl/x}$ Syn1-Cre, Mosaic) and controls ($Pcdh19^{fl/x}$, Ctrl) at P60-90 (N slices, Ctrl 5, Mosaic 5, from 3 mice/genotype; Student's t-test, * p <0.05, ** p <0.01).

All data (**a-b**) are shown as means \pm SEM. See also Supplementary Table 11.

Supplementary Fig. 6 Stereotactic coordinates of the extracellular microelectrodes for *in vivo* recordings.

Top and middle panels, coronal views of the two bilateral recording sites along the anteroposterior axis. Colored vertical bars superimposed on mouse coronal sections drawings [1] indicate groups of microelectrodes targeting brain regions of interests. 4 microelectrodes were positioned in amygdala (Amy), CA1 and entorhinal cortex (ERC), and 3 microelectrodes were positioned in perirhinal cortex (PRC). Bottom panel, length and spacing of the 15 microelectrodes that compose one of the two rows (one for each hemisphere) of the recording matrix (MicroProbes, Gaithersburg, US) connected to the headstage (Omnetics, Minneapolis, US). A, anterior; P, posterior.

Supplementary Fig. 7 Pcdh19 cKO male mice display mosaic expression of PCDH19.

- a Quantification of Pcdh19 expression in cerebral cortex and in hippocampus from adult (P90) Pcdh19 cKO male mice ($Pcdh19^{fl/y}$ Syn1-Cre, Mosaic) compared to sex-matched control littermates ($Pcdh19^{fl/y}$, Ctrl). Pcdh19 mRNA expression was normalized on actin mRNA levels (Cortex: N, Ctrl 4, Mosaic 3; Hippocampus: N, Ctrl 5, Mosaic 3; Student's t-test, * p < 0.05, ** p < 0.01).
- **b** Representative Western blots and relative quantification of PCDH19 expression in cortex and hippocampus from adult (P90-120) male mice as in **a**. PCDH19 expression was normalized on GAPDH (Cortex: N, Ctrl 8, Mosaic 9; Hippocampus: N, Ctrl 6, Mosaic 7; Student's t-test, *** p < 0.001).
- c Representative IF images of coronal cortical slices from P30 mice as in a stained for PCDH19 and DAPI. The inserts show higher magnification images; arrows indicate representative couples of PCDH19-positive (yellow arrows) and -negative (white arrows) neurons. Scale bar, 100 μm (lower magnification), 20 μm (higher magnification).
- **d** Representative Western blot and relative quantification of PCDH19 protein expression in the hippocampus of three different groups of male mice: WT, *Pcdh19* floxed (*Pcdh19*^{fl/y}) and Syn1-Cre

mice. PCDH19 was normalized on GAPDH (N mice, WT 7, *Pcdh19*^{fl/y} 6, Syn1-Cre 6; one-way ANOVA n.s.).

All data (a, b, d) are shown as means \pm SEM. See also Supplementary Table 12.

Supplementary Fig. 8 LFP power spectral density at low-frequency bands is preserved in *Pcdh19* mosaic mice.

LFP power spectral density in δ (1-4 Hz) and θ (4-8 Hz) bands from limbic system regions of Pcdh19 mosaic mice ($Pcdh19^{fl/y}$ Syn1-Cre, Mosaic) and controls ($Pcdh19^{fl/y}$, Ctrl) (N mice, Ctrl 2, Mosaic 2; Student's t-test, n.s.). Data are shown as means \pm SEM. See also Supplementary Table 13.

Supplementary Fig. 9 LFP oscillations are affected in hippocampal slices from *Pcdh19* mosaic mice.

a Representative LFP trace before and after lowpass filtering (1-150 Hz). LFP event amplitude and duration are shown.

b-d Representative LFP events (top) and quantification of LFP rate, amplitude, duration and synchronization (bottom) in hippocampal slices from mosaic mice ($Pcdh19^{fl/x}$ Syn1-Cre, Mosaic) and controls ($Pcdh19^{fl/x}$, Ctrl) at P8-10 (**b**), P18-20 (**c**), and P60-90 (**d**) (P8-10: N slices, Ctrl 12, Mosaic 6, from 8 Ctrl and 4 Mosaic mice; P18-20: N slices, Ctrl 13, Mosaic 8, from 6 Ctrl and 4 Mosaic mice; P60-90: N slices, Ctrl 5, Mosaic 5, from 3 Ctrl and 3 Mosaic mice; Student's t-test, * p < 0.05, ** p < 0.01).

e-g Power spectral density of LFP bands (Hz, α 10-12, β 12-25, γ 25-100) in hippocampal slices from mice as in **b-d** at P8-10 (**e**), P18-20 (**f**), and P60-90 (**g**) (P8-10: N slices, Ctrl 12, Mosaic 6, from 8 Ctrl and 4 Mosaic mice; P18-20: N slices, Ctrl 13, Mosaic 8 from 6 Ctrl and 4 Mosaic mice; P60-90: N slices, Ctrl 13, Mosaic 8, from 3 Ctrl and 3 Mosaic mice; Student's t-test, * p < 0.05, ** p < 0.01, *** p < 0.001).

All data (**b-g**) are shown as means \pm SEM. See also Supplementary Table 14.

SUPPLEMENTARY REFERENCES

1.

Paxinos G, Franklin KB. The Mouse Brain in Stereotaxic Coordinates. Second Edi. 2004.

SUPPLEMENTARY TABLES

Supplementary table 1. Mean values, SEM, number of samples and p values of data displayed in Figure 1.

Fig. 1b				
Pchd19 mRNA	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl (Cortex)	8.296	0.755	8	Ctul va Massia < 0.001 (***)
Mosaic (Cortex)	3.656	0.204	6	Ctrl vs. Mosaic $p < 0.001 (***)$
Ctrl (Hippocampus)	10.240	0.510	7	Ctrl vs. Mosaic p = 0.001 (**)
Mosaic (Hippocampus)	5.799	0.947	7	Ctr vs. Mosaic p = 0.001 (**)

Fig. 1c PCDH19 / GAPDH	Mean	SEM	N	p value
				(Two – tailed unpaired Student's t – test)
Ctrl (Cortex)	1.000	0.111	7	Ctal vs. Massis, $n = 0.020$ (*)
Mosaic (Cortex)	0.645	0.078	8	Ctrl vs. Mosaic $p = 0.020$ (*)
Ctrl (Hippocampus)	1.000	0.090	8	
Mosaic	0.602	0.059	7	Ctrl vs. Mosaic $p = 0.003 (**)$
(Hippocampus)	0.002	0.039	/	

Fig. 1e Weight (g)	Group	Mean	SEM	N	p value (Mixed – effect Two – way ANOVA, post hoc FDR)
Week					
3	Ctrl	7.876	0.283	18	Ctrl vs. Mosaic
	Mosaic	7.165	0.205	20	p = 0.041 (*)
4	Ctrl	11.961	0.683	20	Ctrl vs. Mosaic
	Mosaic	9.898	0.432	19	p = 0.021(*)
5	Ctrl	14.762	0.693	16	Ctrl vs. Mosaic
2	Mosaic	12.222	0.389	17	p = 0.010 (**)
6	Ctrl	16.664	0.403	22	Ctrl vs. Mosaic
U	Mosaic	14.334	0.512	14	p = 0.007 (**)
7	Ctrl	18.075	0.423	18	Ctrl vs. Mosaic
/	Mosaic	16.634	0.290	20	p = 0.015 (**)
8	Ctrl	19.049	0.458	17	Ctrl vs. Mosaic
ð	Mosaic	17.634	0.377	14	p = 0.025 (*)
9	Ctrl	20.661	0.397	11	Ctrl vs. Mosaic
9	Mosaic	19.046	0.673	9	p = 0.041 (*)
10	Ctrl	19.913	0.507	12	Ctrl vs. Mosaic
10	Mosaic	19.585	0.351	10	p = 0.316 (n.s.)

11	Ctrl	21.125	0.538	8	Ctrl vs. Mosaic
11	Mosaic	19.952	0.491	11	p = 0.074 (n.s.)
10	Ctrl	22.049	0.342	17	Ctrl vs. Mosaic
12	Mosaic	21.076	0.508	12	p = 0.074 (n.s.)
Weight (%)	Group	Mean	SEM	N	p value (Mixed – effect Two – way ANOVA, post hoc FDR)
Week					
3	Ctrl	100.000	3.598	18	Ctrl vs. Mosaic
3	Mosaic	90.971	2.603	20	p = 0.044 (*)
4	Ctrl	100.000	5.708	20	Ctrl vs. Mosaic
4	Mosaic	82.756	3.609	19	p = 0.021(*)
5	Ctrl	100.000	4.694	16	Ctrl vs. Mosaic
3	Mosaic	82.797	2.633	17	p = 0.010 (**)
6	Ctrl	100.000	2.421	22	Ctrl vs. Mosaic
0	Mosaic	86.017	3.071	14	p = 0.007 (**)
7	Ctrl	99.910	2.338	18	Ctrl vs. Mosaic
/	Mosaic	92.028	1.608	20	p = 0.015 (*)
8	Ctrl	99.910	2.403	17	Ctrl vs. Mosaic
0	Mosaic	92.568	1.981	14	p = 0.025 (*)
9	Ctrl	99.910	1.920	11	Ctrl vs. Mosaic
9	Mosaic	92.182	3.259	9	p = 0.044 (*)
10	Ctrl	100.000	2.548	12	Ctrl vs. Mosaic
10	Mosaic	98.355	1.764	10	p = 0.316 (n.s.)
11	Ctrl	100.000	2.548	8	Ctrl vs. Mosaic
11	Mosaic	94.446	2,323	11	p = 0.074 (n.s.)
12	Ctrl	99.910	1.552	17	Ctrl vs. Mosaic
12	Mosaic	95.585	2.305	12	p = 0.074 (n.s.)

Fig. 1f Weight gain (%)	Group	Mean	SEM	N	p value (Mixed – effect Two – way ANOVA, post hoc FDR)
Week					
3 – 4	Ctrl	52.766	5.026	16	Ctrl vs. Mosaic
3 – 4	Mosaic	38.254	3.083	19	p = 0.003 (**)
4 – 5	Ctrl	27.217	4.655	14	Ctrl vs. Mosaic
4 – 3	Mosaic	22.931	4.750	16	p = 0.667 (n.s.)
5 – 6	Ctrl	14.121	3.179	16	Ctrl vs. Mosaic
3 – 0	Mosaic	20.289	3.712	11	p = 0.506 (n.s.)
6 – 7	Ctrl	7.395	1.222	18	Ctrl vs. Mosaic
0-7	Mosaic	14.269	2.532	14	p = 0.427 (n.s.)
7 – 8	Ctrl	6.615	0.820	16	Ctrl vs. Mosaic
7 - 8	Mosaic	8.588	0.777	14	p = 0.933 (n.s.)
8 – 9	Ctrl	3.520	1.109	7	Ctrl vs. Mosaic
8 – 9	Mosaic	4.380	0.984	6	p = 0.933 (n.s.)
9 – 10	Ctrl	-0.778	0.571	3	Ctrl vs. Mosaic
9 – 10	Mosaic	2.243	1.535	5	p = 0.933 (n.s.)
10 – 11	Ctrl	2.518	0	1	Ctrl vs. Mosaic
10 – 11	Mosaic	2.518	1.463	8	p = 0.933 (n.s.)
11 - 12	Ctrl	3.877	0.277	7	Ctrl vs. Mosaic

Mosaic	3.889	1.351	8	p = 0.933 (n.s.)

Weight gain (g)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	13.77	0.269	13	Ctul va Magaia $n = 0.904 (n a)$
Mosaic	13.84	0.445	12	Ctrl vs. Mosaic $p = 0.894$ (n.s.)

Fig. 1g					
Stage / time (min)	Group	Mean	SEM	N	p value (Two – way ANOVA, post hoc FDR)
2 min	Ctrl	0.625	0.183	8	Ctrl vs. Mosaic $p = 0.126$ (n.s.)
2 111111	Mosaic	1.375	0.375	8	Cti vs. Wosaic p 0.120 (ii.s.)
3 min	Ctrl	0.750	0.164	8	Ctrl vs. Mosaic $p = 0.068$ (n.s.)
J IIIII	Mosaic	2.125	0.549	8	Cti vs. Wosaic p – 0.000 (ii.s.)
4 min	Ctrl	0.875	0.125	8	Ctrl vs. Mosaic $p = 0.049$ (*)
7 111111	Mosaic	2.375	0.532	8	Cti vs. Wosaic p = 0.045 ()
5 min	Ctrl	0.875	0.125	8	Ctrl vs. Mosaic $p = 0.021$ (*)
J 111111	Mosaic	2.875	0.549	8	Cti vs. Wosaic p = 0.021 ()
6 min	Ctrl	0.875	0.125	8	Ctrl vs. Mosaic $p = 0.016$ (*)
O IIIII	Mosaic	3.250	0.491	8	Ctil vs. Wosaic p = 0.010 ()
7 min	Ctrl	1.125	0.295	8	Ctrl vs. Mosaic $p = 0.016$ (*)
/ 111111	Mosaic	3.375	0.532	8	Ctil vs. Mosaic p = 0.010 (*)
8 min	Ctrl	1.375	0.324	8	Ctrl vs. Mosaic $p = 0.021$ (*)
8 111111	Mosaic	3.375	0.532	8	Cut vs. Wosaic $p = 0.021$ (*)
9 min	Ctrl	1.125	0.295	8	Ctrl vs. Mosaic $p = 0.016$ (*)
9 111111	Mosaic	3.625	0.596	8	Ctrl vs. Mosaic $p = 0.016$ (*)
10 min	Ctrl	1.125	0.295	8	Ctrl va Magaia = 0.016 (*)
10 111111	Mosaic	3.500	0.463	8	Ctrl vs. Mosaic $p = 0.016$ (*)
11 min	Ctrl	1.375	0.420	8	Ctrl vs. Mosaic p = 0.016 (*)
11 mm	Mosaic	3.375	0.420	8	Ctrl vs. Mosaic $p = 0.016$ (*)
12 min	Ctrl	1.375	0.420	8	Ctrl va Massia $n = 0.029$ (*)
12 mm	Mosaic	3.250	0.491	8	Ctrl vs. Mosaic $p = 0.028$ (*)
13 min	Ctrl	1.875	0.479	8	Ctrl va Magaia $p = 0.077 (p.s.)$
13 111111	Mosaic	3.375	0.532	8	Ctrl vs. Mosaic $p = 0.077$ (n.s.)
14 min	Ctrl	1.625	0.420	8	Ctrl va Magaia $n = 0.042 (*)$
14 111111	Mosaic	3.500	0.567	8	Ctrl vs. Mosaic $p = 0.042 (*)$
15 min	Ctrl	2.000	0.463	8	Ctrl vs. Mosaic $p = 0.067$ (n.s.)
13 111111	Mosaic	3.500	0.463	8	Ctrl vs. Mosaic $p = 0.067$ (n.s.)
16 min	Ctrl	2.000	0.535	8	Ctrl va Magaia n = 0.084 (n a)
10 111111	Mosaic	3.375	0.420	8	Ctrl vs. Mosaic $p = 0.084$ (n.s.)
17 min	Ctrl	2.125	0.549	8	Ctrl vs. Mosaic $p = 0.072$ (n.s.)
1 / 111111	Mosaic	3.500	0.267	8	Ctrl vs. Mosaic $p = 0.072$ (n.s.)
10 min	Ctrl	2.125	0.549	8	Ctrl vs. Massis = 0.016 (*)
18 min	Mosaic	4.000	0.378	8	Ctrl vs. Mosaic $p = 0.016$ (*)
10	Ctrl	2.250	0.412	8	Ctul va Massia n = 0.209 (= z)
19 min	Mosaic	3.000	0.627	8	Ctrl vs. Mosaic $p = 0.308$ (n.s.)
20 :	Ctrl	2.000	0.535	8	Chalana Manaia a 0.550 (mm)
20 min	Mosaic	2.250	0.526	8	Ctrl vs. Mosaic $p = 0.558$ (n.s.)
21	Ctrl	2.125	0.515	8	Chilara Mancia and 0.474 ()
21 min	Mosaic	2.500	0.500	8	Ctrl vs. Mosaic $p = 0.474$ (n.s.)
22 min	Ctrl	1.625	0.375	8	Ctrl vs. Mosaic $p = 0.157$ (n.s.)

	Mosaic	2.	625	0.532	8		
23 min	Ctrl	1.	500	0.423	8	Ctrl va Magaia n = 0	1124 (n.g.)
23 111111	Mosaic	2.	625	0.532	8	Ctrl vs. Mosaic $p = 0$	7.134 (II.S.)
24 min	Ctrl	1.	375	0.324	8	Ctrl vs. Mosaic $p = 0$	250 (n.s.)
24 111111	Mosaic	1.	875	0.515	8	Cut vs. Wiosaic $p - 0$	7.339 (II.S.)
25 min	Ctrl	2.	125	0.515	8	Ctrl vs. Mosaic $p = 0$	1635 (n.c.)
23 11111	Mosaic	2.	000	0.598	8	Cui vs. Mosaic p – c	7.033 (II.S.)
26 min	Ctrl	1.	500	0.423	8	Ctrl vs. Mosaic $p = 2$	190 (n s)
20 11111	Mosaic	2.	250	0.559	8	Cur vs. Wiosaic p = 2	.90 (11.8.)
27 min	Ctrl	1.	750	0.453	8	Ctrl vs. Mosaic $p = 0$	(403 (n s)
27 111111	Mosaic	2.	250	0.559	8	Cur vs. Wosaic p – c	р 0.403 (п.з.)
28 min	Ctrl	1.	625	0.460	8	Ctrl vs. Mosaic $p = 0$	p = 0.288 (p.s.)
20 11111	Mosaic	2.	375	0.498	8	Cur vs. Wosaic p – c	p 0.200 (n.s.)
29 min	Ctrl	1.	625	0.420	8	Ctrl vs. Mosaic $p = 0.133$ (n	1133 (n.s.)
27 111111	Mosaic	2.	625	0.420	8	Cur vs. Wosaic p – c	7.133 (II.s.)
30 min	Ctrl	1.	500	0.420	8	Ctrl vs. Mosaic $p = 0$	n = 0.344 (n c)
30 11111	Mosaic	2.	000	0.378	8	Cur vs. Wosaic p – c	(11.3.)
Latency to ons (min)	atency to onset (min) Mean S		N		p value (Two – tailed unpaired Student's t – test)		
Ctrl	15.43	0.00	1	Ctrl v	. Mos	p = 0.346 (n.s.)	
Mosaic	11.08	3.87	6	Curv	5. IVIOS	iic p = 0.340 (ii.s.)	

Supplementary table 2. Mean values, SEM, number of samples and p values of data displayed in Figure 2.

Fig. 2a Horizontal movements (n)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	1217	92.26	11	Ctrl va Massia n = 0.206 (n a)
Mosaic	1395	100.5	10	Ctrl vs. Mosaic $p = 0.206$ (n.s.)
Vertical movements (n)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	150.3	14.81	11	Ctrl va Massia $n = 0.240 (n \text{ s})$
Mosaic	170.0	13.52	10	Ctrl vs. Mosaic $p = 0.340$ (n.s.)

Fig. 2b Events > 25 sec (n)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	0.400	0.245	5	Ctrl va Massia $p = 0.022$ (*)
Mosaic	1.500	0.342	6	Ctrl vs. Mosaic $p = 0.033$ (*)
Duration (s)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	60.83	14.46	6	Ctrl vs. Mosaic $p = 0.187$ (n.s.)
Mosaic	116.7	36.63	6	Cut vs. Mosaic $p = 0.167$ (ii.s.)

Fig. 2c				
	Group	Mean	SEM	N

Index (N - F) / (N + F)					p value (Two – way ANOVA)
Time					
5 min	Ctrl	0.199	0.068	10	
3 IIIII	Mosaic	0.172	0.070	10	
120 min	Ctrl	0.240	0.055	10	Ctrl vs. Mosaic $p > 0.05$ (n.s.)
120 111111	Mosaic	0.189	0.070	10	Cut vs. Mosaic p > 0.03 (ii.s.)
24 h	Ctrl	0.249	0.059	10	
24 n	Mosaic	0.267	0.056	10	

Fig. 2d				
8				
Escape latency (s)	Mean	SEM	N	
Acqui	isition pha	se	l	p value (One – way ANOVA, post hoc FDR)
Ctrl				
1°day	30.79	4.342	11	10.1 20.1 0.001 (##)
2°day	15.01	3.601	11	1°day vs 2°day $p = 0.001 (##)$
3°day	10.34	2.009	11	1°day vs 3°day p = 0.001 (##) 1°day vs 4°day p = 0.009 (##)
4°day	13.25	3.537	11	1 day vs 4 day p = 0.009 (##)
Mosaic				
1°day	27.12	4.856	10	101 201 0.4647
2°day	24.00	4.383	10	1°day vs 2°day $p = 0.464$ (n.s.)
3°day	15.82	3.092	10	$1^{\circ} \text{day vs } 3^{\circ} \text{day } p = 0.082 \text{ (n.s.)}$
4°day	10.69	2.144	10	1° day vs 4° day $p = 0.013$ (§)
				p value (Two – way ANOVA, post hoc FDR)
				1°day Ctrl vs. Mosaic $p = 0.609$ (n.s.) 2°day Ctrl vs. Mosaic $p = 0.329$ (n.s.) 3°day Ctrl vs. Mosaic $p = 0.329$ (n.s.) 4°day Ctrl vs. Mosaic $p = 0.609$ (n.s.)
	Probe			p value (Two – tailed unpaired Student's t – test)
Ctrl	10.89	3.84	11	•
Mosaic	9.672	2.62	10	Ctrl vs. Mosaic $p = 0.797$ (n.s.)
Revo	ersal phase	;		p value (One – way ANOVA, post hoc FDR)
Ctrl				
1°day	18.32	3.377	11	1°day vs 2°day $p = 0.004 (##)$
2°day	7.606	1.141	11	1° day vs 2° day $p = 0.004$ (##) 1° day vs 3° day $p = 0.004$ (##)
3°day	5.585	0.759	11	1° day vs 3° day $p = 0.004 \text{ (##)}$ 1° day vs 4° day $p = 0.004 \text{ (##)}$
4°day	5.195	0.635	11	1 αις 13 τ αις ρ 0.00 τ (ππ)
Mosaic				
1°day	22.03	3.023	10	1°day vs 2°day $p < 0.0001$ (§§§)
2°day	10.82	2.719	10	1 day vs 2 day $p < 0.0001 (888)$ 1°day vs 3°day $p = 0.003 (88)$
3°day	10.48	2.109	10	1° day vs 3° day $p = 0.003 (88)$ 1° day vs 4° day $p = 0.002 (88)$
4°day	8.037	1.525	10	1 day vs 7 day p = 0.002 (88)
				p value (Two – way ANOVA, <i>post hoc</i> FDR)

				1°day Ctrl vs. Mosaic p = 0.444 (n.s.) 2°day Ctrl vs. Mosaic p = 0.415 (n.s.) 3°day Ctrl vs. Mosaic p = 0.214 (n.s.) 4°day Ctrl vs. Mosaic p = 0.233 (n.s.)			
	Probe			p value (Two – tailed unpaired Student's t – test)			
Ctrl	3.520	1.217	11	Ctrl va Magaia n = 0.115 (n a)			
Mosaic	10.18	4.021	10	Ctrl vs. Mosaic $p = 0.115$ (n.s.)			

Fig. 2e					
Freezing time (s)	Group	Mean	SEM	N	
	Condition	p value (Two – way ANOVA)			
1 min	Ctrl	40.31	3.30	10	
1 111111	Mosaic	40.18	4.40	9	
2 min	Ctrl	42.12	3.82	10	
2 111111	Mosaic	40.28	3.72	9	
3 min	Ctrl	44.77	2.46	10	
5 111111	Mosaic	44.53	3.20	9	
4 min	Ctrl	50.62	1.76	10	Ctrl vs. Mosaic $p > 0.05$ (n.s.)
4 111111	Mosaic	50.14	2.21	9	
5 min	Ctrl	51.68	1.35	10	
3 111111	Mosaic	54.10	1.47	9	
6min	Ctrl	53.57	2.87	10	
OIIIII	Mosaic	52.08	1.70	9	
7 min	Ctrl	55.97	1.41	10	
/ 111111	Mosaic	55.49	2.74	9	
	Contex	t			p value (Two – way ANOVA, <i>post hoc</i> FDR)
1	Contex	45.12	3.71	10	(Two – way ANOVA, post hoc FDR)
1 min			3.71 3.82	10 9	_
	Ctrl	45.12			(Two – way ANOVA, post hoc FDR) Ctrl vs. Mosaic $p = 0.099$ (n.s.)
1 min 2 min	Ctrl Mosaic	45.12 41.04	3.82	9	(Two – way ANOVA, post hoc FDR)
2 min	Ctrl Mosaic Ctrl	45.12 41.04 52.67	3.82 3.23	9 10	(Two – way ANOVA, post hoc FDR) Ctrl vs. Mosaic $p = 0.099$ (n.s.) Ctrl vs. Mosaic $p = 0.013$ (*)
	Ctrl Mosaic Ctrl Mosaic	45.12 41.04 52.67 45.69	3.82 3.23 3.19	9 10 9	(Two – way ANOVA, post hoc FDR) Ctrl vs. Mosaic $p = 0.099$ (n.s.)
2 min 3 min	Ctrl Mosaic Ctrl Mosaic Ctrl	45.12 41.04 52.67 45.69 55.60	3.82 3.23 3.19 3.07	9 10 9 10 9 10	(Two – way ANOVA, post hoc FDR) Ctrl vs. Mosaic $p = 0.099 \text{ (n.s.)}$ Ctrl vs. Mosaic $p = 0.013 \text{ (*)}$ Ctrl vs. Mosaic $p = 0.007 \text{ (**)}$
2 min	Ctrl Mosaic Ctrl Mosaic Ctrl Mosaic	45.12 41.04 52.67 45.69 55.60 45.74 55.25 47.39	3.82 3.23 3.19 3.07 3.18	9 10 9 10 9 10 9	(Two – way ANOVA, post hoc FDR) Ctrl vs. Mosaic $p = 0.099$ (n.s.) Ctrl vs. Mosaic $p = 0.013$ (*)
2 min 3 min 4 min	Ctrl Mosaic Ctrl Mosaic Ctrl Mosaic Ctrl Ctrl	45.12 41.04 52.67 45.69 55.60 45.74 55.25	3.82 3.23 3.19 3.07 3.18 2.35	9 10 9 10 9 10	(Two – way ANOVA, post hoc FDR) Ctrl vs. Mosaic $p = 0.099 \text{ (n.s.)}$ Ctrl vs. Mosaic $p = 0.013 \text{ (*)}$ Ctrl vs. Mosaic $p = 0.007 \text{ (**)}$ Ctrl vs. Mosaic $p = 0.034 \text{ (*)}$
2 min 3 min	Ctrl Mosaic Ctrl Mosaic Ctrl Mosaic Ctrl Mosaic Ctrl Mosaic	45.12 41.04 52.67 45.69 55.60 45.74 55.25 47.39	3.82 3.23 3.19 3.07 3.18 2.35 4.74	9 10 9 10 9 10 9	(Two – way ANOVA, post hoc FDR) Ctrl vs. Mosaic $p = 0.099 \text{ (n.s.)}$ Ctrl vs. Mosaic $p = 0.013 \text{ (*)}$ Ctrl vs. Mosaic $p = 0.007 \text{ (**)}$
2 min 3 min 4 min	Ctrl Mosaic Ctrl Mosaic Ctrl Mosaic Ctrl Mosaic Ctrl Ctrl Ctrl Ctrl Ctrl	45.12 41.04 52.67 45.69 55.60 45.74 55.25 47.39 54.51 44.27	3.82 3.23 3.19 3.07 3.18 2.35 4.74 1.98	9 10 9 10 9 10 9	(Two – way ANOVA, post hoc FDR) Ctrl vs. Mosaic $p = 0.099 \text{ (n.s.)}$ Ctrl vs. Mosaic $p = 0.013 \text{ (*)}$ Ctrl vs. Mosaic $p = 0.007 \text{ (**)}$ Ctrl vs. Mosaic $p = 0.034 \text{ (*)}$
2 min 3 min 4 min 5 min	Ctrl Mosaic	45.12 41.04 52.67 45.69 55.60 45.74 55.25 47.39 54.51	3.82 3.23 3.19 3.07 3.18 2.35 4.74 1.98	9 10 9 10 9 10 9	(Two - way ANOVA, post hoc FDR) $- Ctrl vs. Mosaic$
2 min 3 min 4 min	Ctrl Mosaic Ctrl Ctrl	45.12 41.04 52.67 45.69 55.60 45.74 55.25 47.39 54.51 44.27	3.82 3.23 3.19 3.07 3.18 2.35 4.74 1.98 3.63	9 10 9 10 9 10 9 10 9	(Two - way ANOVA, post hoc FDR) $- Ctrl vs. Mosaic$
2 min 3 min 4 min 5 min	Ctrl Mosaic Ctrl Mosaic Ctrl Mosaic Ctrl Mosaic Ctrl Mosaic Ctrl Ctrl Ctrl Ctrl Ctrl Ctrl Ctrl	45.12 41.04 52.67 45.69 55.60 45.74 55.25 47.39 54.51 44.27	3.82 3.23 3.19 3.07 3.18 2.35 4.74 1.98 3.63	9 10 9 10 9 10 9 10 9	(Two - way ANOVA, post hoc FDR) $- Ctrl vs. Mosaic$
2 min 3 min 4 min 5 min	Ctrl Mosaic	45.12 41.04 52.67 45.69 55.60 45.74 55.25 47.39 54.51 44.27	3.82 3.23 3.19 3.07 3.18 2.35 4.74 1.98 3.63	9 10 9 10 9 10 9 10 9	(Two – way ANOVA, post hoc FDR) Ctrl vs. Mosaic
2 min 3 min 4 min 5 min 1 min 2 min	Ctrl Mosaic Ctrl Tued	45.12 41.04 52.67 45.69 55.60 45.74 55.25 47.39 54.51 44.27 32.93 31.60 39.59	3.82 3.23 3.19 3.07 3.18 2.35 4.74 1.98 3.63	9 10 9 10 9 10 9 10 9	(Two - way ANOVA, post hoc FDR) $- Ctrl vs. Mosaic$
2 min 3 min 4 min 5 min	Ctrl Mosaic	45.12 41.04 52.67 45.69 55.60 45.74 55.25 47.39 54.51 44.27 32.93 31.60 39.59 41.59	3.82 3.23 3.19 3.07 3.18 2.35 4.74 1.98 3.63 1.97 3.87 3.12 3.07	9 10 9 10 9 10 9 10 9	(Two – way ANOVA, post hoc FDR) Ctrl vs. Mosaic

	Mosaic	48.91	3.60	9
5i	Ctrl	46.72	2.52	10
5 min	Mosaic	47.02	3.59	9

Fig. 2f									
fEPSP slope	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)					
First 10 min									
Ctrl	182.8	11.12	10	Ctul va Magaia $n = 0.002 (**)$					
Mosaic	135.3	6.078	10	Ctrl vs. Mosaic $p = 0.002 (**)$					
Last 10 min	Last 10 min								
Ctrl	190.3	18.28	10	Ctul va Massia $\alpha = 0.010 (**)$					
Mosaic	130.2	9.918	10	Ctrl vs. Mosaic $p = 0.010 (**)$					

Fig. 2g				
fEPSP PPR	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	1.696	0.072	11	Ctul vs. Massis = 0.040 (*)
Mosaic	1.483	0.063	10	Ctrl vs. Mosaic $p = 0.040$ (*)

Fig. 2h				
Synapse density (N / µm³)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	1.955	0.111	30	Ctrl vs. Massis = 0.005 (**)
Mosaic	1.523	0.096	30	Ctrl vs. Mosaic $p = 0.005 (**)$
PSD thickness (nm)	Mean	SEM	N	p value (Mann – Whitney test)
Ctrl	66.09	2.371	53	
Mosaic	50.00	1.806	56	Ctrl vs. Mosaic p <0.001 (***)
PSD length (nm)	Mean	SEM	N	p value (Mann – Whitney test)
Ctrl	266.7	10.74	53	Ctrl vs. Mosaic $p = 0.019 (*)$
Mosaic	304.2	11.72	56	Cut vs. Wosaic p = 0.015 ()
SAL (nm)	Mean	SEM	N	p value (Mann – Whitney test)
Ctrl	253.8	13.81	52	Ct-1 M 0.001 (**)
Mosaic	306.7	11.39	53	Ctrl vs. Mosaic $p = 0.001$ (**)
Spine head area (µm²)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	0.137	0.023	53	Ctul va Magaia n = 0.780 (n a)
Mosaic	0.112	0.007	53	Ctrl vs. Mosaic $p = 0.780$ (n.s.)

Presynaptic area (µm²)	Mean	S	EM	N		p value (Mann – Whitney test)		
Ctrl	0.191	0.	017	52		Chilara Marsia and 0.004 (mar)		
Mosaic	0.227	0.	017	017 53		Ctrl vs. Mosaic $p = 0.084$ (n.s.)		
Vesicle density (N / μm²)	Mean	S	EM	N		p value (Mann – Whitney test)		
Ctrl	417.9	2	1.78	53		Ctul vo Massia		
Mosaic	310.2	19	9.73	53	Ctrl vs. Mosaic p < 0.001 (***)			
Distribution of PSI thickness (nm)	O Ctrl,	%	Mosaic, %		(p value Comparison of Z-score, Mann-Whitney test)		
10	0.0	0	1	1.79				
20	0.0	0		0.00				
30	0.0	.00		7.14				
40	7.5	5	2	6.79				
50	18.8	37	3	7.50				
60	26.4	-2	12.50					
70	24.5	3	1	0.71	- ·			
80	13.2	21	1	1.79	Ctrl vs. M	vs. Mosaic $p = 0.742 \text{ (n.s.)}$		
90	3.7	7	1	1.79				
100	1.8	9	(0.00				
110	1.8	9	0.00					
120	0.0	0.00		0.00				
130	1.8	1.89		0.00				
140	0.0	0.00		0.00	1			
Distribution of vesicle density (N / μm²)	Ctrl,	%	Mosaic, %		(0	p value Comparison of Z-score, Two – tailed unpaired Student's t – test)		
100	3.7	7	4	5.56				
200	9.4	3	3	5.19				
300	22.6			4.07				
400	28.3			4.81				
500	16.9			9.26	Ctrl v	vs. Mosaic $p = 0.986 \text{ (n.s.)}$		
600	7.5			9.26				
700	9.4			0.00				
800	0.0			1.85				
900	1.8	9	(0.00				

Fig. 2i				
Pre-synaptic area (μm²)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)

Ctrl	0.238	0.036	20	Ctul va Mass	$p_{10} = p = 0.122 (p_{10})$		
Mosaic	0.347	0.061	18	Ctri vs. Mosa	p = 0.122 (n.s.)		
Vesicle density (N / µm²)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)			
Ctrl	257.2	29.64	20	Ctrl vs. Mosa	nic $p = 0.044 (*)$		
	185.4	15.1	18	Cui vs. Mosa	arc p = 0.044 (*)		
Distribution of vesicle density (N / μ m²)	C	Ctrl, %		Mosaic, %	p value (Comparison of Z-score, Two – tailed unpaired Student's t – test)		
100		20.00		33.33			
200		40.00		61.11			
300		20.00		0.00			
400		15.00		5.56	Ctrl vs. Mosaic $p = 0.114$ (n.s.)		
500		0.00		0.00	- ` ` ′		
600	00 5.00			0.00			
700		0.00		0.00			

Supplementary table 3. Mean values, SEM, number of samples and p values of data displayed in Figure 3.

Fig. 3b					
AP frequency (Hz)	DGGCs	Mean	SEM	N	p value (Two – way ANOVA, post hoc FDR)
0 pA	PCDH19+	0.000	0	11	PCDH19 + vs. PCDH19 –
o pA	PCDH19 -	0.625	0.34	16	p = 0.453 (n.s.)
10 pA	PCDH19+	0.546	0.55	11	PCDH19 + vs. PCDH19 –
10 pA	PCDH19 -	3.500	0.92	16	p = 0.173 (n.s.)
20 pA	PCDH19+	1.727	1.36	11	PCDH19 + vs. PCDH19 –
20 pA	PCDH19 -	6.938	1.27	16	p = 0.048 (*)
30 pA	PCDH19+	3.182	1.56	11	PCDH19 + vs. PCDH19 –
30 pA	PCDH19 -	9.500	1.53	16	p = 0.026 (*)
40 n A	PCDH19+	5.000	2	11	PCDH19 + vs. PCDH19 –
40 pA	PCDH19 -	12.13	1.63	16	p = 0.019 (*)
50 m A	PCDH19+	6.364	2.20	11	PCDH19 + vs. PCDH19 –
50 pA	PCDH19 -	13.25	1.75	16	p = 0.019 (*)
60 n A	PCDH19+	7.727	2.21	11	PCDH19 + vs. PCDH19 –
60 pA	PCDH19 -	14.69	1.91	16	p = 0.019 (*)
70 pA	PCDH19+	9.182	2.22	11	PCDH19 + vs. PCDH19 –
70 pA	PCDH19 -	15.56	1.98	16	p = 0.026 (*)
80 n A	PCDH19+	10.36	2.09	11	PCDH19 + vs. PCDH19 –
80 pA	PCDH19 -	16.38	2.03	16	p = 0.030 (n.s.)
00 n A	PCDH19+	11.00	2.09	11	PCDH19 + vs. PCDH19 –
90 pA	PCDH19 -	17.25	1.98	16	p = 0.026 (*)
100 4	PCDH19+	10.55	1.75	11	PCDH19 + vs. PCDH19 –
100 pA	PCDH19 -	17.81	2.09	16	p = 0.019 (*)
110 pA	PCDH19+	10.64	1.70	11	PCDH19 + vs. PCDH19 –

	PCDH19 -	17.88	2.08	16	p = 0.019 (*)
120 - 4	PCDH19+	10.00	1.49	11	PCDH19 + vs. PCDH19 -
120 pA	PCDH19 -	17.44	2.19	16	p = 0.019 (*)
120 - 1	PCDH19+	10.00	1.40	11	PCDH19 + vs. PCDH19 -
130 pA	PCDH19 -	17.69	2.22	16	p = 0.019 (*)
140 - 4	PCDH19+	9.364	1.16	11	PCDH19 + vs. PCDH19 -
140 pA	PCDH19 -	17.75	2.36	16	p = 0.019 (*)
150 - 4	PCDH19+	9.818	1.37	11	PCDH19 + vs. PCDH19 -
150 pA	PCDH19 -	17.50	2.20	16	p = 0.019 (*)
160 - 1	PCDH19+	8.727	1.280	11	PCDH19 + vs. PCDH19 -
160 pA	PCDH19 -	17.125	2.219	16	p = 0.019 (*)

Fig. 3c Input resistance (mΩ)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
PCDH19+	485.9	57.76	11	PCDH19 + vs. PCDH19 - p = 0.163 (n.s.)
PCDH19 -	590.4	45.36	16	p = 0.103 (n.s.)
RMP (mV)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
PCDH19+	-68.84	2.554	11	DCDU10 + va DCDU10
PCDH19 -	-57.22	1.921	16	PCDH19 + vs. PCDH19 - p = 0.001 (**)
Rheobase (pA)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
PCDH19+	41.82	6.441	11	DCD110 via DCD110 n < 0.001 (***)
PCDH19 -	13.75	2.720	16	PCDH19 + vs. PCDH19 - p < 0.001 (***)

Fig. 3d Instantaneous frequency (Hz) at 150 pA step		Mean	SEM	N	p value (Two – way ANOVA, post hoc FDR)
0.1 sec	PCDH19+	2.45	0.41	11	PCDH19 + vs. PCDH19 -
0.1 Sec	PCDH19 -	3.313	0.25	16	p = 0.055 (n.s.)
0.2 sec	PCDH19+	1.45	0.21	11	PCDH19 + vs. PCDH19 -
0.2 Sec	PCDH19 -	2.313	0.24	16	p = 0.055 (n.s.)
0.3 sec	PCDH19+	1.10	0.21	11	PCDH19 + vs. PCDH19 -
0.5 860	PCDH19 -	1.875	0.24	16	p = 0.055 (n.s.)
0.4 sec	PCDH19+	0.91	0.25	11	PCDH19 + vs. PCDH19 -
0.4 860	PCDH19 -	1.688	0.30	16	p = 0.055 (n.s.)
0.5 sec	PCDH19+	0.82	0.23	11	PCDH19 + vs. PCDH19 -
0.5 sec	PCDH19 -	1.5	0.27	16	p = 0.078 (n.s.)
0.6 sec	PCDH19+	0.73	0.24	11	PCDH19 + vs. PCDH19 -
0.0 sec	PCDH19 -	1.563	0.22	16	p = 0.055 (n.s.)
0.7 sec	PCDH19+	0.73	0.19	11	PCDH19 + vs. PCDH19 -
U. / Sec	PCDH19 -	1.438	0.26	16	p = 0.075 (n.s.)
0.8 sec	PCDH19+	0.55	0.16	11	PCDH19 + vs. PCDH19 -
0.0 800	PCDH19 -	1.563	0.20	16	p = 0.055 (n.s.)

0.0 aaa	PCDH19+	PCDH19 + 0.		'3	0.19	11	PCDH19 + vs. PCDH19 -
0.9 sec	PCDH19 -	CDH19 -		5	0.28	16	p = 0.173 (n.s.)
1.0 sec	PCDH19+	CDH19 + 0.6		4	0.15	11	PCDH19 + vs. PCDH19 -
1.0 sec	PCDH19 -	PCDH19 -		25	0.22	16	p = 0.185 (n.s.)
Exponential decay slope	Mean	Sl	EM	N			p value – tailed unpaired Student's t – test)
PCDH19+	5.932	1.	345	8	\rightarrow P('DH19 + v_0 P('DH19 - v_0 = 0.712 (n.e.)		n = 0.712 (n g)
PCDH19 -	6.555	0.	982	15			9 + vs. rCDn19 - p - 0./12 (n.s.)

Fig. 3e				
AP threshold (mV)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
PCDH19+	-37.45	1.790	11	DCD1110 + vs DCD1110
PCDH19 -	-38.88	1.698	16	PCDH19 + vs. PCDH19 - p = 0.578 (n.s.)
AP amplitude (mV)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
PCDH19+	93.33	2.532	11	DODUMA DODUMA A AAA ()
PCDH19 -	93.69	2.498	16	PCDH19 + vs. PCDH19 - p = 0.921 (n.s.)
AP half - width (ms)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
PCDH19+	1.282	0.042	11	PCDH19 + vs. PCDH19 - p = 0.321 (n.s.)
PCDH19 -	1.363	0.059	16	rebiii y + vs. rebiii y - p - 0.321 (ii.s.)
AP maximum rise slope (mV / ms)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
PCDH19+	253.9	11.65	11	PCDH19 + vs. PCDH19 - p = 0.552 (n.s.)
PCDH19 -	240.5	16.42	16	темпту - vs. гемпту - p = 0.332 (п.s.)
AP maximum decay slope (mV / ms)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
PCDH19+	67.08	2.433	11	DCD110 + va DCD110
PCDH19 -	62.95	2.895	16	PCDH19 + vs. PCDH19 - p = 0.317 (n.s.)

Fig. 3e fAHP (mV)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
PCDH19+	19.45	1.565	11	$DCDIII0 + xiz DCDIII0 \qquad n = 0.250 (n.c.)$
PCDH19 -	16.76	1.593	16	PCDH19 + vs. PCDH19 - p = 0.259 (n.s.)

Fig. 3f	Group	Mean	SEM	N	
---------	-------	------	-----	---	--

Current density (pA / pF)					p value (Two – way ANOVA)
		0	outward cu	ırrent	s
-75 mV	PCDH19+	0.000	0.000	10	
	PCDH19 -	0.000	0.000	15	_
-70 mV	PCDH19 +	0.000	0.000	10	4
	PCDH19 -	0.000	0.000	15	-
-65 mV	PCDH19 +	0.000	0.000	10	-
	PCDH19 -	0.000	0.000	15	-
-60 mV	PCDH19 +	0.082	0.056	10	-
	PCDH19 -	0.000	0.000	15	-
-55 mV	PCDH19 +	0.829	0.198	10 15	-
	PCDH19 -	0.430	0.145		-
-50 mV	PCDH19 + PCDH19 -	1.392 1.825	0.253	10	-
	PCDH19 -	2.777	0.487	10	-
-45 mV	PCDH19 +		0.623	15	-
	PCDH19 -	3.265 6.336	1.094	10	-
-40 mV	PCDH19 +	6.151	1.094	15	-
	PCDH19 +	9.056	1.024	10	-
-35 mV	PCDH19 -	10.729	1.242	15	-
	PCDH19+	12.262	1.567	10	-
-30 mV	PCDH19 -	14.149	1.456	15	-
	PCDH19+	16.830	0.676	10	1
-25 mV	PCDH19 -	17.314	1.801	15	-
	PCDH19+	19.869	0.834	10	-
-20 mV	PCDH19 -	21.535	1.663	15	-
	PCDH19+	23.064	1.020	10	-
-15 mV	PCDH19 -	25.197	1.946	15	-
	PCDH19+	26.217	1.170	10	-
-10 mV	PCDH19 -	29.104	2.219	15	-
	PCDH19+	30.018	1.486	10	-
-5 mV	PCDH19 -	33.277	2.457	15	PCDH19 + vs PCDH19 –
	PCDH19+	34.066	1.930	10	p > 0.05 (n.s.)
$0~\mathrm{mV}$	PCDH19 -	38.073	2.557	15	1
	PCDH19+	38.315	2.339	10	†
5 mV	PCDH19 -	42.889	2.889	15	†
	PCDH19+	42.707	2.707	10	1
10 mV	PCDH19 -	48.457	3.186	15	1
	PCDH19 +	47.841	3.447	10	1
15 mV	PCDH19 -	53.759	3.291	15	1
20 7-	PCDH19 +	52.316	3.956	10	1
20 mV	PCDH19 -	59.925	3.874	15	1
25 -	PCDH19 +	56.975	4.486	10	1
25 mV	PCDH19 -	65.502	4.207	15	1
	PCDH19 +	62.202	5.222	10	1
30 mV	PCDH19 -	72.835	4.702	15	1
25 33	PCDH19 +	66.914	5.824	10	1
35 mV	PCDH19 -	78.062	5.181	15	1
40 mV	PCDH19+	72.206	6.444	10	1

	PCDH19 -	83.605	5.459	15
45 37	PCDH19+	77.568	7.228	10
45 mV	PCDH19 -	89.209	5.734	15
50 m.V	PCDH19+	83.616	8.138	10
50 mV	PCDH19 -	95.693	6.314	15
55 mV	PCDH19+	88.670	8.793	10
55 mV	PCDH19 -	101.787	6.657	15
60 mV	PCDH19+	94.329	9.758	10
OU III V	PCDH19 -	113.901	7.163	15
65 mV	PCDH19+	99.941	10.518	10
OS III V	PCDH19 -	113.901	7.646	15
70 mV	PCDH19+	106.109	11.567	10
/U III V	PCDH19 -	119.256	8.408	15
75 mV	PCDH19+	111.948	12.444	10
/3 III V	PCDH19 -	124.491	9.423	15

Inward currents

-75 mV	PCDH19 +	0.000	0.000	10
-/3 III V	PCDH19 -	0.000	0.000	14
-70 mV	PCDH19+	0.000	0.000	10
-/0 III V	PCDH19 -	0.000	0.000	14
-65 mV	PCDH19 +	0.000	0.000	10
-03 III V	PCDH19 -	0.000	0.000	14
-60 mV	PCDH19 +	0.000	0.000	10
-00 III v	PCDH19 -	0.000	0.000	14
-55 mV	PCDH19+	0.000	0.000	10
-33 III V	PCDH19 -	-2.239	2.239	14
-50 mV	PCDH19 +	0.000	0.000	10
-30 m v	PCDH19 -	-44.188	21.227	14
-45 mV	PCDH19+	-27.480	17.185	10
-43 III V	PCDH19 -	-58.838	20.987	14
-40 mV	PCDH19 +	-91.611	23.809	10
-40 III V	PCDH19 -	-105.529	20.436	14
-35 mV	PCDH19 +	-97.166	19.770	10
-33 III V	PCDH19 -	-134.124	13.729	14
20 mV	PCDH19 +	-101.949	18.393	10
-30 mV	PCDH19 -	-135.521	10.547	14
-25 mV	PCDH19 +	-105.352	10.806	10
-23 III V	PCDH19 -	-124.244	9.983	14
-20 mV	PCDH19 +	-98.490	10.188	10
-20 m v	PCDH19 -	-118.320	9.279	14
-15 mV	PCDH19 +	-91.690	9.519	10
-13 III V	PCDH19 -	-110.345	8.739	14
-10 mV	PCDH19 +	-85.054	8.738	10
-10 III V	PCDH19 -	-102.623	8.218	14
-5 mV	PCDH19 +	-78.369	8.052	10
-3 III V	PCDH19 -	-94.680	7.624	14
0 mV	PCDH19 +	-71.621	7.396	10
UIIIV	PCDH19 -	-86.713	7.097	14
5 mV	PCDH19+	-64.995	6.580	10
3 m v	PCDH19 -	-78.600	6.521	14
10 mV	PCDH19+	-58.335	5.920	10
10 111 V	PCDH19 -	-70.935	5.923	14

PCDH19 + vs. PCDH19 - p > 0.05 (n.s.)

15 mV	PCDH19 + PCDH19 -	-51.736 -62.840		5.220 5.298	10 14	
	PCDH19+	-45.005		4.541	10	
20 mV	PCDH19 -	-55.243		4.757	14	
	PCDH19+	-38.509		3.841	10	
25 mV	PCDH19 -	-47.317		4.167	14	
	PCDH19 +	-47.317		3.199	10	
30 mV	PCDH19 +	-31.847		3.613	14	
	PCDH19 +	-39.303		2.600	10	
35 mV	PCDH19 +			3.088	14	
	PCDH19 - PCDH19 +	-31.886 -19.135		2.067	10	
40 mV	PCDH19 +	-19.133		2.557	14	
	PCDH19 +	-12.921		1.811	10	
45 mV	PCDH19 +			2.050	14	
	PCDH19 +	-16.731 -6.916			10	-
50 mV	PCDH19 +	-9.531		1.598 1.596	14	
		-9.551				
55 mV	PCDH19 + PCDH19 -			0.909	10 14	
		-3.468			10	
60 mV	PCDH19 + PCDH19 -	-0.167 -0.016		0.167	14	
	PCDH19 +	0.000		0.010	10	
65 mV	PCDH19 +	0.000		0.000	14	
	PCDH19 +	0.000		0.000	10	
70 mV	PCDH19 -	0.000	-	0.000	14	
	PCDH19+	0.000		0.000	10	
75 mV	PCDH19 +	0.000		0.000	14	
Capacitance (p	F) Mean 52.40	SEM 7.334	N 10		(Two	p value o – tailed unpaired Student's t – test)
Mosaic	46.29	3.803	14	Ctrl vs	Mosa	nic $p = 0.432$ (n.s.)
I / I max	Group	Mean		SEM	N	p value (Two – way ANOVA)
-60 mV	PCDH19 +	0.000		0.000	10	
-00 III v	PCDH19 -	0.000		0.000	14	
-55 mV	PCDH19+	0.000		0.000	10	
33 III V	PCDH19 -	0.017		0.017	14	
-50 mV	PCDH19+	0.000		0.000	10	
30 III V	PCDH19 -	0.286		0.125	14	
-45 mV	PCDH19 +	0.171		0.104	10	PCDH19 + vs. PCDH19 –
10 111 7	PCDH19 -	0.369		0.123	14	p > 0.05 (n.s.)
-40 mV	PCDH19+	0.616		0.152	10	P · 0.02 (n.s.)
10 111 7	PCDH19 -	0.653		0.111	14	-
-35 mV	PCDH19 +	0.672		0.129	10	
	PCDH19 -	0.866		0.050	14	
-30 mV	PCDH19 +	0.701		0.119	10	-
	PCDH19 -	0.867		0.019	14	-
-25 mV	PCDH19 +	0.852		0.030	10	
	PCDH19 -	0.812		0.017	14	

				(One – sample t test)
PCDH19 –	0.286	0.125	14	p = 0.040 (*)

Fig. 3g				
Amplitude (pA)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	9.630	0.597	10	Ctyl va Magaia n = 0.522 (n a)
Mosaic	10.39	1.031	9	Ctrl vs. Mosaic $p = 0.522$ (n.s.)
Area (pA * ms)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	78.87	5.156	10	Ctyl va Magaia $n = 0.064 (n \text{ a})$
Mosaic	79.36	9.624	9	Ctrl vs. Mosaic $p = 0.964$ (n.s.)
Decay time (ms)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	12.59	0.624	10	Ctrl vs. Mosaic $p = 0.191$ (n.s.)
Mosaic	11.42	0.580	9	Cut vs. Wiosaic p = 0.191 (II.s.)
Frequency (Hz)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	0.372	0.043	10	Ctrl vs. Mosaic $p = 0.133$ (n.s.)
Mosaic	0.290	0.027	9	Cut vs. Mosaic $p = 0.133$ (ii.s.)

Fig. 3h				
Amplitude (pA)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	9.554	0.786	13	Ctul va Massia = 0.417 (n.s.)
Mosaic	10.57	0.930	9	Ctrl vs. Mosaic $p = 0.417$ (n.s.)
Area (pA * ms)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	145.0	25.26	13	Ctul va Massia $n = 0.907 (n \text{ a})$
Mosaic	150.3	32.58	9	Ctrl vs. Mosaic $p = 0.897$ (n.s.)
Decay time (ms)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	28.82	1.952	13	Ctrl vs. Mosaic $p = 0.595$ (n.s.)
Mosaic	31.64	5.682	9	Cut vs. Wosaic $p = 0.393$ (ii.s.)
Frequency (Hz)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	0.500	0.933	13	Ctrl vs. Mossis = 0.004 (**)
Mosaic	0.073	0.117	9	Ctrl vs. Mosaic $p = 0.004 (**)$

Supplementary table 4. Mean values, SEM, number of samples and p values of data displayed in Figure 4.

Fig. 4a				
MFR (spike / s)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	0.734	0.097	6	C+1 M 0.020 (*)
Mosaic	0.485	0.013	6	Ctrl vs. Mosaic $p = 0.029$ (*)
MBR (burst / min)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	3.40	0.383	6	Ctrl vs Massis n = 0.121 (n s)
Mosaic	2.76	0.077	6	Ctrl vs. Mosaic $p = 0.131$ (n.s.)
MBD (ms)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	83.81	9.947	6	Ctrl vs. Mossis $n = 0.022$ (*)
Mosaic	55.95	5.115	6	Ctrl vs. Mosaic $p = 0.032$ (*)
SI (a.u.)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	0.243	0.007	6	Ctrl vs. Mossis $n = 0.002 (n \text{ s})$
Mosaic	0.313	0.037	6	Ctrl vs. Mosaic $p = 0.092$ (n.s.)

Fig. 4b				
MFR (spike / s)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Scrambled	5.934	1.561	8	Somewhiled via DCDIIIO abDNA = 0.020 (*)
PCDH19 shRNA	2.051	0.682	8	Scrambled vs. $PCDH19$ shRNA $p = 0.039$ (*)
MBR (burst / min)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Scrambled	6.655	0.865	8	Scrambled vs. $PCDH19$ shRNA $p = 0.047$ (*)
PCDH19 shRNA	4.179	0.683	7	Scrambled vs. $FCDIII9$ slikivA $p = 0.047$ (*)
MBD (ms)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Scrambled	522.4	82.59	8	Scrambled vs. $PCDH19$ shRNA $p = 0.033$ (*)
PCDH19 shRNA	291.8	41.85	7	betained vs. 1 CD1117 Sinct (1 p 0.055 ()

Fig. 4c MFR (spike / s)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	0.866	0.028	14	Ctul Manaia 0 001 (***)
Mosaic	0.632	0.051	8	Ctrl vs. Mosaic p < 0.001 (***)

MBR (burst / min)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	2.559	0.164	14	Ct-1 Massis < 0.001 (***)
Mosaic	1.598	0.130	8	Ctrl vs. Mosaic $p < 0.001 (***)$
MBD (ms)	Mean	SEM	N	p value (Mann – Whitney test)
Ctrl	81.82	4.731	14	Ctul va Manaia
Mosaic	100.4	13.75	8	Ctrl vs. Mosaic $p = 0.095$ (n.s.)
PSB (%)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	12.18	1.481	14	Ctrl vs. Mosaic $p = 0.081$ (n.s.)
Mosaic	28.87	7.304	8	Cti vs. Mosaic p = 0.001 (ii.s.)
SI (a.u.)	Mean	SEM	N	p value (Mann – Whitney test)
Ctrl	0.102	0.008	14	Ctrl vs. Mossis
Mosaic	0.178	0.019	8	Ctrl vs. Mosaic $p < 0.001 (***)$

Fig. 4c- inset MFR-CA1 (spike / s)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	0.313	0.032	14	Ctal vs. Massis $n < 0.001 (***)$
Mosaic	0.087	0.025	7	Ctrl vs. Mosaic p < 0.001 (***)
MFR-CA3 (spike / s)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	0.328	0.040	14	Ct-1 Maraia < 0.001 (***)
Mosaic	0.080	0.013	7	Ctrl vs. Mosaic p < 0.001 (***)
MFR-DG (spike / s)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	0.307	0.034	14	Ctrl vg Massia - p < 0.001 (***)
Mosaic	0.098	0.017	7	Ctrl vs. Mosaic p < 0.001 (***)

Supplementary table 5. Mean values, SEM, number of samples and p values of data displayed in Figure 5.

Fig. 5b MFR (spike / s)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	55.50	9.84	20	Ctul va Massia $u = 0.001 (**)$
Mosaic	32.44	4.88	28	Ctrl vs. Mosaic $p = 0.001 (**)$
MFR-CA1	Mean	SEM	N	p value

(spike / s)				(Two – tailed unpaired Student's t – test)
Ctrl	24.53	0.60	5	Ct.1 Marris (0.05 (*)
Mosaic	18.91	0.33	7	Ctrl vs. Mosaic $p < 0.05$ (*)
MFR-Amy (spike / s)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	91.87	1.37	5	C+1 M
Mosaic	50.69	0.36	7	Ctrl vs. Mosaic $p < 0.001 (***)$
MFR-ERC (spike / s)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	87.09	2.70	5	C(1 M ' (0.001 (***)
Mosaic	47.64	1.15	7	Ctrl vs. Mosaic $p < 0.001 (***)$
MFR-PRC (spike / s)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	18.51	0.99	5	Ctul va Massia
Mosaic	12.51	0.38	7	Ctrl vs. Mosaic $p < 0.05$ (*)

Fig. 5d Excitatory neurons							
Neurons / recording session (n) -CA1	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)			
Ctrl	25.00	0.53	5				
Mosaic	23.5	0.40	7	Ctrl vs. Mosaic $p = 0.96$ (n.s.)			
Neurons / recording session (n) -Amy	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)			
Ctrl	24.83	0.68	5	Ctrl vs. Mosaic $p = 0.94$ (n.s.)			
Mosaic	22.67	0.36	7	Ctrl vs. Mosaic $p = 0.94 \text{ (n.s.)}$			
Neurons / recording session (n) -ERC	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)			
Ctrl	26.50	0.31	5	C(1 M : 054()			
Mosaic	21.50	0.48	7	Ctrl vs. Mosaic $p = 0.54$ (n.s.)			
Neurons / recording session (n) -PRC	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)			
Ctrl	23.50	0.67	5	Color Maria a 0.70 ()			
Mosaic	21.67	0.54	7	Ctrl vs. Mosaic $p = 0.70$ (n.s.)			
		In	hibito	ry neurons			
	Mean	SEM	N	p value			

Neurons / recording session (n) -CA1				(Two – tailed unpaired Student's t – test)
Ctrl	11.00	0.38	5	Ct-1 Marris 0.12 (mg)
Mosaic	15.83	0.24	7	Ctrl vs. Mosaic $p = 0.12 \text{ (n.s.)}$
Neurons / recording session (n) -Amy	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	10.67	0.62	5	Chilara Massia n = 0.45 (n a)
Mosaic	12.16	0.59	7	Ctrl vs. Mosaic $p = 0.45$ (n.s.)
Neurons / recording session (n) -ERC	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	9.67	0.57	5	Ctrl vg Magaia $p = 0.00 (p.g.)$
Mosaic	11.00	0.63	7	Ctrl vs. Mosaic $p = 0.90$ (n.s.)
	11.00	0.03	/	* ` ′
Neurons / recording session (n) -PRC	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
C			,	-

E / I ratio

Neurons-CA1 (E / I ratio)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	2.42	0.15	5	Ctul via Massia
Mosaic	1.51	0.04	7	Ctrl vs. Mosaic $p = 0.11$ (n.s.)
Neurons-Amy (E / I ratio)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	2.60	0.20	5	Ctrl vs. Mosaic $p = 0.33$ (n.s.)
Mosaic	1.94	0.06	7	Ctrl vs. Mosaic $p = 0.33 \text{ (n.s.)}$
Neurons-ERC (E / I ratio)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	2.96	0.13	5	C(1 M : 027()
Mosaic	2.20	0.16	7	Ctrl vs. Mosaic $p = 0.27$ (n.s.)
Neurons-PRC (E / I ratio)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	2.68	0.22	5	Ctrl vs. Mosaic $p = 0.19$ (n.s.)
Mosaic	1.86	0.10	7	Ctrl vs. Mosaic $p = 0.19$ (n.s.)

Fig. 5e]	Excita	tory neurons

MFR-CA1	Maan	SEM	N.T	n volvo
(spike / s)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
(spike / s)				(1 wo tailed disparred Student's total)
Ctrl	12.16	0.22	5	
Mosaic	6.79	047	7	Ctrl vs. Mosaic $p = 0.03$ (*)
	01/2			
MFR-Amy	Mean	SEM	N	p value
(spike / s)				(Two – tailed unpaired Student's t – test)
(1 /				,
Ctrl	42.21	0.59	5	Ctrl vs. Mosaic p < 0.001 (***)
Mosaic	32.02	0.53	7	Cut vs. Mosaic $p < 0.001$ (***)
MFR-ERC	Mean	SEM	N	p value
(spike / s)				(Two – tailed unpaired Student's t – test)
Chul	40.41	0.40		
Ctrl	40.41	0.49	5 7	Ctrl vs. Mosaic $p < 0.001 (***)$
Mosaic	29.36	0.35	/	<u> </u>
MFR-PRC	Mean	SEM	N	p value
(spike / s)	Ivican	SENI	11	(Two – tailed unpaired Student's t – test)
(spike / s)				(1 wo tailed unpaired Student's t test)
Ctrl	15.14	0.46	5	
Mosaic	10.14	0.32	7	Ctrl vs. Mosaic $p = 0.01$ (*)
	-			
			Inhibi	tory neurons
				•
Neurons-CA1	Mean	SEM	N	p value
(spike / s)				(Two – tailed unpaired Student's t – test)
Ct-1	22.24	0.27	-	
Ctrl Mosaic	33.34	0.37	5	Ctrl vs. Mosaic $p = 0.02$ (*)
Mosaic	49.35	1.34	/	2
Neurons-Amy	Mean	SEM	N	p value
(spike / s)	Ivican	SENI	11	(Two – tailed unpaired Student's t – test)
(spine / s)				(1 wo tailed impaired student sit test)
Ctrl	66.57	0.90	5	0.02 (#)
Mosaic	81.59	1.64	7	Ctrl vs. Mosaic $p = 0.03$ (*)
Neurons-ERC	Mean	SEM	N	p value
(spike / s)				(Two – tailed unpaired Student's t – test)
G: 1	(0.00	0.1.1	-	
Ctrl	68.09	0.14	5	Ctrl vs. Mosaic $p = 0.003 (**)$
Mosaic	86.34	1.87	7	1 /
Nourena DDC	Macr	CIENA	N.T	w walna
Neurons-PRC (spike / s)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
(spike / s)				(1 wo tailed unpaired student's t – test)
Ctrl	27.10	0.38	5	G.1. W
Mosaic	32.31	1.81	7	Ctrl vs. Mosaic $p = 0.92 (n.s)$
-			<u> </u>	1
			E	Z / I ratio
Neurons-CA1	Mean	SEM	N	p value
	•	•	•	•

(spike / s)				(Two – tailed unpaired Student's t – test)
G. 1	0.26	0.007		
Ctrl	0.36	0.007	5	Ctrl vs. Mosaic p < 0.001 (***)
Mosaic	0.14	0.010	7	Сит уз. 14105ше р (0.001 ()
Neurons-Amy (spike / s)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	0.64	0.012	5	C(1 M ' 0001 (***)
Mosaic	0.39	0.009	7	Ctrl vs. Mosaic $p < 0.001 (***)$
Neurons-ERC (spike / s)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	0.59	0.007	5	C. 1 M
Mosaic	0.34	0.004	7	Ctrl vs. Mosaic $p < 0.001 (***)$
Neurons-PRC (spike / s)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	0.56	0.021	5	C(1 M ' (001 (***)
Mosaic	0.33	0.013	7	Ctrl vs. Mosaic $p < 0.001 (***)$

Supplementary table 6. Mean values, SEM, number of samples and p values of data displayed in Figure 6.

Fig. 6b				
LFP SI (a.u.)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	0.485	0.006	20	•
Mosaic	0.552	0.005	28	Ctrl vs. Mosaic p < 0.001 (***)
LFP SI-CA1 (a.u.)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	0.500	0.011	5	Ctul vs. Massis = 0.02 (*)
Mosaic	0.567	0.006	7	Ctrl vs. Mosaic $p = 0.03$ (*)
LFP SI-Amy (a.u.)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	0.461	0.015	5	Ct.1 Manage (0.001 (***)
Mosaic	0.540	0.014	7	Ctrl vs. Mosaic p < 0.001 (***)
LFP SI-ERC (a.u.)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	0.496	0.009	5	Ctrl vs. Mossis = 0.02 (*)
Mosaic	0.551	0.006	7	Ctrl vs. Mosaic $p = 0.02$ (*)
LFP SI-PRC (a.u.)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)

Ctrl	0.486	0.010	5	Ctul va Magaia	p < 0.001 (***)
Mosaic	0.562	0.012	7	Ctrl vs. Mosaic	p < 0.001 (***)

Fig. 6c				α-bands
Power spectral density (dB / Hz) CA1	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	0.37	0.02	5	
Mosaic	0.29	0.02	7	Ctrl vs. Mosaic $p = 0.344$ (n.s.)
Power spectral density (dB / Hz) Amy	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	3.11	0.56	5	
Mosaic	3.67	0.30	7	Ctrl vs. Mosaic $p = 0.062$ (n.s.)
Power spectral density (dB / Hz) ERC	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	0.72	0.05	5	0.1
Mosaic	1.28	0.16	7	Ctrl vs. Mosaic $p = 0.175$ (n.s.)
Power spectral density (dB / Hz) PRC	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	0.24	0.01	5	
Mosaic	0.35	0.03	7	Ctrl vs. Mosaic $p = 0.029$ (*)
			1	3-bands
Power spectral density (dB / Hz) CA1	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	0.03	0.00	5	
Mosaic	0.05	0.00	7	Ctrl vs. Mosaic $p = 0.118$ (n.s.)
Power spectral density (dB / Hz) Amy	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)

Ctul	0.21	0.05		
Ctrl Mosaic	0.31	0.05	5 7	Ctrl vs. Mosaic $p = 0.071$ (n.s.)
Power spectral	0.39 Mean	0.04 SEM	N	p value
density (dB / Hz) ERC				(Two – tailed unpaired Student's t – test)
Ctrl	0.09	0.01	5	Ctrl vs. Mosaic p < 0.001 (***)
Mosaic	0.13	0.01	7	Ctrl vs. Mosaic p < 0.001 (***)
Power spectral density (dB / Hz) PRC	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	0.02	0.00	5	Ctrl vs. Mosaic p = 0.006 (**)
Mosaic	0.04	0.00	7	Ctrl vs. Mosaic $p = 0.006$ (**)
	I		7	y-bands
Power spectral density (dB / Hz) CA1	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	0.002	0.00	5	Ctul Massia 0.002 (**)
Mosaic	0.005	0.00	7	Ctrl vs. Mosaic $p = 0.002 (**)$
Power spectral density (dB / Hz) Amy	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	0.02	0.00	5	Ctrl vs. Mosaic p = 0.053
Mosaic	0.04	0.00	7	Cut vs. Mosaic p = 0.033
Power spectral density (dB / Hz) ERC	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	0.00	0.00	5	Ctylus Massis n < 0.001 (***)
Mosaic	0.02	0.00	7	Ctrl vs. Mosaic p < 0.001 (***)
Power spectral density (dB / Hz) PRC	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	0.001	0.00	5	Ctrl vs. Mosaic p < 0.001 (***)
Mosaic	0.003	0.00	7	Cut vs. Mosaic b < 0.001 ()

Supplementary table 7. Mean values, SEM, number of samples and p values of data displayed in Supplementary Figure 1.

Suppl. Fig. 1a				
Fold change	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	1.000	0.000	3	Ct-1 F 1 2 < 0.001 (***)
E 1 – 2	0.013	0.001	3	Ctrl vs E $1-2$ p < 0.001 (***)
E 4 - 5	0.170	0.036	3	Ctrl vs E 4 – 5 $p = 0.007 (**)$ Ctrl vs E 5 – 6 $p < 0.001 (***)$
E 5 – 6	0.092	0.006	3	Curvs E 3 = 0 p < 0.001 (***)

Supplementary table 8. Mean values, SEM and number of samples of data displayed in Supplementary Figure 2.

Suppl. Fig. 2b PCDH19 – PSD95 colocalization	Mean	SEM	N
R	0.757	0.009	13
M1	0.444	0.033	13
M2	0.432	0.025	13
PCDH19 – VGLUT colocalization	Mean	SEM	N
R	0.907	0.009	13
M1	0.726	0.021	13
M2	0.749	0.016	13

Suppl. Fig. 2c			
PCDH19 – beta3 colocalization	Mean	SEM	N
R	0.684	0.017	15
M1	0.280	0.017	15
M2	0.381	0.020	15
PCDH19 – VGAT colocalization	Mean	SEM	N
R	0.748	0.026	15
M1	0.529	0.039	15
M2	0.666	0.030	15

Supplementary table 9. Mean values, SEM, number of samples and p values of data displayed in Supplementary Figure 3.

Suppl. Fig. 3c				
PCDH19 / GAPDH	Mean	SEM	N	p value

				(One – way ANOVA)
WT	1.787	0.439	5	
Pcdh19 fl/x	1.082	0.223	5	p > 0.05 (n.s.)
Pcdh19 ^{fl/fl}	2.245	0.689	5	

Supplementary table 10. Mean values, SEM, number of samples and p values of data displayed in Supplementary Figure 4.

Suppl. Fig. 4a PCDH19 / tubulin	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	0.971	0.067	3	Ct-1 vs Massis vs = 0.010 (*)
Mosaic	0.548	0.088	3	Ctrl vs Mosaic $p = 0.019$ (*)

Suppl. Fig. 4c				
Synaptic density (N / μm³)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
PCDH19 +	2.227	0.207	18	DCD1110 DCD1110
PCDH19 -	1.494	0.112	16	PCDH19 + vs. PCDH19 - p = 0.015 (*)
PSD thickness (nm)	Mean	SEM	N	p value (Mann – Whitney test)
PCDH19+	47.44	1.048	113	DCD1110 DCD1110
PCDH19 -	43.58	1.011	106	PCDH19 + vs. PCDH19 - p = 0.017 (*)
PSD length (nm)	Mean	SEM	N	p value (Mann – Whitney test)
PCDH19 +	259.8	7.199	114	DCDVIIO - DCDVIIO - 0.004 ()
PCDH19 -	265.5	6.942	108	PCDH19 + vs. PCDH19 - p = 0.224 (n.s.)
SAL (nm)	Mean	SEM	N	p value (Mann – Whitney test)
PCDH19+	328.7	11.79	114	DCD1110 DCD1110 0.412 (v. v.)
PCDH19 -	313.9	11.02	108	PCDH19 + vs. PCDH19 - p = 0.413 (n.s.)
Spine head area (µm²)	Mean	SEM	N	p value (Mann – Whitney test)
PCDH19+	0.118	0.006	99	DCDU10 + vg DCDU10
PCDH19 -	0.099	0.005	98	PCDH19 + vs. PCDH19 - p = 0.042 (*)
Presynaptic area (μm²)	Mean	SEM	N	p value (Mann – Whitney test)
PCDH19+	0.187	0.010	97	DCDU10 + vg DCDU10
PCDH19 -	0.177	0.011	80	PCDH19 + vs. PCDH19 - p = 0.422 (n.s.)
Vesicle density	Mean	SEM	N	p value

(N / μm ²)				(Mann – Whitney test)
PCDH19+	335.8	12.83	101	DCD1110 *** DCD1110
PCDH19 -	232.5	8.509	94	PCDH19 + vs. PCDH19 - $p < 0.001 (***)$

Suppl Fig 4d			I
Suppl. Fig. 4d Distribution of PSD thickness (nm)	PCDH19+,%	PCDH19 -, %	p value (Comparison of Z-score, Mann-Whitney test)
10	0.00	0.00	
20	0.88	1.85	
30	8.77	21.30	
40	32.46	28.70	
50	35.96	34.26	
60	14.04	10.19	
70	4.39	0.93	
80	2.63	0.93	
90	0.00	0.00	PCDH19 + vs. PCDH19 –
100	0.00	0.93	p = 0.974 (ns)
110	0.00	0.00	
120	0.88	0.00	
130	0.00	0.00	
140	0.00	0.00	
150	0.00	0.00	
160	0.00	0.00	
170	0.00	0.93	
Distribution of vesicle density (N / µm²)	PCDH19 +, %	PCDH19 -, %	p value (Comparison of Z-score, Mann-Whitney test)
50	0	0	
100	0	7.45	
150	0	13.83	
200	13.86	31.91	
250	20.79	25.53	
300	18.82	11.70	
350 400	20.79 8.91	3.19 2.13	
450	5.94	3.19	
500	4.95	1.064	
550	2.97	0	
600	0.99	0	PCDH19 + vs. PCDH19 –
650	0	0	p = 0.783 (ns)
700	0	0	, s., os (ms)
750	0	0	
800	0.99	0	
850	0	0	
900 950	0	0	-
930	U	U	

1000	0	0
1050	0.99	0
1100	0	0

Supplementary table 11. Mean values, SEM, number of samples and p values of data displayed in Supplementary Figure 5.

Suppl. Fig. 5a				
MFR (spike / s)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	0.615	0.055	8	C(1) M (*)
Mosaic	0.448	0.035	6	Ctrl vs. Mosaic $p = 0.036$ (*)
MBR (burst / min)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	1.889	0.131	8	Ct-1 Manage (0.001 (***)
Mosaic	0.912	0.141	6	Ctrl vs. Mosaic p < 0.001 (***)
MBD (ms)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	78.52	7.386	8	Ctrl vs. Mosaic $p = 0.282$ (n.s.)
Mosaic	93.55	0.141	6	Cut vs. Wosaic $p = 0.282$ (ii.s.)
PSB (%)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	19.33	2.874	8	Ctrl vs. Mosaic $p = 0.455$ (n.s.)
Mosaic	14.76	1.413	6	p = 0.733 (ii.s.)
SI (a.u.)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	0.164	0.008	8	Ctrl vs. Mosaic $p = 0.011$ (*)
Mosaic	0.220	0.018	6	cui vo. module p o.ori ()

Suppl. Fig. 5a- inset MFR-CA1 (spike / s)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	0.101	0.019	7	Ctrl vs. Mosaic $p = 0.059$ (n.s.)
Mosaic	0.048	0.013	6	Ctrl vs. Mosaic $p = 0.059$ (n.s.)
MFR-CA3 (spike / s)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	0.086	0.015	8	Ctrl vs. Mossis $n = 0.276 (n s)$
Ctrl Mosaic	0.086	0.015 0.016	8	Ctrl vs. Mosaic $p = 0.276$ (n.s.)

Ctrl	0.081	0.009	8	Ctul va Magaia	p = 0.047 (*)
Mosaic	0.050	0.010	6	Ctrl vs. Mosaic	p = 0.047 (°)

Suppl. Fig.5b MFR (spike / s)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	0.803	0.057	5	C.1 M : 0.015 (*)
Mosaic	0.448	0.035	5	Ctrl vs. Mosaic $p = 0.015$ (*)
MBR (burst / min)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	1.699	0.166	5	Ct.1 Marris 0.047 (*)
Mosaic	1.020	0.238	5	Ctrl vs. Mosaic $p = 0.047 (*)$
MBD (ms)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	77.80	3.334	5	Ctrl vs. Mosaic $p = 0.976$ (n.s.)
Mosaic	78.41	20.07	5	Cut vs. Mosaic $p = 0.970$ (ii.s.)
PSB (%)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	11.26	1.690	5	Ctrl vs. Mosaic $p = 0.336$ (n.s.)
Mosaic	16.01	4.334	5	Cut vs. wiosaic p = 0.550 (ii.s.)
SI (a.u.)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	0.101	0.009	5	Ctrl vs. Mosaic $p = 0.001 (**)$
Mosaic	0.153	0.005	5	р 0.001 ()

Suppl. Fig. 5b- inset MFR-CA1 (spike / s)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	0.244	0.056	5	C+1 M
Mosaic	0.100	0.023	5	Ctrl vs. Mosaic $p = 0.046$ (*)
MFR-CA3 (spike / s)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	0.284	0.047	5	Ct-1 Massis 0.002 (**)
Mosaic	0.078	0.009	5	Ctrl vs. Mosaic $p = 0.002 (**)$
MFR-DG (spike / s)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	0.320	0.102	5	Ct-l vs Massis = 0.040 (*)
Mosaic	0.083	0.012	5	Ctrl vs. Mosaic $p = 0.049$ (*)

Supplementary table 12. Mean values, SEM, number of samples and p values of data displayed in Supplementary Figure 7.

Suppl. Fig. 7a PCDH19 mRNA expression	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl (Cortex)	10.16	1.151	4	Ctrl vs. Mosaic $p = 0.019$ (*)
Mosaic (Cortex)	3.24	1.802	3	Cut vs. Mosaic $p = 0.019$ (*)
Ctrl (Hippocampus)	11.74	0.735	5	
Mosaic (Hippocampus)	4.339	1.229	3	Ctrl vs. Mosaic $p = 0.001 (**)$

Suppl. Fig. 7b				
PCDH19 / GAPDH	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl (Cortex)	0.999	0.097	8	Ctul va Magaia
Mosaic (Cortex)	0.393	0.069	9	Ctrl vs. Mosaic $p < 0.001 (***)$
Ctrl (Hippocampus)	1.000	0.067	6	
Mosaic (Hippocampus)	0.393	0.041	7	Ctrl vs. Mosaic $p < 0.001 (***)$

Suppl. Fig. 7d				
PCDH19 / GAPDH	Mean	SEM	N	p value (One – way ANOVA)
WT	1.896	0.508	7	•
Pcdh19 fl/y	1.442	0.209	6	p > 0.05 (n.s.)
Syn1-Cre	2.343	0.710	6	

Supplementary table 13. Mean values, SEM, number of samples and p values of data displayed in Supplementary Figure 8.

Suppl. Fig. 8 δ-bands							
Power spectral density (dB / Hz) CA1	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)			
Ctrl	1.69	0.14	5	Ctul via Massia			
Mosaic	1.56	0.15	7	Ctrl vs. Mosaic $p = 0.999 \text{ (n.s.)}$			
Power spectral density (dB / Hz) Amy	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)			
Ctrl	14.88	3.22	5	Ctrl vs. Mosaic $p = 0.999$ (n.s.)			
Mosaic	14.44	2.93	7	Cui vs. Mosaic p – 0.777 (ii.s.)			

Power spectral density (dB / Hz) ERC	Mean 3.33	SEM 0.61	N 5	p value (Two – tailed unpaired Student's t – test)		
Mosaic	2.09	0.53	7	Ctrl vs. Mosaic $p = 0.990 \text{ (n.s.)}$		
Power spectral density (dB / Hz) PRC	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)		
Ctrl	1.85	0.09	5	Ct.1 Marris (0.000 (n.s.)		
Mosaic	1.20	0.07	7	Ctrl vs. Mosaic $p = 0.999$ (n.s.)		
θ-bands						
Power spectral density (dB / Hz) CA1	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)		
Ctrl	0.88	0.07	5	Ctul va Massia = 0.000 (n.s.)		
Mosaic	0.74	0.06	7	Ctrl vs. Mosaic $p = 0.999 \text{ (n.s.)}$		
Power spectral density (dB / Hz) Amy	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)		
Ctrl	7.62	1.38	5	C(1 N 0.000 ()		
Mosaic	7.53	1.45	7	Ctrl vs. Mosaic $p = 0.999 \text{ (n.s.)}$		
Power spectral density (dB / Hz) ERC	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)		
Ctrl	1.85	0.20	5	Ctulus Massis = 0.001 (n z)		
Mosaic	0.80	1.60	7	Ctrl vs. Mosaic $p = 0.981$ (n.s.)		
Power spectral density (dB / Hz) PRC	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)		
Ctrl	0.63	0.03	5	Chilara Massis and 0.002 (c. c.)		
Mosaic	0.41	0.02	7	Ctrl vs. Mosaic $p = 0.993$ (n.s.)		

Supplementary table 14. Mean values, SEM, number of samples and p values of data displayed in Supplementary Figure 9.

Suppl. Fig. 9b LFP rate (LFP / s)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	0.253	0.020	12	Children Massis and 0.205 (n. c.)
Mosaic	0.290	0.025	6	Ctrl vs. Mosaic $p = 0.305$ (n.s.)
LFP amplitude (μV)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	111.2	6.132	12	Ctrl vs. Mosaic p = 0.005 (**)
Mosaic	83.05	1.813	6	Ctri vs. Mosaic $p = 0.003 (T)$
LFP duration (s)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	0.091	0.013	12	Ctul va Magaia = 0.021 (*)
Mosaic	0.042	0.001	6	Ctrl vs. Mosaic $p = 0.021$ (*)
LFP syncro (a.u.)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	0.552	0.035	12	Ctrl va Massia n = 0.462 (n s.)
Mosaic	0.594	0.035	6	Ctrl vs. Mosaic $p = 0.462$ (n.s.)

Suppl. Fig. 9c				
LFP rate (LFP / s)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	0.343	0.026	13	C.1 M : 00(1())
Mosaic	0.250	0.030	8	Ctrl vs. Mosaic $p = 0.061$ (n.s.)
LFP amplitude (μV)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	90.06	3.183	13	Ct.1 Marris 0.120 (v. c.)
Mosaic	101.9	7.775	8	Ctrl vs. Mosaic $p = 0.120$ (n.s.)
LFP duration (s)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	0.056	0.008	13	Ct. 1 vs. Massia vs. — 0.045 (*)
Mosaic	0.101	0.023	8	Ctrl vs. Mosaic $p = 0.045$ (*)
LFP syncro (a.u.)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl Mosaic	0.580 0.554	0.008 0.029	13 8	Ctrl vs. Mosaic $p = 0.901$ (n.s.)

Suppl. Fig. 9d				
LFP rate	Mean	SEM	N	p value

(LFP/s)				(Two – tailed unpaired Student's t – test)
Ctrl	0.344	0.042	5	Ctrl vs. Mosaic $p = 0.753$ (n.s.)
Mosaic	0.326	0.034	5	Cut vs. Mosaic $p = 0.755$ (ii.s.)
LFP amplitude (μV)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	117.8	15.25	5	C(1 M : 0.100 ()
Mosaic	88.29	4.436	5	Ctrl vs. Mosaic $p = 0.100 \text{ (n.s.)}$
LFP duration (s)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	0.029	0.005	5	Ctal 22 Maraia
Mosaic	0.070	0.019	5	Ctrl vs. Mosaic $p = 0.079$ (n.s.)
LFP syncro (a.u.)	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	0.556	0.008	5	Ct-1 Marsia
Mosaic	0.528	0.020	5	Ctrl vs. Mosaic $p = 0.232$ (n.s.)

Suppl. Fig. 9e Power spectral density (dB / Hz) α-bands	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	23.60	2.12	12	Ctal vs. Massis , p < 0.05 (*)
Mosaic	33.67	1.20	6	Ctrl vs. Mosaic $p < 0.05$ (*)
Power spectral density (dB / Hz) β-bands	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	-1	2.08	12	Ctrl vs. Mosaic p < 0.001 (***)
Mosaic	21	0.57	6	Cut vs. Mosaic $p < 0.001$ (***)
Power spectral density (dB / Hz) γ-bands	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl Mosaic	- 4.73 11	0.63 1.15	12 6	Ctrl vs. Mosaic p < 0.001 (***)

Suppl. Fig. 9f				
Power spectral density	Mean	SEM	N	<pre>p value (Two – tailed unpaired Student's t – test)</pre>
(dB / Hz) α-bands				

Ctrl	21.67	3.71	13	Ctul via Massia
Mosaic	28	3.05	8	Ctrl vs. Mosaic $p > 0.05$ (n.s.)
Power spectral density (dB / Hz) β-bands	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	2.433	0.296	13	Chilara Massis as < 0.01 (**)
Mosaic	9.20	0.986	8	Ctrl vs. Mosaic $p < 0.01 (**)$
Power spectral density (dB / Hz) γ-bands	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	0.167	0.731	13	Ctrl vs Mossia n > 0.05 (n s)
Mosaic	0.30	0.87	8	Ctrl vs. Mosaic $p > 0.05$ (n.s.)

Suppl. Fig. 9g Power spectral density (dB / Hz) α-bands	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	25.91	4.76	13	Ctul via Massia
Mosaic	25.13	5.11	8	Ctrl vs. Mosaic $p = 0.998$ (n.s.)
Power spectral density (dB / Hz) β-bands	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	5.45	2.02	13	Ct-1 Maraia < 0.001 (***)
Mosaic	-3.84	1.32	8	Ctrl vs. Mosaic p < 0.001 (***)
Power spectral density (dB / Hz) γ-bands	Mean	SEM	N	p value (Two – tailed unpaired Student's t – test)
Ctrl	-4.76	1.45	13	Ctrl vs. Mosaic $p = 0.895 \text{ (n.s.)}$
Mosaic	-3.90	1.04	8	p = 0.075 (ii.s.)